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These lectures concern the theory of normed spaces and bounded linear oper-
ators between normed spaces. We shall define these terms and study their prop-
erties.

You can consult the following books.

1. G. Folland: Real Analysis. Modern Techniques and their Applications, John
Wiley & Sons, 1999, Chapters 5-7 and parts of Chapter 4.
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1 Vector Spaces

Definition 1.1. A complex vector space (or a vector space over the field C) (or a
complex linear space) is a set V with addition

V × V → V,

(x, y) 7→ x+ y the sum of x and y,

and scalar multiplication

C× V → V,

(λ, x) 7→ λx the product of λ and x,

satisfying the following rules:

x+ (y + z) = (x+ y) + z ∀x, y, z ∈ V,

x+ y = y + x ∀x, y ∈ V,

∃0 ∈ V : 0 + x = x ∀x ∈ V,

∀x ∈ V ∃ − x ∈ V : x+ (−x) = 0,

λ(x+ y) = λx+ λy ∀x, y ∈ V, ∀λ ∈ C,
(λ+ µ)x = λx+ µx ∀x ∈ V, ∀λ, µ ∈ C,
λ(µx) = (λµ)x ∀x ∈ V, ∀λ, µ ∈ C,
1x = x ∀x ∈ V.

It is easy to see that the usual arithmetic holds in V .

Remark 1.2. Similarly, we can define a real vector space by replacing C with R
in the definition.

Examples 1.3. 1. Cn = {(x1, . . . , xn) : xi ∈ C ∀i}, the complex vector space of
n-tuples of complex numbers with coordinatewise addition

(x1, . . . , xn)+(y1, . . . , yn) = (x1+y1, . . . , xn+yn), (x1, . . . , xn), (y1, . . . , yn) ∈ Cn

and coordinatewise scalar multiplication

λ(x1, . . . , xn) = (λx1, . . . , λxn), λ ∈ C, (x1, . . . , xn) ∈ Cn.

2. An infinite-dimensional complex vector space:

CN = {(x1, . . . , xn, . . .) : xi ∈ C ∀i}
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is the complex vector space of sequences of complex numbers with coordinatewise
addition and scalar multiplication:

x+ y = (x1 + y1, . . . , xn + yn, . . .),

λx = (λx1, . . . , λxn, . . .),

x = (x1, . . . , xn, . . .), y = (y1, . . . , yn, . . .) ∈ CN, λ ∈ C.
3. The complex vector space of all continuous complex-valued functions on [0, 1]

C[0, 1] = {f : [0, 1] → C : f is continuous on [0, 1]}

with pointwise addition

(f + g)(t) = f(t) + g(t), f, g ∈ C[0, 1], t ∈ [0, 1],

and scalar multiplication

(λf)(t) = λf(t), f ∈ C[0, 1], λ ∈ C, t ∈ [0, 1].

These operations are well-defined due to the following fact (from the basic
analysis course): If f, g are continuous functions on [0, 1] and λ ∈ C then (f + g)
and λf are continuous on [0, 1].
4. Mn(C) = {(aij)ni,j=1 : aij ∈ C, i, j = 1, . . . , n}, the complex vector space of n× n
matrices with complex entries with addition

(aij)
n
i,j=1 + (bij)

n
i,j=1 = (aij + bij)

n
i,j=1,

and scalar multiplication

λ(aij)
n
i,j=1 = (λaij)

n
i,j=1.

(So we have addition and scalar multiplication by entries.)

1.1 Vector Subspaces

Definition 1.4. A non-empty subset of W of a vector space V is called a vector
subspace (or a linear subspace) if

1. for every x, y ∈ W, x+ y ∈ W ;

2. for every x ∈ W and every λ ∈ C (or R), λx ∈ W .

Remark 1.5. A vector subspace W is itself a vector space with respect to the
addition and scalar multiplication defined on V .
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Question 1.6. Let D be the closed unit disc, that is

D = {z ∈ C : |z| ≤ 1}.

It is obvious that D is a subset of C. Is D a vector subspace of C?

No. Conditions (1) and (2) of the definition of a vector subspace are not
satisfied:

1. For z1 = z2 = 1, we have z1 + z2 = 2, so |z1 + z2| = 2. Thus z1 + z2 /∈ D.

2. For z = i, we have |λz| = |λ| for every λ ∈ C. Thus λz /∈ D when λ is such
that |λ| > 1.

Example 1.7. Show that W = {f ∈ C[0, 1] :
∫ 1

0
f(x) dx = 0} is a linear subspace

of C[0, 1].

Proof. 1) It is obvious that W is a subset of C[0, 1], i.e., W ⊂ C[0, 1].

2) W is a non-empty subset. For example, f0(t) = 2t − 1 belongs to W , since∫ 1

0
f0(t) dt =

∫ 1

0
2t− 1 dt = (2 t

2

2
− t)|10 = 0.

3) For every f, g ∈ W , we have∫ 1

0

(f + g)(t) dt =

∫ 1

0

f(t) + g(t) dt

=

∫ 1

0

f(t) dt+

∫ 1

0

g(t) dt (by the linearity of integrals)

= 0 + 0 = 0.

Thus f + g ∈ W .

4) For every f ∈ W and λ ∈ C, we have∫ 1

0

(λf)(t) dt =

∫ 1

0

λf(t) dt

= λ

∫ 1

0

f(t) dt (by the linearity of integrals)

= 0.

Thus λf ∈ W . Hence W is a vector subspace of C[0, 1].
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Example 1.8. Let ℓ2 be the set of all complex sequences x = (xn)
∞
n=1 which are

square summable, i.e. satisfy

∞∑
n=1

|xn|2 <∞;

we write

ℓ2 = {(x1, . . . , xn, . . .) : xi ∈ C ∀i and
∞∑
n=1

|xn|2 <∞}.

Show that ℓ2 is a vector subspace of CN. Recall that CN = {(x1, . . . , xn, . . .) : xi ∈
C ∀i} with x+ y = (x1 + y1, . . . , xn + yn, . . .) and λx = (λx1, . . . , λxn, . . .).

Proof. 1). It is obvious that ℓ2 is a subset of CN.

2). The sequence x = (1, 1
2
, 1
3
, . . . , 1

n
, . . .) ∈ ℓ2 since the series

∑∞
n=1

1
n2 converges.

Thus ℓ2 is non-empty.

3). We have to prove that, for any x = (xn)
∞
n=1, y = (yn)

∞
n=1 ∈ ℓ2, x + y =

(x1 + y1, . . . , xn + yn, . . .) belongs to ℓ2. Thus we have to show that the series∑∞
n=1 |xn + yn|2 converges. We will prove this in Theorem 1.11.

4). For any x = (xn)
∞
n=1 ∈ ℓ2 and λ ∈ C we have λx = (λx1, . . . , λxn, . . .). Note

that

∞∑
n=1

|λxn|2 =
∞∑
n=1

|λ|2|xn|2

= |λ|2
∞∑
n=1

|xn|2 <∞,

so λx ∈ ℓ2.

Hence ℓ2 is a vector subspace of CN, and ℓ2 is a complex vector space.

The Cauchy-Schwarz Inequality 1.9.

n∑
k=1

akbk ≤ (
n∑
k=1

a2k)
1
2 (

n∑
k=1

b2k)
1
2

for all ak, bk ∈ R, ak, bk ≥ 0, k = 1, 2, . . . , n, n ∈ N.
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It follows from(
n∑
k=1

akbk

)2

=
n∑
k=1

a2k

n∑
k=1

b2k −
1

2

n∑
i=1

n∑
j=1

(aibj − biaj)
2.

Lemma 1.10. For any x, y ∈ ℓ2, the series
∑∞

n=1 xnyn converges absolutely and

∞∑
n=1

|xnyn| ≤

{
∞∑
n=1

|xn|2
} 1

2
{

∞∑
n=1

|yn|2
} 1

2

.

Proof. Using the Cauchy-Schwarz inequality, for every k ∈ N, we have

k∑
n=1

|xnyn| =
k∑

n=1

|xn||yn|

≤

{
k∑

n=1

|xn|2
} 1

2
{

k∑
n=1

|yn|2
} 1

2

by the Cauchy-Schwarz inequality

≤

{
∞∑
n=1

|xn|2
} 1

2
{

∞∑
n=1

|yn|2
} 1

2

.

The latter expression is a finite number independent of k, and so the series

∞∑
n=1

|xnyn|

converges and
∞∑
n=1

|xnyn| ≤

{
∞∑
n=1

|xn|2
} 1

2
{

∞∑
n=1

|yn|2
} 1

2

.

Theorem 1.11. For any x, y ∈ ℓ2,

∞∑
n=1

|xn + yn|2 ≤

{ ∞∑
n=1

|xn|2
} 1

2

+

{
∞∑
n=1

|yn|2
} 1

2

2

and x+ y ∈ ℓ2.
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Proof. For every n ∈ N,

|xn + yn|2 = (xn + yn)(xn + yn)

= xnxn + ynxn + xnyn + ynyn)

= |xn|2 + xnyn + xnyn + |yn|2

≤ |xn|2 + 2|xnyn|+ |yn|2.

Hence, for every k ∈ N,

k∑
n=1

|xn + yn|2 ≤
k∑

n=1

(|xn|2 + 2|xnyn|+ |yn|2)

=
k∑

n=1

|xn|2 + 2
k∑

n=1

|xnyn|+
k∑

n=1

|yn|2

≤
∞∑
n=1

|xn|2 + 2
∞∑
n=1

|xnyn|+
∞∑
n=1

|yn|2

≤
∞∑
n=1

|xn|2 + 2

(
∞∑
n=1

|xn|2
) 1

2
(

∞∑
n=1

|yn|2
) 1

2

+
∞∑
n=1

|yn|2

=

{ ∞∑
n=1

|xn|2
} 1

2

+

{
∞∑
n=1

|yn|2
} 1

2

2

.

The latter expression is a finite number independent of k, so the series

∞∑
n=1

|xn + yn|2

converges and

∞∑
n=1

|xn + yn|2 ≤

{ ∞∑
n=1

|xn|2
} 1

2

+

{
∞∑
n=1

|yn|2
} 1

2

2

.

The theorem is proved.
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2 Normed Spaces

Suppose we have a vector space V , the generalisation of Rn, and we want to know
about size of vectors x ∈ V , and about the distance between two vectors x, y ∈ V .
Suppose we would also like to estimate the distance from a vector x ∈ V to a
vector subspace W ⊂ V . To deal with this kind of problem we define a norm on
V .

Definition 2.1. A mapping ∥ · ∥ : V → R : x 7→ ∥x∥, where V is a complex (real)
vector space, is called a norm if it satisfies

N1 ∥x∥ > 0 for all x ∈ V \ {0};

N2 ∥λx∥ = |λ|∥x∥ for all scalars λ ∈ C (λ ∈ R) and x ∈ V ;

N3 ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ V (The Triangle Inequality).

Remark 2.2. Note that N2 implies that ∥0∥ = 0. Thus we have ∥x∥ = 0 if and
only if x = 0.

Example 2.3. R2 = {(x, y) : x, y ∈ R},

∥ · ∥2 : R2 → R : (x, y) 7→ ∥(x, y)∥2 =
√
x2 + y2.

This is called the Euclidean norm of the vector. The Euclidean norm is just one
way to measure length. Now we shall check that ∥(x, y)∥2 =

√
x2 + y2 really

defines a norm on R2, that is, we shall check that conditions N1, N2, N3 are
satisfied.

N1. For any v = (x, y) ̸= 0,

∥v∥2 =
√
x2 + y2 > 0.

N2. For any v ∈ R2 and λ ∈ R,
∥λv∥2 = ∥(λx, λy)∥2

=
√
(λx)2 + (λy)2

=
√
λ2(x2 + y2)

= |λ|
√
x2 + y2

= |λ|∥v∥2.
N3. For any v1 = (x1, y1) and v2 = (x2, y2) ∈ R2,

∥v1 + v2∥22 = ∥(x1 + x2, y1 + y2)∥22
= (x1 + x2)

2 + (y1 + y2)
2

= x21 + 2x1x2 + x22 + y21 + 2y1y2 + y22
= (x21 + y21) + (x22 + y22) + 2(x1x2 + y1y2)

= ∥v1∥22 + ∥v2∥22 + 2(x1x2 + y1y2).
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By the Cauchy-Schwarz inequality,

|x1x2 + y1y2| ≤ (x21 + y21)
1
2 (x22 + y22)

1
2

= ∥v1∥2∥v2∥2.

Thus

∥v1 + v2∥22 ≤ ∥v1∥22 + 2∥v1∥2∥v2∥2 + ∥v2∥22
= (∥v1∥2 + ∥v2∥2)2.

Therefore, ∥v1 + v2∥2 ≤ ∥v1∥2 + ∥v2∥2. It is called the triangle inequality.

Definition 2.4. A pair (V, ∥ · ∥), where V is a real or complex vector space and
∥ · ∥ is a norm on V is called a normed space.

Example 2.5. (R2, ∥ · ∥2) is a normed space, where R2 = {(x, y) : x, y ∈ R} and
∥(x, y)∥2 =

√
x2 + y2.

Example 2.6. (ℓ2, ∥ · ∥2) is a normed space, where

ℓ2 = {(x1, . . . , xn, . . .) : xi ∈ C ∀i and
∑∞

n=1|xn|
2 <∞}

and

∥x∥2 =

{
∞∑
n=1

|xn|2
} 1

2

.

Proof. We proved before that ℓ2 is a complex vector space. Thus we have to verify
that ∥ · ∥2 is a norm on ℓ2.

The mapping ∥ · ∥2 : ℓ2 → R : x 7→ ∥x∥2 = (
∑∞

n=1 |xn|2)
1
2 is well-defined, since the

series
∑∞

n=1 |xn|2 converges. Now we shall check that conditions N1, N2, N3 are
satisfied.

N1. It is obvious that, for x ∈ ℓ2 \ {0}, i.e., x ̸= 0, there is an integer i0 ∈ N
such that xi0 ̸= 0. Thus

∥x∥2 =

{
∞∑
n=1

|xn|2
} 1

2

≥ |xi0 | > 0.

N2. We need to show that ∥λx∥2 = |λ|∥x∥2 for all λ ∈ C and all x ∈ ℓ2. We
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have

∥λx∥2 =

{
∞∑
n=1

|λxn|2
} 1

2

=

{
∞∑
n=1

|λ|2|xn|2
} 1

2

= |λ|

{
∞∑
n=1

|xn|2
} 1

2

= |λ|∥x∥2

for all λ ∈ C and all x ∈ ℓ2, as required.
N3. We need to show that ∥x+y∥2 ≤ ∥x∥2+∥y∥2 for all x, y ∈ ℓ2. By Theorem

1.11, for any x, y ∈ ℓ2,(
∞∑
n=1

|xn + yn|2
) 1

2

≤

(
∞∑
n=1

|xn|2
) 1

2

+

(
∞∑
n=1

|yn|2
) 1

2

.

Thus we have, for all x, y ∈ ℓ2,

∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.

Therefore, (ℓ2, ∥ · ∥2) is a normed space.

Example 2.7. (C[0, 1], ∥ · ∥∞) is a normed space, where

C[0, 1] = {f : [0, 1] → C : f is continuous on [0, 1]}

and
∥f∥∞ = sup

0≤t≤1
|f(t)|.

Proof. We showed before that C[0, 1] is a complex vector space. Thus we have to
verify that ∥ · ∥∞ is a norm on C[0, 1], that is, we have to show that conditions
N1, N2, N3 are satisfied.

N1. If f ̸= 0, there is t0 ∈ [0, 1] such that f(t0) ̸= 0. Thus

∥f∥∞ = sup
0≤t≤1

|f(t)| ≥ |f(t0)| > 0.

Therefore ∥f∥∞ > 0 for all f ∈ C[0, 1] \ {0}.
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N2. Let λ ∈ C and f ∈ C[0, 1], then

∥λf∥∞ = sup
0≤t≤1

|λf(t)|

= sup
0≤t≤1

|λ||f(t)|

= |λ| sup
0≤t≤1

|f(t)|

= |λ|∥f∥∞.

N3. Let f, g ∈ C[0, 1]. It is easy to see that for every t ∈ [0, 1],

|f(t) + g(t)| ≤ |f(t)|+ |g(t)|
≤ sup

0≤t≤1
|f(t)|+ sup

0≤t≤1
|g(t)|

= ∥f∥∞ + ∥g∥∞.

Thus
sup
0≤t≤1

|f(t) + g(t)| ≤ ∥f∥∞ + ∥g∥∞,

hence
∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞

for all f, g ∈ C[0, 1].
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3 Inner Product Spaces

The main examples to keep in mind are Cn and ℓ2.

Example 3.1. Cn = {(x1, . . . , xn) : xi ∈ C ∀i = 1, . . . , n}. It has an inner product

⟨x, y⟩ =
n∑
i=1

xiyi

for x = (x1, . . . , xn) and y = (y1, . . . , yn). Thus the mapping

⟨·, ·⟩ : Cn × Cn → C

(x, y) 7→
n∑
i=1

xiyi

is defined. This mapping has the following properties:
(i) For all x, y ∈ Cn

⟨x, y⟩ =
n∑
i=1

xiyi

=
n∑
i=1

yixi

=

(
n∑
i=1

yixi

)−

= ⟨y, x⟩.

(ii) For all λ ∈ C and x, y ∈ Cn,

⟨λx, y⟩ =
n∑
i=1

λxiyi

= λ
n∑
i=1

xiyi

= λ⟨x, y⟩.

(iii) For all x, y, z ∈ Cn,

⟨x+ y, z⟩ =
n∑
i=1

(xi + yi)zi

=
n∑
i=1

xizi +
n∑
i=1

yizi

= ⟨x, z⟩+ ⟨y, z⟩.
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(iv) For all x ∈ Cn \ {0},

⟨x, x⟩ =
n∑
i=1

xixi

=
n∑
i=1

|xi|2 > 0.

Thus Cn with an inner product ⟨x, y⟩ =
∑n

i=1 xiyi is an inner product space. Let
us say precisely what this means.

Definition 3.2. An inner product (or scalar product) on a complex vector space
V is a mapping

⟨·, ·⟩ : V × V → C
(x, y) 7→ ⟨x, y⟩

satisfying, for all x, y, z ∈ V and λ ∈ C, the following conditions:

(i) ⟨x, y⟩ = ⟨y, x⟩,

(ii) ⟨λx, y⟩ = λ⟨x, y⟩,

(iii) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

(iv) ⟨x, x⟩ > 0 whenever x ̸= 0.

Remark 3.3. By conditions (ii) and (iii), an inner product is linear in the first
argument.

Definition 3.4. An inner product space (or pre-Hilbert space) is a pair (V, ⟨·, ·⟩)
where V is a complex vector space and ⟨·, ·⟩ is an inner product on V .

We would like to find an infinite dimensional version of Cn. One can speak of the
complex vector space CN = {(xi)∞i=1 : xi ∈ C ∀i}.

Question 3.5. Does the series
∑∞

i=1 xiyi converge for all x and y from CN?

Unfortunately, this series does not converge for some x and y from CN. Thus there
is no natural way to extend the all-important notion of inner product to CN.

Example 3.6. ℓ2 = {(xn)∞n=1 : xn ∈ C ∀n ∈ N such that
∑∞

n=1 |xn|2 < ∞} with
inner product

⟨·, ·⟩ : ℓ2 × ℓ2 → C
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given by

⟨x, y⟩ =
∞∑
n=1

xnyn

is an inner product space.

Proof. In Section 1 we proved Lemma 1.10:
For any x = (xn)

∞
n=1, y = (yn)

∞
n=1 ∈ ℓ2, the series

∑∞
n=1 xnyn converges abso-

lutely and
∞∑
n=1

|xnyn| ≤

{
∞∑
n=1

|xn|2
} 1

2
{

∞∑
n=1

|yn|2
} 1

2

.

Thus the mapping

⟨·, ·⟩ : ℓ2 × ℓ2 → C (3.1)

(x, y) 7→
∞∑
n=1

xnyn (3.2)

is well defined.
2) Similarly to the case of Cn we can check that the mapping ⟨·, ·⟩ : ℓ2×ℓ2 → C

satisfies the conditions (i)− (iv) from the definition of the inner product.
[Please check them.]

Example 3.7. The complex vector space C[0, 1] = {f : [0, 1] → C : f is continuous on [0, 1]}
becomes an inner product space when endowed with the inner product

⟨·, ·⟩ : C[0, 1]× C[0, 1] → C

given by

⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt.

Let us check that the conditions (i) − (iv) of the definition of inner product are
satisfied.

(i) For all f, g ∈ C[0, 1],

⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt

=

∫ 1

0

g(t)f(t) dt

= ⟨g, f⟩.
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(ii) For all f, g ∈ C[0, 1] and λ ∈ C,

⟨λf, g⟩ =
∫ 1

0

λf(t)g(t) dt

= λ

∫ 1

0

f(t)g(t) dt (by the linearity of integrals)

= λ⟨f, g⟩.

