
Exercises in Functional Analysis, Week IV

1. The map (s, 0) 7→ s is a linear functional on the subspace R × {0} of R2. Determine
all its linear extensions to R2 with the same norm if R2 is given

(a) the l1 norm;

(b) the lp norm, 1 < p ≤ ∞.

2. Show that there exists a non-zero linear functional F ∈ (L∞([a, b]))∗ such that for any
f ∈ C([a, b]), F (f) = f((a+ b)/2).

3. Consider l2F , the linear subspace of l
2 consisting of those sequences having only finitely

many terms different from zero. Describe the space (l2F )
∗.

4. Prove that there exists a linear functional F ∈ (l∞)∗ such that F (x) = limxn for any
x ∈ c, where c is the linear subspace of l∞ consisting of convergent sequences. Show
that the inclusion T : l1 → (l∞)∗, a 7→ ϕa, ϕa(x) =

∑∞
i=1 xiai, is proper.

5. Let {x1, x2, . . . , xn} be a system of linearly independent elements of a normed space
X. Let c1, . . . , cn ∈ C. Show that there exists f ∈ X∗ such that f(xi) = ci.

6. Let {xn} be a sequence of elements in a Banach space X. Let L be a subspace of all
its finite linear combinations and L is the closure of L. Show that x ∈ L if and only
if for any f ∈ X∗ such that f(xn) = 0 one has f(x) = 0.

7. Is it true that two elements x and y of a normed linear spaceX are equal iff f(x) = f(y)

(a) for all f ∈ X∗;

(b) for all f in a dense subset of X∗.

8. Let l∞ be a real Banach space. Let G = {(x1, x2−x1, x3−x2, . . .) : x = (x1, x2, . . .) ∈
l∞} and e = (1, 1, . . .). Show that there exists f ∈ (l∞)∗ such that f(x) = 0, x ∈ Ḡ,
f(e) = 1, ∥f∥ = 1 (Hint: Show that the distance from e to the closure of G equals 1).
The functional is denoted by LIMxn := f(x), x ∈ l∞. Show that

(a) LIMxn = LIMxn+1, i.e. f(x) = f(S(x)), where S is the shift operator:
S((x1, x2, . . .)) = (x2, x3, . . .).

(b) LIMxn = a if xn → a;

(c) there exists x ∈ l∞ such that for any N ≥ 1 there exists n ≥ N such that xn = 1
and LIMxn = 0.
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9. Let X be a normed space, G ⊆ X is a linear space, and f : G → C is a bounded linear
functional for which there exist g, h : X → C , two distinct linear bounded extensions
such that ∥g∥ = ∥h∥ = ∥f∥. Prove that f has infinity of linear bounded extensions of
norm ∥f∥. More precisely, one can prove that the set of all such extensions is convex
in X∗.

10. (a) Let 1 < p < ∞ and G = {(xn)n∈N ∈ lp :
∑∞

n=1 xn = 0}. Use a consequence from
the Hahn-Banach theorem to prove that G is a dense linear subspace of lp.

(b) Let (an)n∈N be a sequence of scalars such that
∑∞

n=1 |an| ̸= 0 and let 1 < p < ∞.
Find a necessary and sufficient condition on the sequence (an)n∈N for the linear
subspace G = {(xn)n∈N ∈ lp :

∑∞
n=1 anxn = 0} be dense in lp.
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