(iii) For all f1, f2, g ∈ C[0, 1],

⟨f1 + f2, g⟩ =
∫ 1

0

(f1(t) + f2(t))g(t) dt

=

∫ 1

0

f1(t)g(t) dt+

∫ 1

0

f2(t)g(t) dt (by the linearity of integrals)

= ⟨f1, g⟩+ ⟨f2, g⟩.

(iv) When f ∈ C[0, 1] and f ̸= 0,

⟨f, f⟩ =
∫ 1

0

f(t)f(t) dt

=

∫ 1

0

|f(t)|2 dt > 0.

Thus (C[0, 1], ⟨·, ·⟩) is an inner product space.

Exercise 3.8. Show that the formula

⟨A,B⟩ = trace(B∗A),

where B∗ is the adjoint matrix of B, defines an inner product on the complex vector
space Mn(C).

Theorem 3.9. For any x, y, z in an inner product space (V, ⟨·, ·⟩) and any λ ∈ C,

(i) ⟨x, λy⟩ = λ⟨x, y⟩;

(ii) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩;

(iii) ⟨0, x⟩ = ⟨x, 0⟩ = 0;

(iv) if ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ V , then x = y.

Remark 3.10. By (i) and (ii), an inner product is conjugate linear in the second
argument.
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Proof of Theorem 3.9. (i) Let x, y ∈ V and λ ∈ C. Then

⟨x, λy⟩ = ⟨λy, x⟩ (by (i) of the definition of inner product)

= {λ⟨y, x⟩}− (by (ii) of the definition of inner product)

= λ ⟨y, x⟩
= λ ⟨x, y⟩ (by (i) of the definition of inner product).

(ii) Let x, y, z ∈ V . Then

⟨x, y + z⟩ = ⟨y + z, x⟩ (by (i) of the definition of inner product)

= {⟨y, x⟩+ ⟨z, x⟩}− (by (iii) of the definition of inner product)

= ⟨y, x⟩+ ⟨z, x⟩
= ⟨x, y⟩+ ⟨x, z⟩ (by (i) of the definition of inner product).

(iii) For all x ∈ V ,

⟨0, x⟩ = ⟨0 · 0, x⟩
= 0 · ⟨0, x⟩ by (ii) of the definition of inner product

= 0.

(iv) Let ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ V . Then, by the linearity of the inner product
in the first argument, for all z ∈ V ,

0 = ⟨x, z⟩ − ⟨y, z⟩ = ⟨x− y, z⟩.

In particular, for z = x− y, we have ⟨x− y, x− y⟩ = 0. Therefore, it follows from
(iv) of the definition of inner product that x− y = 0; so x = y.

3.1 Inner Product Spaces as Normed Spaces

In the familiar case of R3, the magnitude ∥u∥2 of a vector u ∈ R3 is equal to

⟨u, u⟩ 1
2 :

∥u∥2 = (x2 + y2 + z2)
1
2 = ⟨u, u⟩

1
2 ,

where u = (x, y, z). The Euclidean distance between points with position vectors
u, v is ∥u−v∥2. We can copy this to introduce a natural norm in any inner product
space.

Definition 3.11. The norm of a vector x in an inner product space (V, ⟨·, ·⟩),
written ∥x∥2, is defined to be ⟨x, x⟩ 1

2 .
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Remark 3.12. Later we will show that the mapping

∥ · ∥2 : V → R

x 7→ ∥x∥2 = ⟨x, x⟩
1
2

is always a norm.

Example 3.13. (ℓ2, ⟨·, ·⟩). We have

∥x∥2 = ⟨x, x⟩
1
2 =

(
∞∑
i=1

xixi

) 1
2

=

(
∞∑
i=1

|xi|2
) 1

2

.

Find ∥x0∥2, where x0 = (3i, 0,−4, 0, . . .). By the above,

∥x0∥2 = (|3i|2 + | − 4|2)
1
2 = (9 + 16)

1
2 = 5.

Example 3.14. (C[0, 1], ⟨·, ·⟩). We have

∥f∥2 =
(∫ 1

0

f(t)f(t) dt

) 1
2

=

(∫ 1

0

|f(t)|2 dt
) 1

2

.

Find ∥f0∥2, where f0(t) = 1− it. By the above

∥f0∥2 =
(∫ 1

0

|1− it|2 dt
) 1

2

=

(∫ 1

0

(1 + t2) dt

) 1
2

=

(
t
∣∣∣1
0
+
t3

3

∣∣∣1
0

) 1
2

=

(
1 +

1

3

) 1
2

=

√
4

3
.

Remark 3.15. Consider C[0, 1], the vector space of continuous complex valued
functions on [0, 1]. Note that the normed spaces:

1. (C[0, 1], ∥ · ∥∞) where ∥f∥∞ = sup0≤t≤1 |f(t)| and

2. (C[0, 1], ∥ · ∥2) where ∥f∥2 = (
∫ 1

0
|f(t)|2 dt) 1

2 ,

have the same underlying vector space, but different norms.
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Theorem 3.16. (Cauchy-Schwarz Inequality) For any x, y in an inner product
space (V, ⟨·, ·⟩),

|⟨x, y⟩| ≤ ∥x∥2∥y∥2
with equality if and only if x and y are linearly dependent.

Proof. When y = λx for some λ ∈ C, we have

|⟨x, y⟩| = |⟨x, λx⟩|
= |λ⟨x, x⟩|
= |λ|∥x∥22
= ∥λx∥2∥x∥2
= ∥y∥2∥x∥2.

Suppose now that x and y are not linearly dependent. Then, for all λ ∈ C,
x+ λy ̸= 0, so

⟨x+ λy, x+ λy⟩ > 0.

Thus, by the definition of inner product, for all λ ∈ C, we have

⟨x+ λy, x+ λy⟩ = ⟨x, x+ λy⟩+ ⟨λy, x+ λy⟩
= ⟨x, x⟩+ ⟨x, λy⟩+ ⟨λy, x⟩+ ⟨λy, λy⟩
= ⟨x, x⟩+ λ⟨x, y⟩+ λ⟨y, x⟩+ λλ⟨y, y⟩.

Pick λ = − ⟨x,y⟩
⟨y,y⟩ . Then

⟨x, x⟩ − ⟨x, y⟩
⟨y, y⟩

.⟨y, x⟩ > 0,

therefore
⟨x, x⟩⟨y, y⟩ > ⟨x, y⟩⟨y, x⟩.

Since ⟨y, x⟩ = ⟨x, y⟩ and ∥x∥22 = ⟨x, x⟩, we have

|⟨x, y⟩| < ∥x∥2∥y∥2

for all linearly independent x and y.

Remark 3.17. Recall in R3

⟨v, w⟩ = ∥v∥2∥w∥2 cos θ,

where θ is the angle between v and w. Thus we can use ⟨·, ·⟩ to test if vectors are
orthogonal.
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Inner products are good because they are linear in the first argument, conjugate
linear in the second argument and related to norms, which are not linear.

Example 3.18. Prove that, for any f ∈ C[1, 2],∣∣∣∣∫ 2

1

tf(t) dt

∣∣∣∣ ≤
√

7

3

(∫ 2

1

|f(t)|2 dt
) 1

2

.

For which f does equality hold?

Proof. By the Cauchy-Schwarz Inequality 3.16, we have∣∣∣∣∫ 2

1

tf(t) dt

∣∣∣∣ = |⟨g, f⟩| (here g(t) = t, t ∈ [1, 2])

≤ ∥g∥2∥f∥2 (by the Cauchy-Schwarz inequality)

=

(∫ 2

1

t2 dt

) 1
2

∥f∥2

=

(
t3

3

∣∣∣2
1

) 1
2

∥f∥2

=

√
7

3

(∫ 2

1

|f(t)|2 dt
) 1

2

.

The equality holds if and only if f(t) = λt for some λ ∈ C.

Theorem 3.19. Let (V, ⟨·, ·⟩) be a an inner product space. Then

(i) ∥x∥2 ≥ 0 for all x ∈ V and ∥x∥2 = 0 implies x = 0;

(ii) ∥λx∥2 = |λ|∥x∥2 for all x ∈ V and λ ∈ C;

(iii) ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2 for all x, y ∈ V .

Proof. (i) ∥x∥2 = ⟨x, x⟩ 1
2 ≥ 0. By (iv) of the definition of inner product, ∥x∥2 =

⟨x, x⟩ 1
2 > 0 when x ̸= 0.

(ii) For all x ∈ V , λ ∈ C,

∥λx∥2 = ⟨λx, λx⟩
1
2

= (λλ⟨x, x⟩)
1
2

= |λ|∥x∥2.
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(iii) For all x, y ∈ V ,

∥x+ y∥22 = ⟨x+ y, x+ y⟩
= ⟨x, x+ y⟩+ ⟨y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
= ∥x∥22 + ⟨x, y⟩+ ⟨x, y⟩+ ∥y∥22
= ∥x∥22 + 2Re⟨x, y⟩+ ∥y∥22
≤ ∥x∥22 + 2|⟨x, y⟩|+ ∥y∥22
≤ ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22 by the Cauchy-Schwarz inequality

= (∥x∥2 + ∥y∥2)2.

Thus, for all x, y ∈ V ,
∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.

Remark 3.20. The theorem shows that ∥x∥2 = ⟨x, x⟩ 1
2 does define a norm in

any inner product space. Hence, roughly speaking, every inner product space is a
normed space.

Theorem 3.21. (The Parallelogram Law) Let (V, ⟨·, ·⟩) be an inner product space.
Then, for any x, y ∈ V ,

∥x+ y∥22 + ∥x− y∥22 = 2∥x∥22 + 2∥y∥22.

(Exercise)

Example 3.22. Consider the normed space ℓ1 of complex sequences x = (xn)
∞
n=1

such that
∑∞

n=1 |xn| < ∞ with norm ∥x∥1 =
∑∞

n=1 |xn|. Does the parallelogram
law hold in ℓ1? (Exercise).
Is the norm ∥ · ∥1 induced by some inner product?

Theorem 3.23. (The Polarization Identity) Let (V, ⟨·, ·⟩) be an inner product
space. Then, for any x, y ∈ V

4⟨x, y⟩ = ∥x+ y∥22 − ∥x− y∥22 + i∥x+ iy∥22 − i∥x− iy∥22,

here i ∈ C is such that i2 = −1.

Proof. (Exercise.)

Note that the polarization identity can be written

⟨x, y⟩ = 1

4

3∑
k=0

ik∥x+ iky∥22.

Thus, if ∥ · ∥2 is known, then the inner product ⟨·, ·⟩ can be recovered.

21



Remark 3.24. Inner product spaces are much more special than normed spaces,
and their geometry is much closer to the familiar Euclidean geometry.
As we saw, the parallelogram law does not hold in a general normed space, e.g.,
(ℓ1, ∥ · ∥1), (C[0, 1], ∥ · ∥∞). In fact, it holds only in inner product spaces.
If the parallelogram law holds in (V, ∥ · ∥), then the formula

⟨x, y⟩ = 1

4

3∑
k=0

ik∥x+ iky∥2

defines a genuine inner product on V .

22



4 Limits

Let (V, ∥ · ∥) be a normed space. The norm ∥ · ∥ helps us to measure the distance
between two vectors x, y ∈ V letting d(x, y) = ∥x−y∥, we obtain a metric on V so
that (V, d) becomes a metric space. Verify that all axioms for metric are satisfied
(Exercise).

We have the usual metric space definition of the limit now:

Definition 4.1. Let (V, ∥ · ∥) be a normed space. We say a sequence (xn)
∞
n=1,

xn ∈ V , converges to x ∈ V as n→ ∞ if for every ε > 0 there is N ∈ N such that
for all n ≥ N , ∥xn − x∥ < ε, i.e. the sequence of real numbers tn = ∥xn − x∥ → 0
as n→ ∞.

Example 4.2. Take the underlying vector space

C[0, 1] = {f : [0, 1] → C : f is continuous on [0, 1]}

with two different norms:

∥f∥∞ = sup
0≤t≤1

|f(t)|,

∥f∥2 =
(∫ 1

0

|f(t)|2 dt
) 1

2

.

Consider the sequence of functions fn given by

fn(t) =

{
−nt+ 1, t ∈ [0, 1

n
],

0, t ∈ [ 1
n
, 1].

The sequence converges to g ≡ 0 in (C[0, 1], ∥ · ∥2), but not in (C[0, 1], ∥ · ∥∞).

Proof. Exercise!

Remark 4.3. The two metrics

d∞(f, g) = ∥f − g∥∞, and
d2(f, g) = ∥f − g∥2

are inequivalent on C[0, 1].

Example 4.4. Let us consider the normed space (ℓ∞, ∥ · ∥∞), where ℓ∞ is the
complex vector space of all bounded sequences x = (xn)

∞
n=1 of complex numbers,

with componentwise addition and scalar multiplication and

∥x∥∞ = sup
n∈N

|xn| (least upper bound).
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1. Consider the sequence of vectors (xm)∞m=1, where

xm = (1,
1

2
, . . . ,

1

m
, 0, . . .)

and the vector

x = (1,
1

2
, . . . ,

1

n
,

1

n+ 1
, . . .).

Then xm → x as m→ ∞ in (ℓ∞, ∥ · ∥∞).

Proof.

∥xm − x∥∞ =

∥∥∥∥∥∥(0, . . . , 0︸ ︷︷ ︸
m times

,− 1

m+ 1
,− 1

m+ 2
, . . .)

∥∥∥∥∥∥
∞

= sup

{∣∣∣∣ 1

m+ 1

∣∣∣∣ , ∣∣∣∣ 1

m+ 2

∣∣∣∣ , . . .}
=

1

m+ 1
→ 0 as m→ ∞.

2. Consider the sequence of vectors (ym)∞m=1, where

ym = (1, . . . , 1︸ ︷︷ ︸
m times

, 0, 0, . . .)

and the vector
y = (1, 1, . . . , 1, . . .).

Then ym 9 y as m→ ∞ in (ℓ∞, ∥ · ∥∞).

Proof.

∥ym − y∥∞ = ∥(0, . . . , 0︸ ︷︷ ︸
m times

,−1,−1, . . .)∥∞

= sup{0, 1} = 1 9 0 as m→ ∞.

Definition 4.5. Let (V, ∥ · ∥) be a normed space and let Y be a subset of V . We
say a set Y is dense in (V, ∥ · ∥) if for every v ∈ V and for every ε > 0 there exists
y ∈ Y such that ∥v − y∥ < ε.

That is we can approximate any vector v ∈ V by a vector y ∈ Y as closely as
we want.
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Example 4.6. Q is dense in (R, | · |) via decimals.

Example 4.7. Let us consider the normed space (c0, ∥ · ∥∞), where

c0 = {v = (v1, . . . , vi, . . .) : vi ∈ C, vi → 0 as i→ ∞}

and
∥v∥∞ = max

i∈N
|vi|;

and cF , the subset of c0 consisting of those sequences v = (vi)
∞
i=1 having only

finitely many terms different from zero. Then cF is dense in (c0, ∥ · ∥∞).

Proof. Given v ∈ c0 and ε > 0. Since v ∈ c0, we have v = (v1, . . . , vi, . . .) and
vi → 0 as i → ∞. Thus for ε > 0 ∃N0 ∈ N such that |vk| < ε for all k ≥ N0.
Take the element

w = (v1, . . . , vN0 , 0, . . .) ∈ cF .

One can see that

∥v − w∥∞ = ∥(0, . . . , 0, vN0+1, vN0+2, . . .)∥∞
= sup{|vN0+1|, |vN0+2|, . . .} < ε.

Hence cF is dense in (c0, ∥ · ∥∞).

Definition 4.8. Let (V, ∥ · ∥) be a normed space and let v1, . . . , vk, · · · ∈ V . We
say the series

∑∞
k=1 vk converges in (V, ∥ · ∥) if the sequence of partial sums

Sn =
n∑
k=1

vk

converges in (V, ∥ ·∥), that is, if there is S ∈ V such that ∥Sn−S∥ → 0 as n→ ∞.

Definition 4.9. Let (V, ∥ · ∥) be a normed space and let v1, . . . , vk, · · · ∈ V . We
say the series

∑∞
k=1 vk converges absolutely in (V, ∥ · ∥) if the series

∑∞
k=1 ∥vk∥

converges in R, i.e.
∑∞

k=1 ∥vk∥ <∞.

Example 4.10. Let us consider the normed space (ℓ2, ∥ · ∥2), where

ℓ2 = {(xn)∞n=1 : xn ∈ C ∀n ∈ N,
∞∑
n=1

|xn|2 <∞}

and

∥x∥2 = (
∞∑
k=1

|xk|2)
1
2 .

(1). Fix a vector x ∈ ℓ2, x = (x1, . . . , xm, . . .), and for k ∈ N consider the
vector

vk = (0, . . . , 0, xk, 0, . . .).

Then
∑∞

k=1 v
k = x with respect to the norm ∥ · ∥2.
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Proof. The partial sums

Sn =
n∑
k=1

vk

= (x1, 0, 0, . . . , 0, 0, . . .)

+ (0, x2, 0, . . . , 0, 0, . . .)

+ . . .

+ (0, 0, 0, . . . , xn, 0, . . .)

= (x1, x2, . . . , xn, 0, . . .),

so

∥Sn − x∥22 = ∥(x1, x2, . . . , xn, 0, . . .)− (x1, x2, . . . , xn, xn+1, . . .)∥22
= ∥(0, . . . , 0,−xn+1,−xn+2, . . .)∥22

=
∞∑

k=n+1

|xk|2 → 0 as n→ ∞,

since the series
∑∞

k=1 |xk|2 <∞.

(2). Let y = (1, 1
2
, . . . , 1

n
, . . .). The series

∑∞
n=1

1
n2 < ∞, so y ∈ ℓ2. We

have proved that the series
∑∞

k=1 v
k, where vk = (0, . . . , 0, 1

k
, 0, . . .) converges in

(ℓ2, ∥ · ∥2) and
∑∞

k=1 v
k = y. Show that

∑∞
k=1 v

k does not converge absolutely in
(ℓ2, ∥ · ∥2).

Proof. For k ∈ N,

∥vk∥2 = ∥(0, . . . , 0, 1
k
, 0, . . .)∥2

=
(∣∣∣1
k

∣∣∣2) 1
2

=
1

k
.

Thus
∑∞

k=1 ∥vk∥2 =
∑∞

k=1
1
k
does not converge.

(3). The series
∑∞

k=1w
k, where wk = (0, 0, . . . , 0, 1

k2
, 0, . . .), converges abso-

lutely in
(ℓ2, ∥ · ∥2).
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Proof.

∥wk∥2 = ∥(0, 0, . . . , 0, 1
k2
, 0, . . .)∥2

=
(∣∣∣ 1
k2

∣∣∣2) 1
2

=
1

k2
.

Thus
∑∞

k=1 ∥wk∥2 =
∑∞

k=1
1
k2
<∞.
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5 Completeness of Normed Spaces

Definition 5.1. Let (V, ∥·∥) be a normed space. A sequence (xn)
∞
n=1 in V is called

a Cauchy sequence if, for every ε > 0, there exists N0 ∈ N such that n,m ≥ N0

implies ∥xn − xm∥ < ε.

That is all terms are eventually close together. Thus it helps us to check if a
sequence converges (possibly in a bigger space) without finding the limit.

Example 5.2. Let us consider the normed space (cF , ∥ · ∥∞), where cF is the
vector space consisting of those sequences v = (vn)

∞
n=1 having only finitely many

terms different from zero and

∥v∥∞ = max
i∈N

|vi|.

Consider the sequence vk = (1, 1
2
, . . . , 1

k
, 0, . . .) in (cF , ∥ · ∥∞). Show that (vk)∞k=1 is

a Cauchy sequence in (cF , ∥ · ∥∞).

Proof. Given ε > 0, take N0 = [1
ε
] + 1, where [x] is the integer part of x. Then,

for all m,n ≥ N0,

∥vn − vm∥∞ = ∥(1, 1
2
, . . . ,

1

n
, 0, . . .)− (1,

1

2
, . . . ,

1

m
, 0, . . .)∥∞

=


∥(0, . . . ,− 1

n+1
, . . . ,− 1

m
, 0, . . .)∥∞ if m > n,

∥(0, . . . , 1
m+1

, . . . , 1
n
, 0, . . .)∥∞ if n > m,

0 if m = n,

= max

{
1

n+ 1
,

1

m+ 1

}
< ε.

Remark 5.3. We have shown in Example 4.4 that vk → v = (1, 1
2
, . . . , 1

n
, . . .) as

k → ∞ with respect to the norm ∥ · ∥∞. Note that v ∈ c0, but v /∈ cF . Thus
the sequence vk is a Cauchy sequence, which does not converge in (cF , ∥ · ∥∞), but
converges in the bigger space (c0, ∥ · ∥∞).

Lemma 5.4. Let (V, ∥ · ∥) be a normed space. Every convergent sequence (xn)
∞
n=1

in (V, ∥ · ∥) is a Cauchy sequence.

Proof. Given ε > 0. Since xn → x as n→ ∞, for ε
2
there exists N0 ∈ N such that

for all n ≥ N0, ∥xn − x∥ < ε
2
. Thus by the triangle inequality

∥xn − xm∥ = ∥xn − x+ x− xm∥
≤ ∥xn − x∥+ ∥x− xm∥

<
ε

2
+
ε

2
= ε
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for all m,n ≥ N0. Therefore, for ε > 0, there exists N0 ∈ N such that for all
m,n ≥ N0, ∥xn − xm∥ < ε.

Definition 5.5. A normed space (V, ∥ · ∥) is called complete if every Cauchy
sequence converges to a limit in V .

Definition 5.6. A complete normed space is called a Banach space.

Example 5.7. The normed space (cF , ∥ · ∥∞) is not complete.

Proof. We have proved that the sequence vk = (1, 1
2
, . . . , 1

k
, 0, 0, . . .) in cF is a

Cauchy sequence, which does not converge in (cF , ∥ · ∥∞); see Example 5.2 and
Remark 5.3. Therefore (cF , ∥ · ∥∞) is not complete.

Theorem 5.8. The normed space (R, | · |) is complete.

Theorem 5.9. The normed space (C, | · |) is complete.

You proved this in Real Analysis course.

Theorem 5.10. A normed vector space X is complete if and only if every abso-
lutely convergent series converges in norm.

Proof. Suppose on one hand that X is complete and
∑

n ∥xn∥ converges. Writing

SN =
∑N

i=1 xn, we have

∥SN − SM∥ = ∥
M∑

n=N+1

xn∥ ≤
M∑

n=N+1

∥xn∥ ≤
∑

n=N+1

∥xn∥ → 0

as N , M → ∞. Thus {SN} is Cauchy and hence convergent.
On the other hand suppose that every absolutely convergent series converges

and that {xn} is Cauchy. Pick for each j an index nj so that m, n ≥ nj and
∥xm − xn∥ < 2−j. Setting x0 = 0, we have

xnk
=

k∑
j=1

(xnj
− xnj−1

).

By the triangle inequality the series
∑

j(xnj
− xnj−1

) converges absolutely. Hence
xnk

converges to some limit y. To see that {xn} converges to y we note that for
n ≥ nk and k large enough we have ∥xn − xnk

∥ ≤ 2−k and hence

∥xn − y∥ ≤ ∥xn − xnk
∥+ ∥xnk

− y∥ ≤ 2−k + 2−k ≤ 2−(k−1)

and therefore xn → y as n→ ∞.
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Example 5.11. Let X be a topological space and let Cb(X) be the space of
bounded continuous (complex-valued) functions on X. Define the norm ∥ · ∥∞ on
Cb(X) by

∥u∥∞ = sup{|u(x)| : x ∈ X}.

Suppose that
∑

n ∥fn∥∞ < ∞. Then f(x) :=
∑∞

n=1 fn(x) ∈ Cb(X) and ∥f∥∞ ≤∑∞
n=1 ∥fn∥∞ and

∑∞
n fn converges to f in norm (Check!). By the previous theorem

we conclude that Cb(X) is complete.

Example 5.12. Let (X,M, µ) be a measure space. We claim that L1(X,M, µ)
is a complete normed space with respect to the norm ∥f∥1 =

∫
|f(x)|dµ(x). (Here

we identify functions that are equal a.e.)
In fact, suppose that

∑∞
n=1 ∥fn∥1 < ∞. Then by the Monotone Convergence

Theorem, ∫ ∞∑
n=1

|fn|dµ =
∞∑
n=1

∫
|fn|dµ =

∞∑
n=1

∥fn∥1 <∞

so that g =
∑∞

n=1 |fn| is in L1 and hence finite for almost all x. For such x we have
that f(x) :=

∑∞
n=1 fn(x) is finite. Since by the Monotone Convergence Theorem

(MCT)∫
|f |dµ =

∫
|

∞∑
n=1

fn|dµ ≤
∫ ∞∑

n=1

|fn|dµ ≤ (MCT) ≤
∞∑
n=1

∫
|fn|dµ =

∞∑
n=1

||fn||1 <∞,

we have that f is in L1. Using the MCT again,

∥
N∑
1

fn − f∥1 =
∫

|
∞∑
N+1

fn|dµ ≤
∞∑
N+1

∫
|fn|dµ =

∞∑
N+1

∥fn∥1 → 0

as N → ∞. Now the previous theorem proves our claim.
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6 Hilbert Spaces

The inner product spaces Cn and ℓ2 share a further convenient property: they are
complete with respect to the norm induced by the inner product, i.e. ∥x∥ = ⟨x, x⟩ 1

2 .

Definition 6.1. A Hilbert space is an inner product space which is complete with
respect to the norm generated by the inner product.

Theorem 6.2. The inner product space (ℓ2, ⟨·, ·⟩) is a Hilbert space.

Proof. We shall prove the completeness of (ℓ2, ∥ · ∥2), where

∥x∥2 = (
∞∑
n=1

|xn|2)
1
2

for x = (x1, x2, . . . , xn, . . .).
Let (xk)∞k=1 be a Cauchy sequence in (ℓ2, ∥ · ∥2) with xk = (xk1, x

k
2, . . . , x

k
n, . . .).

We need to show that (xk)∞k=1 converges to a limit in (ℓ2, ∥ · ∥2). We shall do it in
three steps:

1. Find a candidate limit a;

2. Show that a ∈ ℓ2;

3. Show that limk→∞ xk = a in (ℓ2, ∥ · ∥2).

Step 1. Find a candidate limit a. We have to find a ∈ ℓ2 such that

x1 = (x11, x
1
2, . . . , x

1
n, . . .)

x2 = (x21, x
2
2, . . . , x

2
n, . . .)

x3 = (x31, x
3
2, . . . , x

3
n, . . .)

. . .

xk = (xk1, x
k
2, . . . , x

k
n, . . .)

. . .

converges to
a = (a1, a2, . . . , an, . . .).

Consider a fixed “column” n. The sequence (xkn)
∞
k=1 is a Cauchy sequence in (C, |·|)

since

|xkn − xln|2 ≤
∞∑
i=1

|xki − xli|2

= ∥xk − xl∥22
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and, by hypothesis, for any ϵ > 0 there exists N0 ∈ N such that k, l ≥ N0 implies
∥xk − xl∥2 < ϵ, and this implies that

|xkn − xln| ≤ ∥xk − xl∥2 < ϵ.

Recall that (C, | · |) is complete. Thus (xkn)
∞
k=1 converges to a limit an ∈ C as

k → ∞, i.e.
lim
k→∞

xkn = an.

Consider a = (a1, a2, . . . , an, . . .) in CN.
Step 2. The candidate limit a belongs to ℓ2. We shall show that (xk − a) ∈ ℓ2

for some k. Since ℓ2 is closed under subtraction, it follows that

a = xk︸︷︷︸
∈ℓ2

− (xk − a)︸ ︷︷ ︸
∈ℓ2

∈ ℓ2.

Let ϵ > 0. By hypothesis, there exists N0 ∈ N such that k, l ≥ N0 implies
∥xk − xl∥2 < ϵ. Pick N ∈ N. We have, for all k, l ≥ N0,

N∑
i=1

|xki − xli|2 ≤
∞∑
i=1

|xki − xli|2

= ∥xk − xl∥22 < ϵ2.

Let l → ∞ in the finite sum on the left hand side. By the properties of limits in
C, we have

lim
l→∞

N∑
i=1

|xki − xli|2 =
N∑
i=1

|xki − lim
l→∞

xli|2

=
N∑
i=1

|xki − ai|2

and

lim
l→∞

N∑
i=1

|xki − xli|2 ≤ ϵ2.

Thus
∑N

i=1 |xki − ai|2 ≤ ϵ2. Since this holds for all N ∈ N, we have, on letting
N → ∞,

∞∑
i=1

|xki − ai|2 ≤ ϵ2.
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Hence xk − a ∈ ℓ2 and

∥xk − a∥2 =

(
∞∑
i=1

|xki − ai|2
) 1

2

≤ ϵ

for all k ≥ N0.
Step 3. limk→∞ xk = a. We have shown in Step 2 that, for any ϵ > 0, there

exists N0 ∈ N such that k ≥ N0 implies ∥xk − a∥2 ≤ ϵ. Hence limk→∞ xk = a.
Thus every Cauchy sequence in ℓ2 converges to a limit in ℓ2, and so ℓ2 is

complete.

Example 6.3. Let ℓ2F be the subspace of ℓ2 consisting of those sequences x =
(xn)

∞
n=1 having only finitely many terms different from zero. Show that ℓ2F is not

a complete normed space with respect to the norm

∥x∥2 = ⟨x, x⟩
1
2 =

(
∞∑
n=1

|xi|2
) 1

2

,

therefore ℓ2F is not a Hilbert space.

Proof. 1. Consider the sequence (xk)∞k=1 in ℓ2F with

x1 = (1, 0, . . . , 0, 0, . . .)

. . .

xk = (1,
1

2
, . . . ,

1

k
, 0, . . .)

. . . .

2. We can see that

∥xk − xl∥2 =

(
∞∑
i=1

|xki − xli|2
) 1

2

=

 max{k,l}∑
i=min{k,l}+1

(1
i

)2 1
2

= |Smax{k,l} − Smin{k,l}|
1
2 → 0 as k, l → ∞,

where SN =
∑N

i=1
1
i2
, since the series

∑∞
i=1

1
i2

converges in (R, | · |). Thus the
sequence (xk)∞k=1 is a Cauchy sequence in (ℓ2F , ∥ · ∥2).
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3. We can also see that, for y = (1, 1
2
, . . . , 1

n
, . . .) ∈ ℓ2,

∥xk − y∥2 =
∥∥∥∥(0, . . . , 0,− 1

k + 1
,− 1

k + 2
, . . .)

∥∥∥∥
2

=

(
∞∑

i=k+1

1

i2

) 1
2

→ 0 as k → ∞.

Hence limk→∞ xk = y in ℓ2.
4. Note if a sequence in a normed space tends to a limit, then the limit is unique.

Suppose (xk)∞k=1 converges to w ∈ ℓ2F ⊂ ℓ2, then in (ℓ2, ∥ · ∥2), limk→∞ xk = y and

limk→∞ xk = w. Thus w = y, but y /∈ ℓ2F . Hence the sequence (xk)∞k=1 does not
converge to a limit in ℓ2F . Therefore ℓ

2
F is not complete, and so ℓ2F is not a Hilbert

space.

Remark 6.4. (ℓ2F , ⟨·, ·⟩) is an inner product which is not a Hilbert space.

Remark 6.5. Every Hilbert space with ∥ · ∥2 = ⟨·, ·⟩ 1
2 is a Banach space, i.e., a

complete normed space.

Example 6.6. (C[0, 1], ∥ · ∥∞) is a Banach space which is not a Hilbert space,
because it is impossible to define an inner product on C[0, 1] which induces the
norm ∥ · ∥∞. Why?

Example 6.7. The complex vector space C[0, 1] with the inner product ⟨f, g⟩ =∫ 1

0
f(t)g(t) dt, is an inner product space which is not complete with respect to the

norm

∥f∥2 = ⟨f, f⟩
1
2 =

(∫ 1

0

|f(t)|2 dt
) 1

2

,

and so is not a Hilbert space.

Proof. In Section 3 we proved that (C[0, 1], ⟨·, ·⟩) is an inner product space. Now
we have to show that (C[0, 1], ∥ · ∥2) is not complete.

1) Consider the functions fn ∈ C[0, 1], where

fn(t) =


0, t ∈ [0, 1

2
− 1

n
],

n(t− 1
2
) + 1, t ∈ [1

2
− 1

n
, 1
2
],

1, t ∈ [1
2
, 1].

Show that the sequence (fn)
∞
n=1 is a Cauchy sequence in (C[0, 1], ∥ · ∥2) but

{fn} has no limit in C([0, 1]) and complete the proof.
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7 Closed Linear Subspaces

Definition 7.1. Let (V, ∥ · ∥) be a normed space and let X be a subset of V . We
say X is closed if, for every convergent sequence of vectors of X, the limit of it is
in X.

Example 7.2. 1. (R, |·|) and X = (0, 1). X is not closed, for example, ( 1
n+1

)∞n=1 ⊂
(0, 1), but

lim
n→∞

1

n+ 1
= 0 /∈ (0, 1).

2. (R, | · |) and X = [0, 1]. X is closed.

Definition 7.3. Let (V, ∥ · ∥) be a normed space. We say W is a closed linear
subspace of V if W is a linear subspace and W is closed with respect to ∥ · ∥.

Example 7.4. cF is a linear subspace of c0, but cF is not closed with respect
to the norm ∥ · ∥∞. We have proved that, for vk = (1, . . . , 1

k
, 0, . . .) from cF ,

limk→∞ vk = v = (1, . . . , 1
k
, 1
k+1

, . . .), so v /∈ cF .

Example 7.5. Show that, W = {f ∈ C[0, 1] : f(t0) = 0}, where t0 ∈ [0, 1], is a
closed linear subspace of C[0, 1] with respect to the norm

∥f∥∞ = sup
t∈[0,1]

|f(t)|.

Proof. 1. It is easy to show that W is a linear subspace.
2. Let (fn)

∞
n=1 be a convergent sequence of functions from W , that is, fn ∈ W

for all n ∈ N and there exists f ∈ C[0, 1] such that ∥fn − f∥∞ → 0 as n → ∞.
Note that, for t0 ∈ [0, 1],

|fn(t0)− f(t0)| ≤ sup
t∈[0,1]

|fn(t)− f(t)|

= ∥fn − f∥∞ → 0 as n→ ∞.

Thus limn→∞ fn(t0) = f(t0). By assumption, fn ∈ W , that is, fn(t0) = 0. Hence
f(t0) = 0, and so f ∈ W . Thus W is closed with respect to ∥ · ∥∞.
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8 Banach Spaces

Recall that a complete normed space is called a Banach space.

Examples of Banach Spaces 8.1. 1. (C, | · |).

2. (Cn, ∥ · ∥2), where ∥x∥2 = (
∑n

i=1 |xi|2)
1
2 for x = (xi)

n
i=1.

3. (ℓ2, ∥ · ∥2), where ∥x∥2 = (
∑∞

i=1 |xi|2)
1
2 for x = (xi)

∞
i=1.

4. (ℓ1, ∥ · ∥1), where ∥x∥1 =
∑∞

i=1 |xi| for x = (xi)
∞
i=1.

5. (ℓ∞, ∥ · ∥∞), where ∥x∥∞ = supi∈N |xi| for x = (xi)
∞
i=1.

6. (c0, ∥ · ∥∞), where ∥x∥∞ = maxi∈N |xi| for x = (xi)
∞
i=1.

7. (C[0, 1], ∥ · ∥∞), where ∥f∥∞ = supt∈[0,1] |f(t)|.

Proposition 8.2. A closed linear subspace Y of a Banach space (X, ∥ · ∥) is a
Banach space.

Proof. Let (yn)
∞
n=1 be a Cauchy sequence in (Y, ∥ · ∥), and so in (X, ∥ · ∥). Since

(X, ∥·∥) is a Banach space, the sequence (yn)
∞
n=1 coverges to a limit y ∈ X. By the

assumption, Y is closed. Therefore the limit of the convergent sequence (yn)
∞
n=1

from Y belongs to Y , that is,

lim
n→∞

yn = y ∈ Y.

Thus (Y, ∥ · ∥) is complete, and (Y, ∥ · ∥) is a Banach space.

Example 8.3. The Hilbert Space L2(a, b). Let −∞ ≤ a < b ≤ ∞. L2(a, b) is the
linear space of Lebesgue measurable functions f : (a, b) → C which are square-
integrable, in the sense that∫ b

a

|f(t)|2 dt <∞ (Lebesgue integral),

with pointwise operations and inner product

⟨f, g⟩ =
∫ b

a

f(t)g(t) dt.
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Remark 8.4. Functions f and g are regarded as equal in L2(a, b) if they are equal
“almost everywhere”, that is, if {t : f(t) ̸= g(t)} is a null set. Strictly speaking we
should define the elements of L2(a, b) to be not functions but equivalence classes of
functions equal almost everywhere. For example, f = g in L2(a, b) where f(t) = 1
and

g(t) =

{
0, t = 1

n
, n ∈ N,

1, otherwise.

Remark 8.5. For finite a and b ∈ R, the linear space C[a, b] of continuous complex
valued functions on [a, b] is a dense subspace of L2(a, b) with respect to the norm

∥f∥2 =
{∫ b

a

|f(t)|2 dt
} 1

2

.

Remark 8.6. L2(a, b) is complete with respect to the norm ∥ · ∥2. The norm ∥ · ∥2
is induced by the inner product

⟨f, g⟩ =
∫ b

a

f(t)g(t) dt,

so L2(a, b) is a Hilbert space.

8.1 Completion of a Normed space

If a normed space is not complete one can always imbed it into a complete normed
space.

Let (X, ∥ · ∥X) be a normed space. A Banach space (X̃, ∥ · ∥X̃) is called a
completion of X if

• X is a subspace of X̃

• ∥x∥X = ∥x∥X̃ for all x ∈ X;

• X is dense in X̃,

Theorem 8.7. Every normed linear space has a unique completion (up to isomor-
phism that fixes points of X).

We will just give an idea of the proof. It consists of several steps:

Step 1. Define the set X̃ (= a space of equivalence classes of Cauchy sequences
in X): we say that two Cauchy sequences {xn} and {yn} are equivalent (write
{xn} ∼ {yn}) if ∥xn − yn∥ → 0 as n→ ∞. It is not difficult to check that ∼ is an
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equivalence relation. Therefore the space of all such sequences can be decomposed
into equivalence classes. We define X̃ to be the set of all such equivalence classes.
Denote by [{xn}] the equivalence class containing {xn}.

Step 2. Define a vector space structure on X̃: we let

[{xn}] + [{yn}] := [{xn + yn}] and λ[{xn}] := [{λxn}].

One checks that the operations are well defined, i.e. do not depend on particular
choice of sequences in the equivalence classes.

Step 3. Define a norm on X̃: we let

∥[{xn}]∥X̃ := lim ∥xn∥X .

One checks that it is well-defined and satisfies the axioms for norms. Observe that
∥[{xn}]∥X̃ = 0 iff xn → 0 as n → ∞, i.e. {xn} is equivalent to the the constant
sequence consisting of zero’s.

Step 4. X as a subspace of X̃: To each x ∈ X we associate the equivalence
class consisting of Cauchy sequences which converges to x, i.e. the equivalence
class of the constant sequence x∗ = {x, x, . . .}; x↔ [x∗]. This map is injective and
∥[x∗]∥X̃ = ∥x∥X .

Step 5. X is dense in X̃: let {xn} be a Cauchy sequence in X. Then given
ϵ > 0 there exists N = N(ϵ) > 0 such that ∥xN − xn∥X < ϵ for all n ≥ N and
hence ∥[{xn}]− [x∗N ]∥X̃ = limn ∥xn − xN∥X ≤ ϵ giving the density.

Step 6. X̃ is complete: let x̃n = [{xnk}k], n = 1, 2, . . . be a Cauchy sequence
in X̃. For each n take yn ∈ X such that ∥x̃n − [y∗n]∥X̃ < 1/n which exists by Step
5. Then one shows that sequence (y1, y2, . . .) is Cauchy and that x̃n converges to
the equivalence class of this Cauchy sequence.

Step 7. Uniqueness of the completion.

In a similar way one defines a completion of an inner product space to a Hilbert
space.
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9 Lp-spaces

Let (X,M, µ) be a measure space. For measurable f : X → C and 0 < p <∞ we
define

||f ||p =
(∫

|f |pdµ
)1/p

(allowing the possibility that ||f ||p = ∞).
Set

Lp(X,M, µ) = {f : X → C : f is measurable and ||f ||p <∞}.

We denote Lp(X,M, µ) by Lp(µ) or Lp(X) or simply Lp when no confusion
arise.

If X is non-empty and M = P(M), µ is the counting measure we denote
Lp(X,M, µ) by ℓp(X). We denote ℓp(N) simply by ℓp.

• Lp is a vector space with respect to the usual addition of functions and
multiplication by scalar. In fact, if f , g ∈ Lp then

|f + g|p ≤ (2max(|f |, |g|)p ≤ 2p(|f |p + |g|p)

and hence ∫
|f + g|pdµ ≤ 2p(

∫
|f |pdµ+

∫
|g|pdµ) <∞

giving f + g ∈ Lp. That f ∈ Lp implies λf ∈ Lp for λ ∈ C is trivial.

• Lp, 1 ≤ p < ∞, is a normed space with respect to || · ||p if we identify
functions which are equal almost everywhere.

Lemma 9.1. If a, b ≥ 0 and 0 < λ < 1 then

aλb1−λ ≤ λa+ (1− λ)b (9.3)

with equality iff a = b.

Proof. The inequality clearly holds for a = 0 or b = 0. Assume a, b ̸= 0 and
consider g(x) = axb1−x. Then g : [0, 1] → R is convex on [0, 1] as g′′(x) =
axb1−x(ln a− ln b)2 ≥ 0 implying g(λ · 1 + (1− λ) · 0) ≤ λg(1) + (1− λ)g(0)
that is equivalent to

aλb1−λ ≤ λa+ (1− λ)b.

The inequality is strict if a ̸= b.
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Theorem 9.2. (Hölder’s Inequality) Suppose 1 < p <∞ and p−1+q−1 =
1. If f , g are measurable functions on X then

||fg||1 ≤ ||f ||p||g||q. (9.4)

In particular, if f ∈ Lp, g ∈ Lq then fg ∈ L1. In this case the equality in
(9.4) holds iff α|f |p = β|g|q a.e. for some α, β ≥ 0, (α, β) ̸= (0, 0).

Proof. If ||f ||p = 0 or ||g||q = 0 the result is trivial.

In inequality (9.3) let

a =
|f |p

||f ||pp
, b =

|g|q

||g||qq
and λ =

1

p
.

Then
|f ||g|

∥f∥p∥g∥q
≤ 1

p

|f |p

∥f∥pp
+

1

q

|g|q

∥g∥qq
(9.5)

and hence
1

∥f∥p∥g∥q

∫
|f ||g|dµ ≤ 1

p
+

1

q
,

giving the first statement. The equality holds if we have the equality in (9.5)
which happens iff a = b.

The number q such that p−1 + q−1 = 1 is called the conjugate exponent to p.

Theorem 9.3. (Minkowski’s Inequality) If 1 ≤ p < ∞ and f , g ∈ Lp

then
∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. The result is obvious if p = 1 or if ∥f + g∥p = 0.

Assume p > 1 and ∥f + g∥p ̸= 0. We have

|f + g|p ≤ (|f |+ |g|)(|f + g|)p−1 = |f ||f + g|p−1 + |g||f + g|p−1.

After applying the Hölder inequality we obtain∫
|f + g|pdµ ≤

(∫
|f |pdµ

)1/p(∫
|f + g|(p−1)qdµ

)1/q

+

(∫
|g|pdµ

)1/p(∫
|f + g|(p−1)qdµ

)1/q

= ∥f∥p
(∫

|f + g|pdµ
)1/q

+ ∥q∥p
(∫

|f + g|pdµ
)1/q
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and
∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Clearly ∥f∥p ≥ 0 and ∥λf∥p = |λ|∥f∥p. Hence together with the Minskowski
Inequality this shows that Lp (where we identify functions that are equal
almost everywhere: ∥f∥p = 0 iff f = 0 a.e.) is a normed space.

Remark 9.4. We remark that the triangular inequality fails for p < 1.
Suppose a > 0, b > 0 and 0 < p < 1. Then for t > 0 we have tp−1 < (a+t)p−1,
and by integrating from 0 to b we obtain ap + bp > (a + b)p. If now E and
F are disjoint sets of positive finite measure in X then letting a = µ(E)1/p

and b = µ(F )1/p we get

∥χE + χF∥pp =

∫
(χE(x) + χF (x))

pdµ =

∫
E

dµ+

∫
F

dµ = ap + bp

> (a+ b)p = (∥χE∥p + ∥χF∥p)p.

• Lp, 1 ≤ p <∞ is a Banach space.

Proof. We must prove completness of the space. By Theorem 14.10 it is
enough to see that any absolutely convergent series in Lp is convergent. Let
{fn}n ⊂ Lp and

∑∞
n=1 ∥fn∥p =: B <∞.

Let Gn =
∑n

k=1 |fk| and G =
∑∞

k=1 |fk|.
By Minkowski’s inequality, ∥Gn∥p ≤

∑n
k=1 ∥fk∥p ≤ B for any n. Hence by

the monotone convergence theorem∫
Gpdµ =

∫
limGp

ndµ ≤ Bp.

Hence G ∈ Lp and, in particular G(x) is finite for almost all x. This implies
that the series

∑∞
k=1 fk(x) converges for such x. Let F (x) =

∑∞
k=1 fk(x). We

have |F (x)| ≤ G(x) a.e. and hence F ∈ Lp.

To see that F is the limit of
∑∞

k=1 fk in Lp we observe that

|F −
n∑
k=1

fk|p ≤

(
∞∑

k=n+1

|fk|

)p

≤ Gp a.e.

By the dominated convergence theorem,

∥F −
n∑
k=1

fk∥pp =
∫

|F −
n∑
k=1

fk|pdµ→ 0.

41



• Some other properties of Lp.

Proposition 9.5. For 1 ≤ p <∞, the set of simple functions f =
∑n

j=1 ajχEj
,

where Ej is measurable and µ(Ej) <∞, aj ∈ C, is dense in Lp.

Proof. Clearly
∑n

j=1 ajχEj
∈ Lp: we have

∫
|χEj

|pdµ = µ(Ej) <∞; as Lp is
a vector space

∑n
j=1 ajχEj

∈ Lp.

Fix an arbitrary f ∈ Lp. It is a fundamental fact of Integration theory that
one can find a sequence of simple functions {fn}n such that fn → f a.e. and
|fn| ≤ |f |. Then fn ∈ Lp and |fn − f |p ≤ 2p|f |p ∈ L1. Using the dominated
convergence theorem we have

lim
n

∫
|fn − f |pdµ =

∫
lim
n

|fn − f |dµ = 0,

i.e. ∥fn − f∥p → 0.

• Separability of Lp.

Definition 9.6. A measure µ in a measurable space (X,M) is called sepa-
rable if there exists a countable collection of measurable sets A = {Ei}i such
that given ε > 0 and A ∈ M there exists Ei ∈ A such that µ((Ei \A)∪ (A \
Ei)) < ε.

The Lebesgue measure on [a, b) is separable. For this measure, one can set,
e.g.,

A = {∪nj=1[αj, βj) : αj, βj ∈ Q ∩ [a, b), n ∈ N}.

Proposition 9.7. Lp(µ), 1 ≤ p < ∞, is separable if the measure µ is
separable.

Proof = Exercise.

• The space L∞.

Let (X,M, µ) be a measure space. For measurable function f onX we define

∥f∥∞ = inf{a ≥ 0 : µ({x : |f(x)| > a}) = 0}

with the convention inf ∅ = ∞.

Note that if ∥f∥∞ < ∞, µ({x : |f(x)| > ∥f∥∞}) = 0. ∥f∥∞ is called the
essential supremum of f .

Observe that if f = g a.e. then ∥f∥∞ = ∥g∥∞. We define

L∞ = L∞(X,M, µ) = {f : X → C : f measurable and ∥f∥∞ <∞}

identifying functions which are equal a.e. We have the following hold.
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Theorem 9.8. 1. Hölder’s inequality. ∥fg∥1 ≤ ∥f∥1∥g|∞ ∀ measur-
able f , g;

2. Minkowski’s inequality. ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞;

3. ∥fn − f∥∞ ⇒ ∃E ∈ M, µ(Ec) = 0, such that

sup
x∈E

|fn(x)− f(x)| → 0 as n→ ∞;

4. the family of simple functions is dense in L∞;

5. L∞ is a Banach space.

Proof. (1) follows from
∫
|f(x)g(x)|dµ ≤ ∥g∥∞

∫
|f(x)|dµ = ∥f∥1∥g∥∞.

(2) We have |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ∥f∥∞ + ∥g∥∞ for all x in some
E with µ(Ec) = 0 and hence ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞.

(3) Let E = ∩n{x : |fn(x) − f(x)| ≤ ∥fn − f∥∞}. Then Ec = ∪n{x :
|fn(x)− f(x)| > ∥fn − f∥∞} and hence µ(Ec) = 0. Moreover, for all x ∈ E
we have

|fn(x)− f(x)| ≤ ∥fn − f∥∞ → 0.

(4) Use Theorem 2.10 in Folland.

(5) Use arguments similar to ones used to prove the completness of Lp-spaces,
1 ≤ p <∞.

If X = N and µ is the counting measure on M = P(X) then L∞(X,M, µ)
is denoted by ℓ∞. We have

ℓ∞ = {x = (x1, x2, . . .) : sup
i

|xi| <∞}.

• Relations between different Lp spaces.

1. If 0 < p < q < r ≤ ∞ then Lq ⊂ Lp + Lr, i.e.,

∀f ∈ Lq ∃g ∈ Lp, h ∈ Lr such that f = g + h.

2. If 0 < p < q < r ≤ ∞ then Lp ∩ Lr ⊂ Lq and

∥f∥q ≤ ∥f∥λp∥f∥1−λr ,

where λ ∈ (0, 1) is such that q−1 = λp−1 + (1− λ)r−1.
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3. If 0 < p < q ≤ ∞ then ℓp(A) ⊂ ℓq(A) and ∥f∥q ≤ ∥f∥p for any
f ∈ ℓp(A).

4. If µ(X) < ∞, 0 < p < q ≤ ∞ then Lp(µ) ⊃ Lq(µ) and ∥f∥p ≤
∥f∥qµ(X)(q−p)/pq.

Proof. 1. Let f ∈ Lq and let E = {x : |f(x)| > 1}. Take g = fχE and
h = fχEc . Then

|g|p = |f |pχE ≤ |f |qχE
giving g ∈ Lp. Similarly

|h|r = |f |rχEc ≤ |f |qχEc

and therefore h ∈ Lr. The statement is proved since f = g + h.

2. Use Hölder’s inequality.

3. One proves first that ℓp(A) ⊂ ℓ∞(A) and then use the second statement.

4. If q = ∞

∥f∥pp =
∫

|f |pdµ ≤
∫

∥f∥∞dµ = ∥f∥∞µ(X).

If q <∞ the Hölder inequality gives

∥f∥pp =
∫

|f |p · 1dµ ≤
(∫

(|f |p)q/pdµ
)p/q (∫

1dµ

)q−p/q
= ∥f∥pqµ(X)q−p/q.

We remark that if µ(X) = ∞ there is no relation in general between Lp and
Lq.
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10 Linear Operators

The motive for introducing and studying Banach and Hilbert spaces was to aid the
investigation of linear differential and integral equations arising in Physics. Such
equations can be written

Ay = w

where y, w denote elements of some linear space of functions (e.g. L2(a, b) or a
space of differentiable functions), and A is a linear transformation, e.g. A = d

dx
or

A = ∂2

∂x2
+ ∂2

∂y2
, or Ax(t) =

∫ b
a
K(t, s)x(s) ds. In attacking these problems we seek

inspiration from linear algebra.

Definition 10.1. If E,F are vector spaces over C a linear operator from E to F
is a mapping

T : E → F

satisfying

T (λx+ µy) = λTx+ µTy

for all x, y ∈ E and λ, µ ∈ C.

Definition 10.2. If (E, ∥ · ∥E) and (F, ∥ · ∥F ) are normed spaces a linear operator
T : E → F is said to be bounded if there exists M ≥ 0 such that

∥Tx∥F ≤M∥x∥E for all x ∈ E.

Definition 10.3. If T : E → F is a bounded linear operator from (E, ∥ · ∥E) to
(F, ∥ · ∥F ) then the norm (or operator norm) of T is the nonnegative real number

sup{∥Tx∥F : x ∈ E, ∥x∥E ≤ 1}

and is denoted by ∥T∥, so

∥T∥ = sup
∥x∥E≤1

∥Tx∥F .

Lemma 10.4. Let (E, ∥ · ∥E) and (F, ∥ · ∥F ) be normed spaces and let T : E → F
be a bounded linear operator. Then ∥Tx∥F ≤ ∥T∥∥x∥E for all x ∈ E.

Proof. For x ∈ E, ∥∥∥∥ x

∥x∥E

∥∥∥∥
E

=
1

∥x∥E
∥x∥E = 1.
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Since T is a linear operator,

T

(
x

∥x∥E

)
=

1

∥x∥E
T (x),

and ∥∥∥∥T ( x

∥x∥E

)∥∥∥∥
F

=

∥∥∥∥ 1

∥x∥E
Tx

∥∥∥∥
F

=
1

∥x∥E
∥Tx∥F .

Therefore

1

∥x∥E
∥Tx∥F =

∥∥∥∥T ( x

∥x∥E

)∥∥∥∥
F

≤ ∥T∥.

Thus ∥Tx∥F ≤ ∥T∥∥x∥E for all x ∈ E.

Example 10.5. Any matrix A ∈ Mm×n(C) gives a linear operator from Cn to
Cm. For any vector v = (x1, . . . , xn) ∈ Cn,

Av =


a11 . . . a1n
a21 . . . a2n
...

. . .
...

am1 . . . amn



x1
x2
...
xn

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj


belongs to Cm. Thus consider the mapping T : Cn → Cm such that Tv = Av for
v ∈ Cn, where A ∈Mm×n(C), A = (aij)

m,n
i,j=1.

1. Show that T is a linear operator.

Proof. For any v1 = (x11, x
1
2, . . . , x

1
n), v2 = (x21, x

2
2, . . . , x

2
n) ∈ Cn and λ, µ ∈ C, we
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have

T (λv1 + µv2) = A(λv1 + µv2)

=


∑n

j=1 a1j(λx
1
j + µx2j)∑n

j=1 a2j(λx
1
j + µx2j)

...∑n
j=1 amj(λx

1
j + µx2j)



=


λ
∑n

j=1 a1jx
1
j + µ

∑n
j=1 a1jx

2
j

λ
∑n

j=1 a2jx
1
j + µ

∑n
j=1 a2jx

2
j

...
λ
∑n

j=1 amjx
1
j + µ

∑n
j=1 amjx

2
j



= λ


∑n

j=1 a1jx
1
j∑n

j=1 a2jx
1
j

...∑n
j=1 amjx

1
j

+ µ


∑n

j=1 a1jx
2
j∑n

j=1 a2jx
2
j

...∑n
j=1 amjx

2
j


= λAv1 + µAv2
= λTv1 + µTv2.

2. Show that

T : (Cn, ∥ · ∥2) → (Cm, ∥ · ∥2) : v 7→ Av

is bounded.

Proof.

∥Tv∥2 =

{
m∑
k=1

|(Tv)k|2
} 1

2

=


m∑
k=1

∣∣∣∣∣
n∑
j=1

akjxj

∣∣∣∣∣
2


1
2

.

By the Cauchy-Schwarz inequality,∣∣∣∣∣
n∑
j=1

akjxj

∣∣∣∣∣ ≤
{

n∑
j=1

|xj|2
} 1

2
{

n∑
j=1

|akj|2
} 1

2

= ∥v∥2

{
n∑
j=1

|akj|2
} 1

2

.
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Thus

∥Tv∥2 ≤

{
m∑
k=1

∥v∥22
n∑
j=1

|akj|2
} 1

2

=

{
m∑
k=1

n∑
j=1

|akj|2
} 1

2

∥v∥2.

Thus T is bounded and

∥T∥ = sup
∥v∥2≤1

∥Tv∥2

≤ sup
∥v∥2≤1

{
m∑
k=1

n∑
j=1

|akj|2
} 1

2

∥v∥2

=

{
m∑
k=1

n∑
j=1

|akj|2
} 1

2

.

Exercise 10.6. What will be the norm of T ∈Mn(C)? Show that ∥T∥ = max{|λ|1/2 :
λ is an eigenvalue of T ∗T}. Hint: Show that ∥A∗A∥ = ∥A∥2 and that the norm of
a selfadjoint matrix is equal to the absolute value of its eigenvalue.

Example 10.7. Consider the normed space (C[0, 1], ∥ · ∥∞). Define

T : C[0, 1] → C[0, 1]

by the formula

(Tx)(t) = f(t)x(t)

where f ∈ C[0, 1] and t ∈ [0, 1]. Show that T is a bounded linear operator. Find
∥T∥.

Proof. 1. Let us show that T is a linear operator. For all x, y ∈ C[0, 1], λ, µ ∈ C,

[T (λx+ µy)](t) = f(t)(λx+ µy)(t)

= f(t)(λx(t) + µy(t))

= λf(t)x(t) + µf(t)y(t)

= λ(Tx)(t) + µ(Ty)(t)

= (λTx+ µTy)(t), t ∈ [0, 1].
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Thus

T (λx+ µy) = λTx+ µTy,

so T is a linear operator.
2. Let us show that T is bounded. For all x ∈ C[0, 1],

∥Tx∥∞ = sup
t∈[0,1]

|(Tx)(t)|

= sup
t∈[0,1]

|f(t)x(t)|

≤ sup
t∈[0,1]

|f(t)| sup
t∈[0,1]

|x(t)|

= ∥f∥∞∥x∥∞.

Thus T is bounded.
3. Find ∥T∥.

∥T∥ = sup
∥x∥∞≤1

∥Tx∥∞

≤ sup
∥x∥∞≤1

∥f∥∞∥x∥∞

= ∥f∥∞.

For x0(t) = 1, t ∈ [0, 1],

∥x0∥∞ = sup
t∈[0,1]

|x0(t)| = sup
t∈[0,1]

1 = 1,

and (Tx0)(t) = f(t)x0(t) = f(t), t ∈ [0, 1]. Hence

∥f∥∞ = ∥Tx0∥∞ ≤ ∥T∥ ≤ ∥f∥∞.

Therefore, ∥T∥ = ∥f∥∞.

Definition 10.8. Let T : (X, ∥ ·∥X) → (Y, ∥ ·∥Y ) be a bounded linear operator. A
vector x ∈ X is called a maximising vector for T if ∥x∥X = 1 and ∥Tx∥Y = ∥T∥.

Example 10.9. Consider the multiplication operator

T : (C[0, 1], ∥ · ∥∞) → (C[0, 1], ∥ · ∥∞)

x 7→ f · x

where f ∈ C[0, 1]. We have proved that, for x0(t) = 1, t ∈ [0, 1], ∥x0∥∞ = 1 and
∥Tx0∥∞ = ∥T∥ = ∥f∥∞. Thus x0 is a maximising vector for T .
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Example 10.10. Define a mapping

R : C[0, 1] → C

Rf =

∫ 1

0

xf(x) dx.

1. Show that R is a linear operator.

Proof. For all f, g ∈ C[0, 1] and λ, µ ∈ C,

R(λf + µg) =

∫ 1

0

x(λf + µg)(x) dx

=

∫ 1

0

x(λf(x) + µg(x)) dx

=

∫ 1

0

λxf(x) + µxg(x) dx

= λ

∫ 1

0

xf(x) dx+ µ

∫ 1

0

xg(x) dx by the linearity of integrals

= λRf + µRg.

Thus R is a linear operator.

2. Consider C[0, 1] with the norm ∥f∥1 =
∫ 1

0
|f(t)| dt. Show that R is bounded.

Proof.

|Rf | = |
∫ 1

0

xf(x) dx|

≤
∫ 1

0

|xf(x)| dx

≤
∫ 1

0

|f(x)| dx

= ∥f∥1

for all f ∈ C[0, 1]. Thus R is bounded and

∥R∥ = sup
∥f∥1≤1

|Rf | ≤ sup
∥f∥1≤1

∥f∥1 = 1.

3. Show that ∥R∥ = 1.
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Proof. Consider the sequence of continuous functions fn(t) = (n + 1)tn. We can
see that

∥fn∥1 =
∫ 1

0

|fn(t)| dt

=

∫ 1

0

(n+ 1)tn dt

= (n+ 1)
tn+1

n+ 1

∣∣∣1
0
= 1

and

|Rfn| =
∣∣∣∣∫ 1

0

xfn(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

x(n+ 1)xn dx

∣∣∣∣
=

∣∣∣∣(n+ 1)

∫ 1

0

xn+1 dx

∣∣∣∣
= (n+ 1)

xn+2

n+ 2

∣∣∣1
0

=
n+ 1

n+ 2
.

Therefore

∥R∥ = sup
∥f∥1≤1

|Rf | ≥ |Rfn| =
n+ 1

n+ 2

for all n. Hence

∥R∥ ≥ lim
n→∞

n+ 1

n+ 2
= 1.

Thus 1 ≥ ∥R∥ ≥ 1, so ∥R∥ = 1.

Definition 10.11. Let T : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ) be a mapping between normed
spaces. We say T is continuous at x ∈ X if for every ε > 0 there exists δ > 0 such
that, for every x′ ∈ X, ∥x− x′∥X < δ implies

∥Tx− Tx′∥Y < ε.

The next statement is Proposition 5.2 in Folland’s book.

Theorem 10.12. Let T : (X, ∥ · ∥X) → (Y, ∥ · ∥Y ) be a linear operator between
normed spaces. Then the following are equivalent:
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(i) T is bounded;

(ii) T is continuous on X, that is, T is continuous at all x ∈ X;

(iii) T is continuous at 0 ∈ X.

Proof. We are going to show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(ii) ⇒ (iii). This is trivial, since 0 ∈ X.
(i) ⇒ (ii). Suppose that T is bounded and so, for all x ∈ X,

∥Tx∥Y ≤ ∥T∥∥x∥X .

Given x ∈ X and ε > 0, set δ = ε
∥T∥ . Then, for all x

′ ∈ X, ∥x− x′∥X < δ implies

∥Tx− Tx′∥Y = ∥T (x− x′)∥Y T is a linear operator

≤ ∥T∥∥x− x′∥X T is a bounded operator

< ∥T∥δ

= ∥T∥ ε

∥T∥
= ε.

Thus T is continuous at all x ∈ X.
(iii) ⇒ (i). Suppose that T is continuous at 0 ∈ X. Thus, for ε = 1, there

exists δ > 0 such that, for every x′ ∈ X, ∥0− x′∥X < δ implies ∥T0− Tx′∥Y < 1.
For any x ∈ X, x ̸= 0, set x′ = δ

2
x

∥x∥X
∈ X. Note that

∥x′∥X =

∥∥∥∥δ2 x

∥x∥X

∥∥∥∥
X

=
δ

2

1

∥x∥X
∥x∥X by the definition of norm

=
δ

2
< δ.

Therefore, ∥Tx′∥Y < 1, and

∥Tx′∥Y =

∥∥∥∥T (δ2 x

∥x∥X

)∥∥∥∥
Y

=

∥∥∥∥δ2 1

∥x∥X
Tx

∥∥∥∥
Y

T is a linear operator

=
δ

2

1

∥x∥X
∥Tx∥Y by the definition of norm.

Thus

δ

2

1

∥x∥X
∥Tx∥Y < 1,

52



so

∥Tx∥Y ≤ 2

δ
∥x∥X

for all x ∈ X. Hence T is bounded and ∥T∥ ≤ 2
δ
.

Theorem 10.13. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed spaces. Then the set

L(X, Y ) = {T : X → Y : T is a bounded linear operator}
is a normed space with respect to the pointwise operations:

(T + S)(x) = Tx+ Sx and

(λT )(x) = λTx,

where T, S ∈ L(X,Y ), λ ∈ C, x ∈ X, and the operator norm. If (Y, ∥ · ∥Y ) is a
Banach space, then so is L(X, Y ).

Proof. It is easy to verify that L(X, Y ) is a normed space with respect to the
operator norm (Check!). Let us show that L(X,Y ) is complete whenever so is
(Y, ∥ · ∥Y ). Take a Cauchy sequence {Tn} in L(X,Y ). Since for x ∈ X, ∥Tnx −
Tmx∥ ≤ ∥Tn−Tm∥∥x∥, the sequence {Tnx} is Cauchy in Y and hence has a limit in
Y . We define now T : X → Y by Tx = limTnx, x ∈ X. It is easy to see that T is
a linear operator. Let us show that it is bounded. For this we observe first that by
the triangle inequality |∥Tnx∥−∥Tx∥| ≤ ∥Tnx−Tx∥ and hence ∥Tx∥ = lim ∥Tnx∥.
Applying the triangular inequality to the operator norm we obtain

|∥Tn∥ − ∥Tm∥| ≤ ∥Tn − Tm∥
showing that the sequence of real numbers {∥Tn∥} is Cauchy and hence has a limit,
K. Therefore, for x ∈ X,

∥Tx∥ = lim ∥Tnx∥ ≤ lim ∥Tn∥∥x∥ ≤ K∥x∥
and hence T is bounded.

What is left to show is that ∥Tn − T∥ → 0, as n→ ∞.
As {Tn} is Cauchy, given ϵ there exists N such that for any m, n ≥ N , ∥Tn −

Tm∥ < ϵ and hence for any x ∈ X ∥Tnx− Tmx∥ ≤ ∥Tn − Tm∥∥x∥ < ϵ∥x∥. Letting
m go to infinity we obtain ∥Tnx−Tx∥ ≤ ϵ∥x∥ and hence ∥Tn−T∥ < ϵ, giving the
statement.

Corollary 10.14. Let (X, ∥ · ∥X) be a normed space. Then L(X,C) is a Banach
space.

Proof. It follows from the previous theorem, since C is a Banach space.

Remark 10.15. The Banach space X∗ = B(X,C) is called the dual space of X.
The vectors F ∈ X∗ are called continuous linear functionals.
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11 Dual Spaces

Definition 11.1. A linear functional on a complex vector space V is a mapping
F : V → C which satisfies

F (λx+ µy) = λF (x) + µF (y)

for all x, y ∈ V and λ, µ ∈ C.

Definition 11.2. A linear functional on a normed space (X, ∥·∥x) is called bounded
if there exists K > 0 such that

|F (x)| ≤ K∥x∥X

for all x ∈ X.

Definition 11.3. A linear functional F : X → C on a normed space (X, ∥ · ∥x)
is continuous at x ∈ X if for every ϵ > 0 there exists δ > 0 such that, for every
y ∈ X, ∥x− y∥X < δ implies

|F (x)− F (y)| < ϵ.

Theorem 11.4. Let (X, ∥ · ∥X) be a normed space and let F be a linear functional
on X. Then the following are equivalent:

(i) F is bounded;

(ii) F is continuous on X, that is, F is continuous at all x ∈ X;

(iii) F is continuous at 0 ∈ X.

Proof. It follows from the similar theorem for linear operators.

Definition 11.5. The norm of a bounded linear functional F : X → C on a
normed space (X, ∥ · ∥X) is

∥F∥ = sup
∥x∥X≤1

|F (x)|.

Exercise 11.6. Let C1[0, 1] be the complex vector space of continuously differen-
tiable complex valued functions on [0, 1] with the supremum norm ∥ · ∥∞. Define a
mapping

F : C1[0, 1] → C

by

F (f) = f ′(1).

Show that F is a linear functional. Show that F is unbounded. Is F continuous?
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Theorem 11.7. Let (V, ⟨·, ·⟩) be an inner product space. Then, for every y ∈ V ,
the mapping

ϕy : V → C

defined by

ϕy(x) = ⟨x, y⟩, x ∈ V,

is a continuous linear functional with respect to the norm ∥x∥2 = ⟨x, x⟩ 1
2 . More-

over,
∥ϕy∥ = ∥y∥2.

Proof. For all x1, x2 ∈ V and λ, µ ∈ C,

ϕy(λx1 + µx2) = ⟨λx1 + µx2, y⟩
= λ⟨x1, y⟩+ µ⟨x2, y⟩ by the definition of inner product

= λϕy(x1) + µϕy(x2).

Thus ϕy is a linear functional.
(ii) By the Cauchy-Schwarz inequality,

|ϕy(x)| = |⟨x, y⟩| ≤ ∥x∥2∥y∥2

for all x ∈ V . Thus ϕy is bounded. This implies that ϕy is continuous on V .
(iii) By the definition,

∥ϕy∥ = sup
∥x∥2≤1

|⟨x, y⟩|

≤ sup
∥x∥2≤1

∥x∥2∥y∥2 by the Cauchy-Schwarz inequality

= ∥y∥2.

For x0 =
y

∥y∥2 , we have

∥x0∥2 =
∥∥∥∥ y

∥y∥2

∥∥∥∥ =
1

∥y∥2
∥y∥2 = 1

and

ϕy(x0) = ⟨x0, y⟩

=

⟨
y

∥y∥2
, y

⟩
=

1

∥y∥2
⟨y, y⟩

=
1

∥y∥2
∥y∥22 = ∥y∥2.
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Hence

∥y∥2 = |ϕy(x0)| ≤ ∥ϕy∥ ≤ ∥y∥2,

so ∥ϕy∥ = ∥y∥2.

Example 11.8. Define a mapping

T : C[0, 1] → C

by the formula

T (f) = 5i

∫ 1

0

f(t)e−2t dt, i2 = −1.

Is T a bounded linear functional with respect to the norm ∥ · ∥2? Recall ∥f∥2 =

{
∫ 1

0
|f(t)|2 dt} 1

2 . Find ∥T∥.

Solution. 1) Consider C[0, 1] with the inner product

⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt.

one can see that

∥f∥2 =
{∫ 1

0

|f(t)|2 dt
} 1

2

= ⟨f, f⟩
1
2 .

2) For every f ∈ C[0, 1],

T (f) = 5i

∫ 1

0

f(t)e−2t dt = ⟨f, g⟩,

where g(t) = −5ie−2t.
3) By the above theorem, T is a bounded linear functional on (C[0, 1], ⟨·, ·⟩)

and
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∥T∥ = ∥g∥2, where

∥g∥22 =
∫ 1

0

|g(t)|2 dt

=

∫ 1

0

| − 5ie−2t|2 dt

=

∫ 1

0

25e−4t dt

= 25

∫ 1

0

e−4t dt

= 25× 1

−4
e−4t|10

=
25

4
(e0 − e−4)

=
25

4
(1− e−4).

Thus ∥T∥ = 5
2

√
1− e−4.

The following theorem will be proved later.

Theorem 11.9. (Riesz-Fréchet) Let H be a Hilbert space and let F be a continuous
linear functional on H. There exists a unique y ∈ H such that

F (x) = ⟨x, y⟩

for all x ∈ H. Moreover, ∥F∥ = ∥y∥2.

Remark 11.10. The theorem does not hold for an arbitrary inner product space.

Example 11.11. Let ℓ2F be the linear subspace of ℓ2 consisting of those sequences
having only finitely many terms different from zero. We know that ℓ2F is an inner
product space which is not a Hilbert space (see section 6, Hilbert spaces).

Define a mapping

F : ℓ2F → C

by

F ((xn)
∞
n=1) =

∞∑
n=1

1

n
xn.

1. We can see that F (x) = ⟨x, y⟩ where y = (1, 1
2
, . . . , 1

n
, . . .) ∈ ℓ2; note that

y /∈ ℓ2F .
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2. However, F is a bounded linear functional on ℓ2F and

∥F∥ = sup
x∈ℓ2F ,∥x∥2≤1

|⟨x, y⟩| ≤ ∥y∥2.

3. Let us show that F is not equal to ⟨·, z⟩ for any z ∈ ℓ2F . Let there be z ∈ ℓ2F
with F (x) = ⟨x, z⟩ for all x ∈ ℓ2F . Then ⟨x, y⟩ = ⟨x, z⟩ for all x ∈ ℓ2F . Therefore
⟨en, y⟩ = ⟨en, z⟩ for all n ∈ N, where

en = (0, . . . , 1, 0, . . .) [1 in the nth place].

Hence yn = zn for all n ∈ N, so y = z and z /∈ ℓ2F . Thus F is a continuous linear
functional on an inner product space (ℓ2F , ⟨·, ·⟩) such that F is not equal to ⟨·, z⟩
for any z ∈ ℓ2F .

Definition 11.12. Let (X, ∥ · ∥) be a normed space. The Banach space X∗ =
L(X,C) of all continuous linear functionals on X is called the dual space of X.

11.1 Mappings

Definition 11.13. Let X, Y be sets.

(i) A mapping f : X → Y is injective if, for any x1, x2 ∈ X, x1 ̸= x2 implies
f(x1) ̸= f(x2).

(ii) The subset Im f = {f(x) : x ∈ X} is called the image of X under f .

(iii) A mapping f : X → Y is surjective if Im f = Y .

(iv) A mapping f : X → Y that is both injective and surjective is called
bijective.

Definition 11.14. Let E,F be vector spaces, T : E → F be a linear operator.
The kernel of T is

KerT = {x ∈ E : Tx = 0}.

Proposition 11.15. Let E,F be vector spaces, T : E → F be a linear operator.
Then T is injective if and only if KerT = 0.

Proof. Let x ∈ KerT , then

Tx = T0 = 0.

(⇒) Suppose T is injective. Therefore x ̸= 0 implies Tx ̸= T0, so x /∈ KerT ,
only 0 ∈ KerT .
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(⇐) Let KerT = 0. For any x1, x2 from E such that x1 ̸= x2, we have

x1 − x2 ̸= 0 ⇒ (x1 − x2) /∈ KerT.

Thus
T (x1)− T (x2) = T (x1 − x2) ̸= 0.

Therefore T (x1) ̸= T (x2), so T is injective.

Theorem 11.16. Let (E, ∥ · ∥E), (F, ∥ · ∥F ) be normed spaces and let T : E → F
be a bounded linear operator. Then KerT is a closed linear subspace of (E, ∥ · ∥E).

Proof. (Exercise.)

Exercise 11.17. Let E be a normed space and let T : E → C be a linear functional.
Show that f is bounded if and only if KerT is a closed subspace of E.

Definition 11.18. Let E,F be vector spaces over C. A linear operator T : E → F
which is bijective is called an isomorphism of vector spaces.

Definition 11.19. Let (E, ∥ · ∥E), (F, ∥ · ∥F ) be normed spaces. A linear operator
T : E → F is called an isometry (or a norm-preserving mapping) if, for all y ∈ E,

∥T (y)∥F = ∥y∥E.

Remark 11.20. The Riesz-Fréchet theorem shows that, for any Hilbert space H,
there is a mapping

T : H → H∗

given by T (y) = ϕy where ϕy(x) = ⟨x, y⟩ which is

(i) bijective;

(ii) norm-preserving, that is, ∥T (y)∥ = ∥y∥; and

(iii) conjugate-linear, that is, T (λy + µz) = λTy + µTz.

Thus a Hilbert space can be identified with its own dual space. Hilbert spaces are
sometimes said to be “self-dual”.

Example 11.21. Let us show that (ℓ1)∗ can be identified with ℓ∞.
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Proof. 1. There is a mapping T : ℓ∞ → (ℓ1)∗ given by T (c) = ϕc where

ϕc(x) =
∞∑
n=1

cnxn,

c = (cn)
∞
n=1 ∈ ℓ∞, x = (xn)

∞
n=1 ∈ ℓ1. To say (cn)

∞
n=1 ∈ ℓ∞ simply means that

the cn are bounded, say, by Mc. For (xn)
∞
n=1 ∈ ℓ1,

∑∞
n=1 |xn| is finite, and hence∑∞

n=1 cnxn is an absolutely convergent series:

∞∑
n=1

|cnxn| ≤
∞∑
n=1

Mc|xn| =Mc

∞∑
n=1

|xn| <∞.

Thus ϕc is well defined on ℓ1.
We have to show that, for all c ∈ ℓ∞, the mapping ϕc ∈ (ℓ1)∗, that is, ϕc is a

bounded linear functional on ℓ1.
(a) For all x = (xn)

∞
n=1, y = (yn)

∞
n=1 from ℓ1 and λ, µ ∈ C,

ϕc(λx+ µy) =
∞∑
n=1

cn(λxn + µyn)

= λ
∞∑
n=1

cnxn + µ
∞∑
n=1

cnyn

= λϕc(x) + µϕc(y).

Thus ϕc is a linear functional.
(b) For all x = (xn)

∞
n=1 ∈ ℓ1,

|ϕc(x)| =

∣∣∣∣∣
∞∑
n=1

cnxn

∣∣∣∣∣
≤

∞∑
n=1

|cnxn|

≤ sup
n∈N

|cn|
∞∑
n=1

|xn|

= ∥c∥∞∥x∥1.

Thus ϕc is bounded. Therefore the mapping

T : ℓ∞ → (ℓ1)∗ : c 7→ ϕc

is well defined.
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2. Let us show that T is linear. For all λ, µ ∈ C; c = (cn)
∞
n=1, d = (dn)

∞
n=1 ∈ ℓ∞

and x = (xn)
∞
n=1 ∈ ℓ1,

[T (λc+ µd)](x) = ϕλc+µd(x)

=
∞∑
n=1

(λc+ µd)nxn

=
∞∑
n=1

(λcn + µdn)xn

= λ
∞∑
n=1

cnxn + µ
∞∑
n=1

dnxn

= λϕc(x) + µϕd(x)

= [λT (c) + µT (d)](x).

3. Let us show that T is surjective. Pick any g ∈ (ℓ1)∗: we must find c ∈ ℓ∞

such that T (c) = g; that means ϕc = g.
(a) Let cn = g(en), where

en = (0, . . . , 0, 1, 0, . . .) (1 in the nth position).

This is the only possible candidate for c since ϕc(en) = cn. Note that, for all n ∈ N,

|cn| = |g(en)|
≤ ∥g∥∥en∥1 (as g is bounded)

= ∥g∥.

Thus c is a bounded sequence, that is, c ∈ ℓ∞, and

∥c∥∞ = sup
n∈N

|cn| ≤ ∥g∥.

(b) To show that ϕc = g, consider any x = (xn)
∞
n=1 ∈ ℓ1 and write Sk =∑k

n=1 xnen. Note that

∥x− Sk∥1 = ∥(0, . . . , 0, xk+1, xk+2, . . .)∥1

=
∞∑

n=k+1

|xn| → 0 as k → ∞.

Therefore, since g is continuous,

g(x) = g( lim
k→∞

Sk)

= lim
k→∞

g(Sk).
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By the linearity of g,

g(Sk) = g

(
k∑

n=1

xnen

)

=
k∑

n=1

xng(en)

=
k∑

n=1

xncn.

Hence, for any x ∈ ℓ1,

g(x) =
∞∑
k=1

xncn = ϕc(x).

4. Let us show that T is injective. Suppose c ̸= d, c = (cn)
∞
n=1, d = (dn)

∞
n=1 ∈

ℓ∞. Thus there exists n0 ∈ N such that

cn0 ̸= dn0 .

Therefore,

ϕc(en0) = cn0 ̸= dn0 = ϕd(en0),

so ϕc ̸= ϕd.
5. It remains to show that T is a norm-preserving mapping. We have already

proved that

∥c∥∞ ≤ ∥g∥ = ∥ϕc∥

for all c ∈ ℓ∞, and that, for all x ∈ ℓ1,

|ϕc(X)| ≤ ∥c∥∞∥x∥1.

This implies

∥ϕc∥ = sup
∥x∥1≤1

|ϕc(x)| ≤ ∥c∥∞.

Thus ∥ϕc∥ = ∥c∥∞, so T preserves norms:

∥T (c)∥(ℓ1)∗ = ∥ϕc∥ = ∥c∥∞.

Therefore, T is an isomorphism of vector spaces and an isometry.
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11.2 The dual of Lp

Let (X,M, µ) be a measure space. Consider Banach spaces Lp(X,M, µ), 1 ≤ p ≤
∞ which we simply denote by Lp if no confusion arise. Suppose that p and q are
conjugate exponents, i.e. 1

p
+ 1

q
= 1, if 1 < p < ∞ or (p, q) = (1,∞) or (∞, 1).

The aim of this section is to identify the dual spaces (Lp)∗.
For g ∈ Lq let

ϕg(f) =

∫
fgdµ, f ∈ Lp.

It follows from (extended) Hölder’s inequality that ϕg(f) if finite for all f ∈ Lp

and

|ϕg(f)| = |
∫
fgdµ| ≤ ∥f∥p∥g∥q, 1 ≤ p ≤ ∞.

Moreover, ϕg is linear and hence defines a bounded linear functional on Lp and
∥ϕg∥ ≤ ∥g∥p.

Hence the mapping T : Lq → (Lp)∗, T (g) = ϕg is a well-defined linear (easy)
bounded map. Let us clarify when it is injective, surjective and isometric.

Next statement shows that T is almost always an isometry and hence injective.

Proposition 11.22. Let 1 ≤ q < ∞. Then ∥ϕg∥ = ∥g∥q. If the measure µ is
semifinite, the result holds even for q = ∞.

Proof. Let q <∞. In order to show the equality for norms it is enough to see that
∥ϕg∥ ≥ ∥g∥q. If g = 0 a.e. the statement is trivial. Hence assume ∥g∥q ̸= 0 and
consider

f =
|g|q−1sgng

∥g∥q−1
,

where sgnz = z/|z| if z ̸= 0 and 0 if z = 0.
Then for 1 < p <∞

∥f∥pp =
∫
|g|(q−1)p

∥g∥(q−1)p
q

=

∫
|g|q∫
|g|q

= 1

so

∥ϕg∥ ≥
∫
fg =

∫
|g|q

∥g∥q−1
q

= ∥g∥q.

If p = ∞, q = 1, f = sgng, ∥f∥∞ = 1 and ∥ϕg∥ ≥
∫
fg = ∥g∥1.

Let now q = ∞ and µ is semifinite, i.e. ∀A ∈ M, µ(A) = ∞, ∃B ⊂ A, B ∈ M,
such that 0 < µ(B) < ∞. Then for ϵ > 0 and A = {x : |g(x)| > ∥g∥∞ − ϵ}, we
have µ(A) > 0. Let B ⊂ A such that 0 < µ(B) < ∞ and f = µ(B)−1χBsgng.
Then ∥f∥1 = 1 and

∥ϕg∥ ≥
∫
fg =

1

µ(B)

∫
B

|g| ≥ ∥g∥∞ − ϵ.
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Since ϵ is arbitrary, ∥ϕg∥ ≥ ∥g∥∞.

Next theorem shows that in ”almost all” cases T is surjective.

Theorem 11.23. Let µ be σ-finite and 1 ≤ p <∞. Then for any ϕ ∈ (Lp)∗ there
exists g ∈ Lq such that ϕ = ϕg and hence Lq is isometrically isomorphic to (Lp)∗.

Remark 11.24. If 1 < p <∞ then the result holds without restriction on µ (see
proof in Folland).

Proof. Fix ϕ ∈ (Lp)∗ and assume first that µ is finite. Then χE ∈ Lp for all
measurable sets E. Define

ν(E) = ϕ(χE), E ∈ M.

Then ν is a complex measure absolutely continuous with respect to µ. In fact,

• ν is σ-additive: For any disjoint sequence of measurable subsets {Ej} and
E = ∪∞

1 Ej we have χE =
∑∞

1 χEj
, where the series converges in the Lp-

norm:

∥χE −
N∑
1

χEi
∥ = ∥

∞∑
N+1

χEi
∥ = µ(∪∞

N+1Ei)
1/p → 0, as N → ∞.

Since ϕ is continuous,

ν(E) = ϕ(χE) =
∞∑
1

ϕ(χEi
) =

∞∑
1

ν(Ei).

• ν ≪ µ: If µ(A) = 0 then χA = 0 a.e. and hence ν(A) = ϕ(χA) = 0.

By the Radon-Nikodym theorem there exists g ∈ L1(µ) such that for any
E ∈ M,

ϕ(χE) = ν(E) =

∫
E

gdµ =

∫
χEgdµ

and hence ϕ(f) = ϕg(f) =
∫
fg for any simple function f so that we have the

desired representation on the set of simple functions.
Note however that we have not shown yet that g ∈ Lq, only that it is in L1.

We postpone the proof of this statement until the end of the proof.
Once we know this, we can prove the equality ϕ(f) = ϕg(f) for any f ∈ Lp. In

fact, since simple functions are dense in Lp, given f ∈ Lp, there exists a sequence

64



of simple functions fn such that ∥fn−f∥p → 0. As ϕ is continuous, ϕ(fn) → ϕ(f).
On the other hand, ϕ(fn) =

∫
fng →

∫
fg: by Hölder’s inequality,

∥ϕ(fn)−
∫
fg∥ ≤ |

∫
(fn − f)g| ≤ ∥fn − f∥p∥g∥q → 0.

Hence ϕ(f) =
∫
fg, f ∈ Lp.

Assume now that µ is σ-finite. Then there exists an increasing sequence of
sets {En} such that 0 < µ(En) < ∞ and X = ∪∞

1 En. In what follows we will
identify Lp(En), L

q(En) with the corresponding subspaces of Lp(X) and Lq(X)
respectively. By the preceding arguments there exists gn ∈ Lq(En) such that
ϕ(f) =

∫
fgn for any f ∈ Lp(En) and

∥gn∥q = ∥ϕ|Lp(En)∥ ≤ ∥ϕ∥,

where ϕ|Lp(En) is the restriction of the functional ϕ to the subspace Lp(En). Clearly
that gn is unique modulo alternation on null set and hence gn = gm a.e. on En for
all m ≥ n. Hence we can define g on the whole space X by letting g = gn on En.
By the monotone convergence theorem we obtain

∥g∥qq = lim
n→∞

∥gn∥qq ≤ ∥ϕ∥q

and therefore g ∈ Lq.
Now let f ∈ Lp Then fχEn ∈ Lp(En) and by the dominated convergence

theorem fχEn → f in Lp. Hence

ϕ(f) = lim
n→∞

ϕ(fχEn) = lim
n→∞

∫
fgn = lim

n→∞

∫
En

fg =

∫
fg

as desired.
Now let us fill the gap in the proof and show that g ∈ Lq. We may assume

that g ̸= 0 a.e. Observe that we need the statement only in the case when µ is a
finite measure. A more general statement is proved in Folland. As ϕ(f) =

∫
fg

for simple f and ϕ is bounded, we have that

Mq(g) = sup{|
∫
fg| : f is simple , ∥f∥p = 1}

is finite: Mq(g) ≤ ∥ϕ∥ <∞. Moreover, since for any bounded measurable function
f , ∥f∥p = 1, there is a sequence {fn} of simple functions such that |fn| ≤ |f | and
fn → f pointwise, we have, by the dominated convergence theorem,

|
∫
fg| = lim

n→∞
|
∫
fng| ≤Mq(g) (11.6)
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Assume q <∞. Let {gn} be a sequence of simple bounded functions such that
gn → g pointwise and |gn| ≤ |gn+1| ≤ |g|, it exists due to Theorem 2.10 in Folland.
Let

fn =
|gn|q−1sgng

∥gn∥q−1
q

.

Then as in the proof of the previous theorem we have ∥fn∥p = 1 and
∫
|fngn| =

∥gn∥q. By the monotone convergence theorem we have

∥g∥q = lim
n→∞

∥gn∥q = lim
n→∞

∫
|fngn| ≤ lim inf

∫
|fn||g| = (as fng ≥ 0)

= lim inf

∫
fng ≤ (by 11.6) ≤Mq(g).

Hence g ∈ Lq.
Assume now q = ∞ (and hence p = 1). In order to prove that g ∈ L∞ it is

enough to see that ∥g∥∞ ≤ M∞(g). Assume contrary that for some ϵ > 0 the set
A = {x : |g(x)| > M∞(g) + ϵ} is of non-zero measure. Setting f = χAsgng/µ(A)
we have ∥f∥1 = 1 and ∫

fg =

∫
A

|g|
µ(A)

> M∞(g) + ϵ

which is impossible by (11.6).
The proof is complete.

Let us summarise:

• 1 < p <∞: (Lp)∗ = Lq and (Lp)∗∗ = Lp.

We proved this for σ-finite measure, but the result holds for general µ.

• p = 1: (L1)∗ = L∞ if the measure µ is σ-finite. The inclusion T : L∞ → (L1)∗

is isometric if µ is semi-finite.

If µ is not semi-finite the injectivity of T : L∞ → (L1)∗, g 7→ ϕg fails (see
explnation in Folland).

• p = ∞: L1 ⊂ (L∞)∗, the mapping T : L1 → (L∞)∗, g 7→ ϕg is an injective
isometry but almost never surjective. We shall say more about this later.
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12 The Hahn-Banach Theorem and consequences

Let X be a normed space over R or C. Let X∗ be the dual space of X. How can
we be sure that there are enough elements in X∗ so that the study of the dual
space becomes interesting? Can we extend a linear bounded functional given on
a subspace to a linear bounded functional on the whole space? The answers to
these questions gives one of the most important results in functional analysis, the
Hahn-Banach Theorem.

Assume first that X is a real vector space.

Definition 12.1. A sublinear functional on X is a map p : X → R such that

p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) ∀x, y ∈ X,λ ≥ 0.

Example 12.2. 1. p(x) = |f(x)|, where f is a real linear functional;

2. p(x) = ∥x∥, where ∥ · ∥ is a norm or seminorm.

Theorem 12.3. (The Hahn-Banach Theorem, real version) Let X be a real
vector space and p is a sublinear functional. Let M be a linear subspace of X and
f :M → R a linear functional such that

f(x) ≤ p(x), x ∈M.

Then there exists a linear functional F : X → R such that F = f on M and
F (x) ≤ p(x) for all x ∈ X.

Proof. 1. The result is trivial if M = X. Assume M ̸= X and let x ∈ X \M .
Consider the set M ′ = M + Rx, the subspace spanned by x and vectors in M .
It is easy to see that each element in M ′ an be uniquely represented in the form
y + λx, y ∈M , λ ∈ R. If g is a linear extension of f to M ′ then

g(y + λx) = f(y) + λg(x), y ∈M.

If α = g(x) then g(y + λx) = f(y) + λα.
The aim is to find α such that g(z) ≤ p(z) for all z ∈M ′, i.e.

f(y) + λα ≤ p(λx+ y). (12.7)

For λ > 0, (12.7) is equivalent to f
(y
λ

)
+ α ≤ p

(
x+

y

λ

)
or

α ≤ p
(
x+

y

λ

)
− f

(y
λ

)
(12.8)
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and for λ < 0, to the condition f
(y
λ

)
+ α ≥ −p

(
−x− y

λ

)
or

α ≥ −p
(
−x− y

λ

)
− f

(y
λ

)
. (12.9)

Let us show that there exists α that satisfies both conditions (12.8) and (12.9).
Let y1, y2 ∈M . Then since

f(y2)− f(y1) ≤ p(y2 − y1) = p((y2 + x)− (y1 + x)) ≤ p(y2 + x) + p(−y1 − x)

we have
−f(y2) + p(y2 + x) ≥ −f(y1)− p(−y1 − x).

Since y1, y2 were arbitrary, we get

inf
y∈M

(−f(y) + p(y + x)) ≥ sup
y∈M

(−f(y)− p(−y − x)).

Choosing α between these two quantities and letting

g(λx+ y) = λα + f(y)

we obtain the desired extension of f to the subspace M + Rx.
2. If in X one can find a countable set of elements x1, x2, . . . that together

with M generate the whole space X then the functional on X can be constructed
inductively considering the following chain of subspaces:

M (1) = span{M,x1},M (2) = span{M (1), x2}, . . .

Then any element in M belongs to some of the subspaces M (k) and the functional
will be extended to the whole X.

3. In general case one uses Zorn’s lemma. Let F be the family of linear
extensions, F , of f to a subspace MF with F (x) ≤ p(x). It is partially ordered by
inclusion: F1 ≤ F2 if {(x, F1(x)) : x ∈ MF1} ⊂ {(x, F2(x) : x ∈ MF2}. Since the
union of increasing family of subspaces of X is a subspace, one has that the union
of totally ordered subfamilies of F lies in F . Hence by Zorn’s lemma F has a
maximal element. It is defined on the whole space since otherwise it would admit
an extension and, hence, would not be the maximal element of F .

Remark 12.4. 1. Step 2 is presented here with the main reason to demonstrate
that, for separable spaces, the theorem can be proved without using the Zorn
lemma.

2. If p is a seminorm/norm then

f(x) ≤ p(x) ⇔ |f(x)| ≤ p(x).

In fact, in this case, |f(x)| = ±f(x) = f(±x) and f(x) ≤ p(x) ⇐ −f(x) ≤
p(−x) = p(x) giving the statement.
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Theorem 12.5. (The complex Hahn-Banach Theorem) Let X be a complex
vector space, p a seminorm on X, M a subspace of X, and f a complex linear
functional on M such that |f(x)| ≤ p(x) for x ∈ M . Then there exists a complex
linear functional F on X such that |F (x)| ≤ p(x) for all x ∈ X and F (x) = f(x)
for all x ∈M .

Proof. Consider X and M as vector spaces over reals and denote them by XR
and MR respectively. Note that XR (MR) and X (M respectively) are different as
linear spaces but coincides as sets. Clearly p is a sublinear functional on XR.

Let u = Ref . Then u is a real linear functional on MR satisfying the condition

|u(x)| ≤ p(x)

and hence u(x) ≤ p(x).
By the real Hahn-Banach theorem there exists a real linear functional U on

XR such that U(x) ≤ p(x), for all x ∈ XR and U(x) = u(x) for all x ∈MR.
Clearly −U(x) = U(−x) ≤ p(−x) = p(x) and hence

|U(x)| ≤ p(x), x ∈ XR.

Define a functional F on X by letting

F (x) = U(x)− iU(ix).

F is a complex linear functional: F is real linear since so is U and

F (ix) = U(ix)− iU(−x) = U(ix) + iU(x) = i(U(x)− iU(ix)) = iF (x), x ∈ X.

F is an extension of f to X, i.e. F (x) = f(x), x ∈M : as

Imf(x) = −Re(if(x)) = −Re(f(ix)) = −u(ix)
we have

F (x) = u(x)− iu(ix) = Ref(x) + iImf(x) = f(x).

It remains to prove that |F (x)| ≤ p(x) for all x ∈ X. Assume contrary that for
some x0 ∈ X, |F (x0)| > p(x0). Write F (x0) = |F (x0)|eiφ. Let y0 = e−iφx0. Then

U(y0) = ReF (y0) = Re[e−iφF (x0)] = |F (x0)| > p(x0) = p(y0).

A contradiction that gives the statement.

Corollary 12.6. Let X be a normed space and let M be its subspace. Then for
every linear continuous functional f defined onM there exists a functional F ∈ X∗

such that F (x) = f(x) for all x ∈M and ∥F∥ = ∥f∥.
Proof. Let p(x) = ∥f∥∥x∥, x ∈ X. We have |f(x)| ≤ p(x) for any x ∈ M . By the
complex Hahn-Banach theorem there exists a linear functional F on X such that
|F (x)| ≤ p(x) = ∥f∥∥x∥ for all x ∈ X and F |M = f . Hence, F is bounded and
∥F∥ ≤ ∥f∥. As ∥F∥ = sup{|F (x)| : ∥x∥ ≤ 1, x ∈ X} ≥ sup{|F (x)| : ∥x∥ ≤ 1, x ∈
M} = ∥f∥, we have ∥F∥ = ∥f∥.
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12.1 Corollaries of the Hahn-Banach Theorem

Theorem 12.7. Let X be a normed space.

1. If M is a closed subspace of X then for every vector x ∈ X \M , there exists
f ∈ X∗ such that f(x) ̸= 0 and f |M = 0. In fact f can be taken to satisfy
∥f∥ = 1 and f(x) = ρ(x,M) := infy∈M ∥x− y∥.

2. If x ̸= 0 in X, then there exists f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥.

3. The bounded linear functionals on X separate points: for x, y ∈ X, x ̸= y,
there exists f ∈ X∗ such that f(x) ̸= f(y).

4. A subset M ⊂ X is total in X that is the closed linear span is dense in X if
and only if f ∈ X∗, f(x) = 0, x ∈M ⇒ f = 0.

5. If x ∈ X define x̂ : X∗ → C by x̂(f) = f(x). Then the map x 7→ x̂ is a
linear isometry from X to X∗∗ = (X∗)∗.

Proof. 1. We define a functional f on the space M + Cx by

f(y + λx) = λρ(x,M).

Then f is linear, f |M = 0 and f(x) = ρ(x,M). Let us find ∥f∥. We have

∥f∥ = sup{|f(y + λx))|
∥y + λx∥

: y ∈M,λ ∈ C}

= sup{ |λ|ρ(x,M)

|λ|∥y + λ−1x∥
: y ∈M,λ ∈ C, λ ̸= 0}

=
ρ(x,M)

inf{∥x+ λ−1y∥
=
ρ(x,M)

ρ(x,M)
= 1.

By virtue of the Hahn-Banach theorem, there exists an extension F ∈ X∗

of the functional f with the norm ∥F∥ = ∥f∥ = 1. Thus the functional F
possesses all the required properties.

2. The statement is a special case of the previous one: set M = {0}.

3. If x ̸= y by (2) there exists f ∈ X∗ such that f(x − y) = ∥x − y∥ ̸= 0 and
hence f(x) ̸= f(y).

4. Assume first that a set M is total and f(x) = 0 for all x ∈ M . By linearity
and continuity we have that f(x) = 0 for all x in the closed linear span of
M , i.e. for all x ∈ X.
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Assume that all functionals f ∈ X∗ vanishing on M are identically equal to
zero. Suppose that M is not total and let G be the closed linear span of M .
Then there exists y ∈ X \G. By (1) there exists f ∈ X∗ such that ∥f∥ = 1
and f(x) = 0 for all x ∈ G, which contradicts the assumption.

5. For each x ∈ X, x̂ is a linear functional on X∗:

x̂(λf1 + µf2) = (λf1 + µf2)(x) = λf1(x) + µf2(x) = λx̂(f1) + µx̂(f2).

x̂ is bounded:
|x̂(f)| = |f(x)| ≤ ∥f∥∥x∥

and ∥x̂∥X∗∗ ≤ ∥x∥X . On the other hand, since there exists f ∈ X∗, ∥f∥ = 1,
f(x) = x̂(f) = ∥x∥, we have ∥f∥ ≥ ∥x∥X . Therefore, ∥x̂∥X∗∗ = ∥x∥X and
X ∋ x 7→ x̂ ∈ X∗∗ is a linear isometry.

Remark 12.8. The third statement answers an important question about the
structure of the dual space of a normed space: it is rich enough to separate the
elements of the given space.

If X is a normed space, we let X̂ = {x̂ : x ∈ X} ⊂ X∗∗ and i : X → X∗∗, x 7→ x̂

the isometric embedding. Then the closure X̂ is complete as a closed subspace of

the complete space X∗∗ and i(X) is a dense set in X̂. Hence X̂ is the completion
of X.

If X̂ = X∗∗ then X is called reflexive, i.e. if the canonical map i : x 7→ x̂ is
an isometric isomorphism.

Exercise 12.9. 1. We have proved that T : l1 → (l∞)∗, a 7→ Φa, Φa(x) =∑
i xiai, is a linear isometry. Use the Hahn-Banach Theorem to show that

the embedding T is proper (that is T (l1) ̸= (l∞)∗) by proving that there
exists a bounded linear functional Φ ∈ (l∞)∗ such that Φ(x) = limn→∞ xn
for x = (xn) ∈ c = {x = (xn) ∈ l∞ : ∃ limn→∞ xn}.

2. Show that there exists Φ ∈ L∞([0, 1])∗ such that Φ(f) = f(0) for f ∈ C([0, 1])
and prove that the canonical embedding T : L1 → (L∞)∗ is proper.

Consider some geometrical concepts related to linear continuous functionals.
Let X be a normed space and let f ∈ X∗, f ̸= 0. Consider a set Γ0 = Ker f =
{x ∈ X : f(x) = 0}. It is easy to see that this set is a closed subspace of X of
codimension 1, i.e. span{z,Ker f} = X (Show).

For c ∈ C the set Γc = {x ∈ X : f(x) = c} is called a hyperplane. Then
Γc = z +Ker f for some z ∈ X (Exercise).
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Assume X is a real normed space, A ⊂ X a subset and x0 is a boundary point
of A.

Γc is called a supporting hyperplane of the set A containing x0 if x0 ∈ Γc
(i.e. f(x0) = c) and either f(x)− c ≥ 0 for all x ∈ A or f(x)− c ≤ 0 for all x ∈ A.

Consider a special case when A = B(0, r) = {x ∈ X : ∥x∥ ≤ r}. The boundary
of A is the sphere S(0, r) = {x ∈ X : ∥x∥ = r}.

Theorem 12.10. If x0 ∈ S(0, r) then there exists a supporting hyperplane of
B(0, r) containing x0.

Proof. For x0 ∈ S(0, r) there exists f ∈ X∗ such that ∥f∥ = 1 and f(x0) = ∥x0∥ =
r. Then Γr = {x : f(x) = r} is the desired supporting hyperplane since x0 ∈ Γr
and for all x ∈ B(0, r)

f(x) ≤ |f(x)| ≤ ∥x∥ ≤ r,

i.e. f(x)− r ≤ 0.
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13 The Baire Category Theorem

This a fundamental theorem in the theory of complete metric spaces. Recall some
terminology. Let X be a metric space with metric denoted by ρ. For a ∈ X and
r > 0 we set

B(a, r) := {x ∈ X : ρ(x, a) < r},

the open ball with centrum in a and radius r in X. Let M ⊂ X. Recall that that
x ∈M is called an inner point of M if there exists r > 0 such that B(x, r) ⊂M .
A subset M is called open if any x ∈ M is an inner point, and closed if its
complement is open. The set of all inner points of M ⊂ X is the largest open
set contained in M ; it is called the interior of M and is denoted by M o. The
closure, M , ofM is the smallest closed set containingM which is the intersection
of all closed sets F ⊃M .

A set E ⊂ X is called dense in X if E = X. Note that E is dense iffW ∩E ̸= ∅
for any non-empty open set W .

A set E ⊂ X is nowhere dense if the closure of E has no inner point (i.e.
has an empty interior). Note that E ⊂ X is nowhere dense if and only if it is not
dense in any open subset of X (Exercise!).

Theorem 13.1. Let X be a complete metric space.

1. If {Un}∞n=1 is a sequence of open dense subsets of X then ∩∞
1 Un is dense in

X

2. X is not a countable union of nowhere dense sets.

Proof. 1. It would be enough to show that if W ⊂ X is a non-empty open set
then W ∩ ∩∞

1 Un ̸= ∅. We note first that since U1 is dense, U1 ∩W is non-empty.
Since W ∩ U1 is also open, there exists a ball B(x1, r1), 0 < r1 < 1, such that

B(x1, r1) ⊂ W ∩ U1.

Similarly, we find B(x2, r2), 0 < r2 < 1/2 such that

B(x2, r2) ⊂ B(x1, r1) ∩ U2.

Repeating the arguments, we obtain balls B(xn, rn), 0 < rn < 2−n+1 such that

B(xn, rn) ⊂ B(xn−1, rn−1) ∩ Un.

Then the sequence {xn} is Cauchy, as for any n, m ≥ N we have xn, xm ∈
B(xN , rN) and hence ρ(xn, xm) ≤ ρ(xn, xN) + ρ(xN , xm) < 2rN which goes to
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zero as N goes to infinity. As X is complete, the sequence converges to an element
x ∈ X and ρ(xN , x) ≤ rN for all N . Thus

x ∈ B(xN , rN) ⊂W ∩ UN

for all N . Hence W ∩ (∩∞
1 Un) ̸= ∅.

2. Let En, n ≥ 1, be nowhere dense sets in X. Then (En)
c are open and

dense in X (if (En)
c were not dense in X we could find an open set W such that

W ∩ (En)
c = ∅, but thenW ⊂ En contradicting the condition of En being nowhere

dense). Hence by (1) ∩∞
1 (En)

c is dense in X (hence non-empty). Therefore,

(∪∞
1 En)

c = ∩∞
1 E

c
n ⊃ ∩∞

1 (En)
c ̸= ∅

giving ∪∞
1 En ̸= X.

The theorem holds for any topological spaces that are homeomorphic to a
complete metric space.

Application to Functional Analysis.

• Open Mapping Theorem

Let X, Y be topological spaces. Recall that a map f : X → Y is called
open if f(U) is open whenever U ⊂ X is open; it is called continuous if
f−1(U) is open whenever U ⊂ X is so. Hence if f is bijective then f is open
if and only if the inverse f−1 is continuous.

If X, Y are normed spaces and f is linear then this boils down to the condi-
tion f(B(0, 1)) ⊃ B(0, r) for some r > 0. In fact, given open U and y ∈ f(U),
there exists x ∈ U and δ > 0 such that f(x) = y and B(x, δ) = x+B(0, δ) ⊂
U . Then using linearity of f and the condition f(B(0, 1)) ⊃ B(0, r) we can
find τ > 0 such that y +B(0, τ) ⊂ f(x) + f(B(0, δ)) = f(B(x, δ)) ⊂ f(U).

Theorem 13.2. Let X, Y be Banach spaces. If T : X → Y is a surjective
linear bounded map then T is open.

Proof. By the remark before the theorem, we only need to show that T (B(0, 1)) ⊃
B(0, r) for some r > 0. Write Br for B(0, r) for the simplicity.

Since T is surjective and X = ∪∞
1 Bn,

Y = ∪∞
1 T (Bn).

Hence by the Baire category theorem, one of the T (Bn):s is not nowhere
dense, i.e. T (Bn) has a non-empty interior. Since T (Bn) = nT (B1), T (B1)
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is not nowhere dense. Therefore there exist y0 ∈ T (B1), r > 0 such that
B(y0, r) ⊂ T (B1).

Let us show first that we can find a ball Br (with centrum in zero but different
r) such that Br ⊂ T (B1). Pick y1 = Tx1 ∈ T (B1) such that ∥y1− y0∥ < r/2.
Then for any y ∈ Y , ∥y∥ < r/2, we have y + y1 ∈ B(y0, r) ⊂ T (B1):

∥y + y1 − y0∥ ≤ ∥y∥+ ∥y1 − y0∥ < r.

Hence

y = −Tx1 + (y + y1) ∈ −Tx1 + T (B1) ⊂ T (−x1 +B1) ⊂ T (B2),

i.e. Br/2 ⊂ T (B2) and hence Br/4 ⊂ T (B1).

Now we show that for some r > 0, Br ⊂ T (B1) (by shrinking the radius r
again).

Since for some r > 0 and all y ∈ Y with ∥y∥ < r, y ∈ T (B1), we have
y ∈ T (B2−n) whenever ∥y∥ < r2−n. Pick y ∈ Y such that ∥y∥ < r/2.
Then, since y ∈ T (B1/2), we can find x1 ∈ B1/2 such that ∥y − Tx1∥ < r/4.

This entails that y − Tx1 ∈ T (B1/4). Therefore we can find x2 ∈ B1/4

with ∥y − Tx1 − Tx2∥ < r/8. Then y − Tx1 − Tx2 ∈ T (B1/8). Proceeding
inductively, we find xn ∈ B2−n such that

∥y −
n∑
i=1

Txi∥ < r2−n−1. (13.10)

Since X is complete and the series
∑

n xn is absolutely convergent, it con-
verges in X to some x ∈ X. Moreover

∥x∥ ≤
∞∑
1

∥xn∥ ≤
∞∑
1

2−n = 1,

i.e. x ∈ B1. But then, as T is continuous,
∑n

i=1 Txi → Tx. On the other
hand, by (13.10),

∑n
i=1 Txi → y, as n → ∞. Hence y = Tx ∈ T (B1) and

T (B1) ⊃ Br/2.

Corollary 13.3. (Banach bounded inverse theorem) If X, Y are Banach
spaces and T ∈ L(X, Y ) is bijective, then T−1 ∈ L(Y,X) and there exists
C > 0 such that

C−1∥x∥ ≤ ∥Tx∥ ≤ C∥x∥ for all x ∈ X.
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Proof. Since T is bijective, T−1 exists. By the Open Mapping Theorem,
T is open and hence T−1 is continuous and therefore bounded. Let C =
max{∥T∥, ∥T−1∥} then for all x ∈ X,

C−1∥x∥ ≤ ∥T−1∥−1∥x∥ = ∥T−1∥−1∥T−1Tx∥ ≤ ∥T−1∥−1∥T−1∥∥Tx∥
≤ ∥Tx∥ ≤ ∥T∥∥x∥ ≤ C∥x∥.

• The closed Graph Theorem.

If X and Y are normed vector spaces and T is a linear map from X to Y we
define a graph of T by

Γ(T ) = {(x, y) ∈ X × Y : y = Tx} = {(x, Tx) : x ∈ X}.

X × Y becomes a normed space when equipped with the product norm

∥(x, y)∥ := max{∥x∥, ∥y∥}.

Here ∥x∥ refers to the norm on X while ∥y∥ refers to the norm on Y .

Definition 13.4. We say that T is closed if Γ(T ) is a closed subspace in
X × Y .

Clearly if T is continuous then Γ(T ) is closed, since if xn → x then Txn →
Tx. Closedness means that if xn → x and Txn → y then y = Tx. Next the-
orem says that if X and Y are complete then closedness of a linear operator
gives the continuity.

Theorem 13.5. If X and Y are Banach spaces and T : X → Y is a closed
linear map then T is bounded.

Proof. Let π1 and π2 be projections of Γ(T ) onto X and Y respectively:

π1((x, Tx)) = x π2((x, Tx)) = Tx.

Then π1 ∈ L(Γ(T ), X) and π2 ∈ L(Γ(T ), Y ) since

∥π1((x, Tx))∥ = ∥x∥ ≤ ∥(x, Tx)∥ and ∥π1((x, Tx))∥ = ∥Tx∥ ≤ ∥(x, Tx)∥

(∥π1∥ ≤ 1, ∥π2∥ ≤ 1). Since X and Y are complete so is X×Y and Γ(T ) (as
a closed subspace). The map π1 is bijective as a map from Γ(T ) to X and by
Corollary 13.3 π−1

1 is bounded. But then T = π2 ◦ π−1
1 is also bounded.
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• The Uniform Boundedness Principle. The next theorem, known also
as the Banach-Steinhaus theorem, allows one to deduce uniform estimates
from pointwise estimates.

Theorem 13.6. (The Uniform Boundedness Principle.) Assume that
X is a Banach space and Y is a normed space. Let {Tα : α ∈ A} be a family
of operators in L(X, Y ). If supα∈A ∥Tαx∥ ≤ cx < ∞ for all x ∈ X, then
supα∈A ∥Tα∥ <∞.

Proof. Let

En = {x : sup
α∈A

∥Tαx∥ ≤ n} = ∩α∈A{x : ∥Tαx∥ ≤ n}.

By assumption X = ∪nEn. Moreover, each En is closed as intersection of
closed sets. By the Baire category theorem, some En must contain a ball,
B(x0, r). Since for any x ∈ X such that ∥x∥ ≤ r we have x+x0 ∈ B(x0, r) ⊂
En, we obtain

∥Tαx∥ ≤ ∥(Tα(x+ x0)∥+ ∥Tαx0∥ ≤ 2n.

Hence for x, ∥x∥ ≤ 1, this gives

∥Tαx∥ = ∥Tα(rx)∥/r ≤ 2n/r,

and hence ∥Tα∥ ≤ 2n/r for all α ∈ A.
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14 Weak and weak ∗ topologies

Weak convergence. Recall that for infinite-dimensional normed spaces closed
and bounded sets are not necessarily (sequentially) compact in the topology in-
duced by the norm: the unit sphere is compact if and only if the space is finite-
dimensional (see Exercise sheet, week I). However we still hope for some type of
convergence using a different topology.

Definition 14.1. Let X be a normed space, {xn : n ≥ 1} ⊂ X, x ∈ X. We say
that xn → x weakly if

f(xn) → f(x) for all f ∈ X∗.

Remark 14.2. 1. If xn → x weakly and xn → y weakly then x = y (the weak
limit is unique). The reason is because then f(x− y) for all f ∈ X∗ and by
a consequence from the Hahn-Banach theorem, x− y = 0.

2. If xn → x in norm, i.e. ∥xn−x∥ → 0 then xn → x weakly. This follows from

|f(xn)− f(x)∥ ≤ ∥f∥∥xn − x∥ → 0.

Even with this weaker notion of convergence, it is not always true that bounded
sequences have convergent subsequences. We will have this for reflexive spaces.
Let’s look first at some characterisations of weak convergence.

Theorem 14.3. Suppose xn → x weakly. Then supn ∥xn∥ <∞, i.e. the sequence
is bounded.

Proof. Apply the Uniform Boundedness Principle. Recall that the mapping x ∈
X 7→ x̂ ∈ X∗∗, where x̂(f) = f(x), f ∈ X∗, is isometric so that

∥x∥X = ∥x̂∥X∗∗ .

Then x̂n ∈ X∗∗ and given f ∈ X∗, supn |x̂n(f)| = supn |f(xn)| < ∞ as f(xn)
converges. Thus by the Uniform Boundedness Principle

sup
n

∥xn∥X = sup
n

∥x̂n∥X∗∗ <∞.

Next statement is a characterisation of weak convergence.

Theorem 14.4. Let {xn : n ≥ 1} ⊂ X, x ∈ X. Then xn → x weakly if and only
if
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1. supn ∥xn∥ <∞;

2. f(xn) → f(x) for any f ∈M , where M is a subset of X∗ whose linear span
(the set of all finite linear combinations of elements in M) is dense in X∗.

Proof. Assume first that xn → x weakly. Then the condition (2) is obvious while
the first one follows from Theorem 14.3.

To see the reverse statement, we take arbitrary f ∈ X∗ and {fk : k ≥ 1} ⊂
span{M} such that fk → f in X∗. We must show that f(xn) → f(x), as n→ ∞.
Let C > 0 be such that ∥xn∥ < C and ∥x∥ < C. As fk → f , given ϵ > 0, there
exists K > 0 such that

∥fk − f∥ < ϵ ∀k ≥ K.

By the second condition, fK(xn) → fK(x) and hence there exists N ≥ 0 such that
|fK(xn)− fK(x)| < ϵ for all n ≥ N . Therefore, for all n ≥ N we have

|f(xn)− f(x)| ≤ |f(xn)− fK(xn)|+ |fK(xn)− fK(x)|+ |fK(x)− f(x)|
≤ ∥f − fK∥∥xn∥+ |fK(xn)− fK(x)|+ ∥f − fK∥∥x∥
≤ 2ϵC + ϵ

giving the statement.

Example 14.5. 1. X = Rn. The weak convergence coincides with the norm
convergence (with respect to any norm on X). In fact, since all norms on a
finite-dimensional vector space are equivalent, it is enough to see the state-
ment for the Euclidean norm ∥(x(1), . . . x(n))∥ =

√
((x(1))2 + . . .+ (x(n))2.

Let xk → x weakly in Rn. Clearly, fk(x) = x(k), x = (x(1), . . . x(n)), is a

bounded linear functional. Hence x
(i)
k → x(i) for all i = 1, . . . , n. But then

∥xk − x∥ = (
n∑
i=1

(x
(i)
k − x(i))2)1/2 → 0.

The other implication follows from Remark 14.2.

2. X = ℓ2. Let xk = (x
(1)
k , x

(2)
k , . . .) ∈ ℓ2, x = (x(1), x(2), . . .) ∈ ℓ2. Then xk → x

weakly iff x
(i)
k → x(i) for all i ≥ 1 and supk ∥xk∥ <∞.

In fact, assume first that xk → x weakly. As fi(x) = ⟨x, ei⟩ = x(i) is a linear

bounded functional, x
(i)
k → x(i) for any i. The boundedness of the norm ∥xk∥

follows from Theorem 14.3.

To see the other inclusion let x
(i)
k → x(i) for all i. Then f(xk) → f(x) for all

f : f(x) = ⟨x, a⟩, where a is a finite linear combination of vectors e1, e2, . . .,
i.e. a ∈ ℓ2F . By the Riesz-Fréchet theorem any bounded linear functional is
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given by f(x) = ⟨x, a⟩, where a ∈ l2, and ∥f∥ = ∥a∥2. As ℓ2F is dense in
l2, assuming also the boundedness of ∥xk∥, Theorem 14.4 will give the weak
convergence.

Note that in ℓ2 the weak convergence does not coincide with the norm con-
vergence. In fact, the sequence {ek} converges weakly to 0 as e

(i)
k → 0 for all

i, as k → ∞. But since ∥ek∥ = 1, ek ̸→ 0 in norm.

Exercise 14.6. 1. Let {xn} be a sequence in Lp([a, b]), x ∈ Lp([a, b]), 1 < p <
∞. Show that xn → x weakly iff supn ∥xn∥ <∞ and

∫ τ
a
xn(t)dt→

∫ τ
a
x(t)dt

for all τ ∈ [a, b].

2. Let H be a Hilbert space, x, xn ∈ H, n ≥ 1. Show that xn → x in H if
xn → x weakly and either (a) ∥xn∥ → ∥x∥ or (b) lim sup ∥xn∥ ≤ ∥x∥.

Even though weakly convergent sequence does not converge in norm in general,
we have the following useful statement.

Theorem 14.7. Let X be a normed space, {xn : n ≥ 1} ⊂ X, x ∈ X. If xn → x
weakly then there exists a sequence of finite linear combinations of elements x1,
x2, . . . that converges to x in norm.

Proof. Let G be the closed linear span of xn:s. It is enough to see that x ∈ G.
Assume contrary that x ̸∈ G. Then by a corollary from the Hahn-Banach theorem
there exists f ∈ X∗ such that f(x) = ρ(x,G), ∥f∥ = 1 and f |G = 0. Then
f(xn) = 0 while lim f(xn) = f(x) ̸= 0, a contradiction.

Weak Topology.

Let X be a normed space and X∗ be its dual. If f1, f2, . . . , fn ∈ X∗, ϵ > 0,
x ∈ X, let

Ux,f1,...,fn,ϵ1,...ϵn = {y ∈ X : |fi(y − x)| < ϵi, i = 1, . . . , n}.

The set is open, contains x and hence is a neighborhood of x. The finite inter-
sections of such sets is again a set of this type. Hence in X one can introduce a
topology whose base is the family of neighborhoods of the above form (see Folland,
Chapter 4). It is called the weak topology of X. Then the weak convergence
can be formulated in the following way:

xn → x weakly in X iff for any Ux,f1,...,fk,ϵ1,...,ϵk there exists N > 0 such that
xn ∈ Ux,f1,...,fk,ϵ1,...ϵk for all n ≥ N (Show!)

Weak∗ Topology

Consider now the dual space X∗ of a normed space X. Besides the norm
convergence on X∗, one can consider the following two topologies:
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• Considering X∗ as a Banach space we can equip X∗ with the weak topology
coming from the functionals in (X∗)∗ = X∗∗:

fn → f weakly if ψ(fn) → ψ(f) ∀ψ ∈ X∗∗.

• The other topology, called the weak∗ topology, is induced by X̂ = {x̂ : x ∈
X}, here x̂(f) := f(x) for f ∈ X∗:

fn → f weakly∗ iffn(x) → f(x) ∀x ∈ X,

equivalently, x̂(fn) → x̂(f) for all x ∈ X.

The neighborhoods

Ux1,...,xn,ϵ1,...ϵn = {f ∈ X∗ : |f(xi)| < ϵi, i = 1, . . . , n},

where ϵ > 0, x1, . . . , xn ∈ X, is a neighborhood base for 0 this topology. We
have:

fn → 0 weakly∗ iff for any Ux1,...,xk,ϵ1,...,ϵk there exists N > 0 such that fn ∈
Ux1,...,xk,ϵ1,...,ϵk for any n ≥ N (Show!)

Remark 14.8. 1. When speaking of weak∗-convergence on a normed space Y one
must always be able to see Y as the dual of some normed space, i.e. Y = X∗. One
says that X is a predual of Y .

2. If X is reflexive then clearly the two topologies, weak and weak∗ topologies,
coincide.

Here is a characterisation of weak∗ convergence similar to one about weak
convergence with a similar proof.

Theorem 14.9. Let X be a Banach space. A sequence {fn : n ≥ 1} in X∗

converges weakly∗ to f ∈ X∗ if an only if

1. the sequence is bounded, i.e. supn∥fn∥ <∞;

2. fn(x) → f(x) for all x in a subset whose linear span is dense in X.

Theorem 14.10. Let X be a Banach space and let {fn : n ≥ 1} ⊂ X∗ such that
the sequence {fn(x) : n ≥ 1} is Cauchy for all x ∈ X. Then there exists f ∈ X∗

such that fn → f weakly ∗.

Proof. As {fn(x)} is Cauchy it is convergent. We let for each x ∈ X, f(x) =
lim fn(x). Show that f ∈ X∗.

The final theorem of this section is the compactness theorem for bounded sets
of the dual spaces.
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Theorem 14.11. (The Banach-Alaoglu Theorem). Let X be a separable
normed space and {fn : n ≥ 1} is a sequence in X∗ with ∥fn∥ ≤ 1, n = 1, 2, . . ..
Then it has a subsequence convergent in the weak∗-topology.

Proof. Let {x1, x2, . . .} be a dense subset in X. If {fn : n ≥ 1} is a bounded
sequence of linear functionals on X then the sequence

f1(x1), f2(x1), . . . , fn(x1), . . .

is bounded (|fn(x1)| ≤ ∥fn∥∥x1∥). Therefore we can choose a subsequence

f
(1)
1 , f

(1)
2 , . . . , f (1)

n , . . .

such that the subsequence f
(1)
1 (x1), f

(1)
2 (x1), . . . , f

(1)
n (x1), . . . converges. Then from

{f (1)
n : n ≥ 1} one can choose a subsequence

f
(2)
1 , f

(2)
2 , . . . , f (2)

n , . . .

such that the subsequence f
(2)
1 (x2), f

(2)
2 (x2), . . . , f

(2)
n (x2), . . . converges. Proceeding

inductively we obtain the following system of subsequences:

f
(1)
1 , f

(1)
2 , . . . , f (1)

n , . . .

f
(2)
1 , f

(2)
2 , . . . , f (2)

n , . . .

. . .

each of them is contained in the previous one so that {f (k)
n (xi) : n ≥ 1} convergence

for all i = 1, 2, . . . , k. Taking now the ”diagonal”

f
(1)
1 , f

(2)
2 , . . . , f (n)

n , . . .

we obtain a subsequence of linear functionals such that f
(1)
1 (xn), f

(2)
2 (xn), . . . con-

verges for all n. Then by Theorem 14.9, the sequence f
(1)
1 (x), f

(2)
2 (x), . . . converges

for all x ∈ X. The statement now follows from Theorem 14.10

Remark 14.12. One can prove that for separable normed spaces the weak∗-
toplogy on the closed unit ball is metrizable and thus the compactness and se-
quential compactness are equivalent. Therefore the above theorem stays that the
unit ball of the dual space of a separable space is compact.

Remark 14.13. If X is a reflexive space, then any bounded sequence of X has a
weakly convergent subsequence. One proves this fact using the following steps:

Step 1: Let {xn} be a bounded sequence. Set Y to be the closed linear span
of xn:s. This is a separable subspace of X.

Step 2: As Y is closed one can prove that Y is reflexive as well.
Step 3: As (Y ∗)∗ = Y is separable, one can show that Y ∗ is separable.
Step 4: exercise=complete the proof.
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The ”sequential” Banach-Alaoglu theorem is a special case of

Theorem 14.14. (Alaoglu’s Theorem) If X is a normed space, the closed unit
ball

B∗ = {f ∈ X∗ : ∥f∥ ≤ 1}

in X∗ is compact in the weak∗-topology.

The proof of this general statement relies on Tychonoff’s theorem about com-
pactness of the product of any collection of compact topological spaces.

An interesting application of the Alaoglu Theorem is the following statement:

Proposition 14.15. Any normed space X can be isometrically embedded into
C(Ω), the Banach space of continuous functions on a compact Ω.

Proof. Exercise. Hint: Take Ω = {f ∈ X∗ : ∥f∥ ≤ 1} and consider the mapping
X ∋ x 7→ x̂|Ω ∈ C(Ω).
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15 Hilbert spaces: Orthogonality. Riesz-Fréchet

Theorem

Let H be a Hilbert space with inner product ⟨·, ·⟩. We say that x, y ∈ H are
orthogonal if ⟨x, y⟩ = 0. Write x ⊥ y.

If E ⊂ H define
E⊥ = {x ∈ H : ⟨x, y⟩ = 0, y ∈ E}

and call it the orthogonal complement to E.

Proposition 15.1. If E ⊂ H then

• E⊥ is a closed subspace in H;

• E ⊆ (E⊥)⊥;

• (E⊥)⊥ = span{E}.

Proof. Exercise.

Theorem 15.2. (The Pythagorean Theorem.)If xi ⊥ xj for all 1 ≤ i < j ≤ n
then

∥
n∑
1

xj∥2 =
n∑
1

∥xj∥2.

Proof. Exercise.

Proposition 15.3. Let H be a Hilbert space, H0 a closed subspace of H and
x ∈ H. Then x ⊥ H0 iff the distance from x to H0 equals ∥x∥.

Proof. Let x ⊥ H0 then for any y ∈ H0 we have

∥x− y∥2 = ⟨x− y, x− y⟩ = ∥x∥2 + ∥y∥2 ≥ ∥x∥2.

Hence inf{∥x− y∥ : y ∈ H0} = ∥x− 0∥ = ∥x∥.
Assume inf{∥x− y∥ : y ∈ H0} = ∥x∥. Then for any y ∈ H0 and λ ∈ C

∥x− λy∥ ≥ ∥x∥.

Hence ⟨x− λy, x− λy⟩ ≥ ⟨x, x⟩ and

⟨x, x⟩ − λ⟨y, x⟩ − λ̄⟨x, y⟩+ λλ̄⟨y, y⟩ ≥ ⟨x, x⟩.

Letting λ = t⟨x, y⟩ we see that for all t ≥ 0

−2t|⟨x, y⟩|2 + t2|⟨x, y⟩|2⟨y, y⟩ ≥ 0

and ⟨x, y⟩|2t(t⟨y, y⟩ − 2) ≥ 0. Therefore ⟨x, y⟩ = 0.
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Proposition 15.4. Let H be a Hilbert space, M a closed subspace, x ∈ H. Then
there is a unique z ∈M such that

∥z − x∥ = ρ(x,M) := inf{∥y − x∥ : y ∈M}.

Proof. Let d = ρ(x,M) and let {yn} ⊂ M such that ∥x − yn∥ → d. By the
parallellogram law (applied to yn − x, ym − x)

2(∥yn − x∥2 + ∥ym − x∥2) = ∥(yn − x)− (ym − x)∥2 + ∥(yn − x) + (ym − x)∥2

i.e.

2(∥yn − x∥2 + ∥ym − x∥2) = ∥yn − ym∥2 + ∥yn + ym − 2x)∥2 (15.11)

Since
1

2
(yn + ym) ∈M , ∥yn+ym

2
− x∥ ≥ d and we have from (15.11)

∥yn − ym∥2 = 2∥yn − x∥2 + 2∥ym − x∥2 − 4∥yn + ym
2

− x∥2

≤ 2∥yn − x∥2 + ∥ym − x∥2 − 4d2 → 0 as m,n→ ∞

Hence {yn} is a Cauchy sequence. As H is complete, yn → z for some z ∈ H. As
M is closed, z ∈M . As ∥x− yn∥ → ∥x− z∥ we obtain d = ∥x− z∥.

Uniqueness: Let z1, z2 ∈ M be such that ∥z1 − x∥ = ρ(x,M) = ∥z2 − x∥ and
let d = ρ(x,M). By the parallelogram law applied now to (z1 − x) and (z2 − x)
we obtain

2(∥z1 − x∥2 + ∥z2 − x∥2) = ∥z1 + z2 − 2x∥2 + ∥z1 − z2|2

giving ∥z1 − z2∥2 = 4d2 − 4∥x− (z1 + z2)/2∥2 ≤ 4d2 − 4d2 = 0, i.e. z1 = z2.

Theorem 15.5. (about orthogonal complement) If M is a closed subspace of a
Hilbert space H then H =M ⊕M⊥, i.e. each x ∈ H can be expressed uniquely as
x = z + y where z ∈M and y ∈M⊥.

Proof. Let x ∈ H and let z ∈ M be the closest to x vector in M which exists by
Proposition 15.4. Let y = x− z. Then ∥y∥ = ρ(x,M) and since z ∈M

ρ(y,M) = inf{∥y − ỹ∥ : ỹ ∈M} = inf{∥x− z − ỹ∥ : ỹ ∈M}
= inf{∥x− ỹ∥ : ỹ ∈M} = ρ(x,M) = ∥y∥.

By Proposition 15.3, y ∈ M⊥. Hence x = (x − z) + z = y + z is the desired
decomposition.

To show uniqueness let x = z1+ y1, z1 ∈M , y1 ∈M⊥ then z1+ y1 = z+ y and
M ∋ y1 − y = z − z1 ∈M⊥. As M ∩M⊥ = {0}, we obtain y1 = y and z1 = z.
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Theorem 15.6. (Riesz-Fréchet) If f ∈ H∗ there is a unique y ∈ H such that
f(x) = ⟨x, y⟩ for all x ∈ H.

Proof. Uniqueness: if ⟨x, y⟩ = ⟨x, y′⟩ for all x ∈ H, taking x = y − y′ we obtain
⟨y − y′, y − y′⟩ = 0 and hence y − y′ = 0.

Existence: If f is the zero functional them take y = 0. Assume f ̸= 0 and
let M = {x ∈ H : f(x) = 0}. Then M is a proper closed subspace and hence
M⊥ ̸= {0}. Take y′ ∈ M⊥ such that ∥y′∥ = 1 and let y = f(y′)y′. Then for any
x ∈M we have f(x) = ⟨x, y⟩ = 0 and for y′ we have f(y′) = ⟨y′, y⟩. Thus f = Φy

on span{M, y′}, here Φy(x) = ⟨x, y⟩.
As M is a subspace of codimension 1 (obs! M = Ker f) we have H =

span{M, y′} and hence f = Φy on the whole H.

We have established before that the mapping H ∋ a 7→ Φa is an anti-linear
isometry. By the Riesz-Fréchet theorem we obtain that the mapping is surjective
and hence H ≃ H∗ (H is self-dual).

15.1 Orthogonal systems

Definition 15.7. A subset {uα}α∈A of a Hilbert space H is called orthogonal if
uα ⊥ uβ whenever α ̸= β. It is called orthonormal if in addition ∥uα∥ = 1.

Any orthogonal system {ei}i∈I is linearly independent (i.e. if a finite linear
combination

∑
i∈F λiei = 0, F is finite, then λi = 0).

Examples 15.8. 1. H = ℓ2, the standard basis {en}n≥1 is an orthonormal system;
2. H = L2([−π, π]) then { 1√

2π
eint, n ∈ Z} is an orthonormal system;

3. H = L2(R). Consider {tne−t2/2 : n = 0, 1, 2, . . .}. It is a linearly independent
system. Applying to it the Gram-Schmidt process we get a system {pn(t)e−t

2/2, n =
0, 1, 2, . . .} whose elements are called Hermite functions.

Definition 15.9. Let {en : n ∈ N} be an orthonormal system in a Hilbert space
H, x ∈ H. The formal series

∑∞
n=1⟨x, en⟩en in H is called the Fourier series

of x corresponding this system . The coefficients ⟨x, en⟩ are called the Fourier
coefficients of x with respect to this system.

Examples 15.10. For H = L2([−π, π]) and {en = 1√
2π
eint, n ∈ Z} we obtain the

classical Fourier series and Fourier coefficients.

Theorem 15.11. Bessel’s Inequality If {uα}α∈A is an orthonormal set in H
then for any x ∈ H, ∑

α∈A

|⟨x, uα⟩|2 ≤ ∥x∥2.

In particular, {α ∈ A : ⟨x, uα⟩ ̸= 0} is countable.
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Proof. For finite subset F ⊂ A we have

0 ≤ ∥x−
∑
α∈F

⟨x, uα⟩uα∥2 = ⟨x−
∑
α∈F

⟨x, uα⟩uα, x−
∑
α∈F

⟨x, uα⟩uα⟩

= ∥x∥2 +
∑
α∈F

|⟨x, uα⟩|2 − 2
∑
α∈F

|⟨x, uα⟩|2 = ∥x∥2 −
∑
α∈F

|⟨x, uα⟩|2,

and hence
∑

α∈F |⟨x, uα⟩|2 ≤ ∥x∥2. Therefore,∑
α∈A

|⟨x, uα⟩ = sup{
∑
α∈F

|⟨x, uα⟩|2 : F ⊂ A is finite} ≤ ∥x∥2.

We have B := {α ∈ A : ⟨x, uα⟩ ̸= 0} = ∪nAn, where An = {α : |⟨x, uα⟩| > 1/n}. If
B were uncountable so would be An for at least one n ≥ 1 and hence for any finite
F ⊂ An we would have

∑
α∈F |⟨x, uα⟩|2 > card(F )/n implying

∑
α∈A |⟨x, uα⟩|2 =

∞. A contradiction. Thus each An and B are countable.

Definition 15.12. An orthonormal set is called an orthonormal basis for H if its
linear span is dense in H.

Examples 15.13. 1. {en} is an orthonormal basis in l2.

2. { 1√
2π
eint, n ∈ Z} is an orthonormal basis in L2([−π, π]).

3. {The Hermite functions} is an orthonormal basis in L2(R).

Theorem 15.14. Let {uα}α∈A be an orthonormal set. The following are equivalent

1. {uα}α∈A is an orthonormal basis for H;

2. (Completness) If ⟨x, uα⟩ = 0 for all α then x = 0.

3. (Parseval’s Identity) ∥x∥2 =
∑

α |⟨x, uα|2 for all x ∈ H;

4. For each x ∈ H x =
∑

α∈A⟨x, uα⟩uα, where the sum on the right hand side
has only countable many non-zero terms and converges in the norm topology
no matter how these terms are ordered.

For the proof see Folland, 5.27.

Theorem 15.15. Every Hilbert space has an orthonormal basis.

Proof. A routine application of Zorn’s lemma shows that the collection of orthogo-
nal sets, ordered by inclusion, has a maximal element; and maximality is equivalent
to the second property of Theorem 15.14.
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Remark 15.16. Not all Banach spaces have a ”topological basis”.

Proposition 15.17. A Hilbert space H is separable if and only if it has a countable
orthonormal basis in which case every orthonormal basis for H is countable.

Proof. If {xn} is a countable dense set in H, by discarding recursively any xn that
is in the linear span of x1, . . . , xn−1, we obtain a linearly independent sequence
{yn} whose linear span is dense in H. Application of the Gram-Schmidt process
to {yn} yields an orthonormal sequence {un} whose linear span is dense in H and
which is therefore a basis. Conversely, if {un} is a countable orthonormal basis, the
finite linear combinations of the un’s with coefficients in a countable dense subsets
of C from a countable dense set in H. Moreover, if {vα} is another orthonormal
basis, for each n the set An = {α : ⟨un, vα⟩ ̸= 0} is countable. By completeness of
{un}, A = ∪∞

1 An, so A is countable.

Most Hilbert spaces that arise in practice are separable. Next statement says
that all such infinite-dimensional spaces are isomorphic to ℓ2.

Definition 15.18. Let H1 and H2 are Hilbert spaces with inner products ⟨·, ·⟩1
and ⟨·, ·⟩2 respectively. A unitary map from H1 to H2 is an invertible linear map
U : H1 → H2 that preserves inner product, i.e.

⟨Ux, Uy⟩2 = ⟨x, y⟩1 for any x, y ∈ H1.

Proposition 15.19. Let {uα} be an orthonormal basis for H. Then the corre-
spondence x 7→ x̂ defined by x̂(α) = ⟨x, uα⟩ is a unitary map from H to ℓ2(A).

Proof. The map U : x 7→ x̂ is clearly linear and it is isometry from H to ℓ2(A) by
the Parseval identity ∥x∥2 =

∑
|x̂(α)|2. If f ∈ ℓ2(A) then

∑
|f(α)|2 < ∞ (in the

series only a countable number of terms are non-zero). The Pythagorean theorem
shows that the partial sums of the series

∑
f(α)uα is Cauchy; hence x =

∑
f(α)uα

exists in H and x̂ = f , i.e. the map U is surjective and hence invertible. As U is
an isometry,it follows from the polarization identity

⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2)

it follows that U preserves inner product.
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16 The Riesz Representation Theorem. Dual of

C0(X)

We recall first some topological facts. A topological space X is said to be locally
compact if for every x ∈ X there is a compact set K such that x ∈ K0 (i.e. x is
an inner point of K).

One says that X is Hausdorff if for any distinct x, y ∈ X there are disjoint
open sets V and W such that for x ∈ V and y ∈ W . When X is locally compact
and Hausdorff we write X is LCH. Throughout this section, X will denote an LCH
space.

We write C(X) for the set of all continuous functions f : X → C,

C0(X) = {f ∈ C(X) : {x : |f(x)| ≥ ε} is compact for any ε > 0}.

C0(X) is a Banach space with respect to the uniform norm ∥f∥∞ = supx∈X |f(x)|.

Radon measures. Let µ be a Borel measure on X and E ⊂ X be a Borel
subset of X. The measure µ is called outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E,U is open}

and inner regular on E if

µ(E) = sup{µ(U) : K ⊂ E,K is compact}.

If µ is outer and inner regular on all Borel sets µ is called regular.

Example 16.1. The Lebesgue measure on Rn is regular.

Definition 16.2. A Radon measure on X is a Borel measure that is finite on
all compacts, outer regular on all Borel subsets and inner regular on all open sets.

The following are proved in Folland, 7.2:

• Every σ-finite Radon measure is regular.

• If X is σ-compact, i.e. there exist a sequence {Kn} of compact subsets of X
such that Kn ⊂ Kn+1, n ≥ 1, and X = ∪nKn, then every Radon measure is
regular.

• If X is σ-compact then every Borel measure on X that is finite on compact
sets is regular and hence Radon.
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Definition 16.3. A signed Radon measure is a signed Borel measure whose
positive and negative variations are Radon (Recall: if ω is a signed measure then
there exist positive measures ω+, ω− such that ω(E) = ω+(E) − ω−(E) for any
measurable E), a complex measure is Radon if its real and imaginary parts are
signed Radon measure.

Note that if X is σ-compact then every complex Borel measure is Radon. This
follows from the fact that complex measures are bounded and the remark given
above.

We denote the space of complex Radon measures on X by M(X) and for
µ ∈M(X) we define

∥µ∥ = |µ|(X),

where |µ| is the total variation of µ.

Theorem 16.4. The Riesz Representation Theorem. Let X be an LCH
space, and for µ ∈ M(X) and f ∈ C0(X) let Iµ(f) =

∫
fdµ. Then the map

µ 7→ Iµ is an isometric isomorphism from M(X) to C0(X)∗.

We prove a partial case of the theorem and find the dual (CR([a, b]))
∗ for the

space of real valued continuous functions on the interval [a, b].
Signed measures on R are related to functions of bounded variation. We recall

the definition.

Definition 16.5. If f : [a, b] → R and π : a = x0 < x1 < x2 < . . . < xn−1 < xn = b
a partition of [a, b] we let Vπ(f ; [a, b]) =

∑n−1
k=0 |f(xk+1)− f(xk)|. If {Vπ(f ; [a, b])}π

is bounded then f is called a function of bounded variation, and we denote
the space of all such f by BV. The number

V (f ; [a, b]) = sup
π

n−1∑
k=0

|f(xk+1)− f(xk)|

is called the variation of f .

V (f ; [a, b]) is denoted by Tf in Folland.
If f is a function of bounded variation one can write it as a difference of two

increasing functions: f(x) = φ(x) − ψ(x) (take e.g. φ(x) = V (f ; [a, x])) To a
function of bounded variation which is right continuous one can associate a signed
measure: Let f = φ−ψ with increasing functions φ and ψ. If f is right continuous,
φ, ψ can be chosen to be right continuous as well. Set ωf (E) = µφ(E) − µψ(E)
where µφ, µψ are the Lebesgue-Stieltjes measures given on the half open intervals
(c, d] by µφ((c, d]) = φ(d)− φ(c), µφ((c, d]) = ψ(d)− ψ(c). We have |ωf |([a, b]) =
V (f ; [a, b]).

Conversely, if µ is a bounded signed Borel measure on R and F (x) = µ(−∞, x])
then F is a right continuous function of bounded variation.
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Theorem 16.6. For any l ∈ (CR([a, b]))
∗ there exists a function of bounded vari-

ation g such that

l(x) =

∫ b

a

x(t)dg(t) (16.12)

(meaning the Riemann-Stiltjes integral over the interval [a, b]) and V (g; [a, b]) =
∥l∥.

Proof. In what follows we write C([a, b]) for CR([a, b]). C([a, b]) can be considered
as a subspace of the space B([a, b]) of all bounded functions on [a, b] with the
same norm. Let l be a bounded linear functional on C([a, b]). Then by Hahn-
Banach theorem it can be extended to a bounded linear functional F on B([a, b])
with the same norm. In particular, this extension will be defined on functions
hτ (x) = χ[a,τ ](x), τ ∈ (a, b], ha(x) = 0. Let g(τ) = F (hτ ). Then g is a function
of bounded variation. In fact, let π : a = x0 < x1 < . . . < xn−1 < xn = b be a
partition of [a, b] and let εk = sgn(g(xk)− g(xk−1)). Then

n∑
k=1

|g(xk)− g(xk−1)| =
n∑
k=1

εk(g(xk)− g(xk−1)) =
n∑
k=1

εkF (hxk − hxk−1
)

= F (
n∑
k=1

εk(hxk − hxk−1
)) ≤ ∥l∥∥

n∑
k=1

εk(hxk − hxk−1
)∥

But the function
∑n

k=1 εk(hxk −hxk−1
) takes values 1, −1 and 0 and hence its norm

is less or equal 1. Thus

n∑
k=1

|g(xk)− g(xk−1)| ≤ ∥l∥

and V (g; [a, b]) ≤ ∥l∥.
We show next the representation (16.12). Let f be a continuous function on

[a, b]. Given ε > 0 there exists δ > 0 such that |f(x1)− f(x2)| < ε for any x1, x2,
|x1 − x2| < δ. Choose a partition of [a, b] such that the diameter is less than δ.
Consider the following step function

fε(x) =

{
f(xk), xk−1 < x ≤ xk, k > 1
f(x1), a ≤ x ≤ x1

It can be written in the form

fε(x) =
n∑
k=1

f(xk)(hxk(x)− hxk−1
(x)).

Clearly, |f(x)− fε(x)| < ε, x ∈ [a, b], i.e. ∥f − fε∥ ≤ ε.
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Consider

F (fε) =
n∑
k=1

f(xk)(F (hxk)− F (hxk−1
))

=
n∑
k=1

f(xk)(g(xk)− g(xk−1)).

Hence making the partition small enough we get

|F (fε)−
∫ b

a

f(x)dg(x)| < ε.

On the other hand

|F (f)− F (fε)| ≤ ∥l∥∥f − fε∥∞ ≤ ∥l∥ε.

Therefore

|l(f)−
∫ b

a

f(x)dg(x)| = |F (f)− F (fε) + F (fε)−
∫ b

a

f(x)dg(x)| ≤ ε(∥l∥+ 1)

and l(f) =
∫ b
a
f(x)dg(x).

We have proved already that V (g; [a, b]) ≤ ∥l∥. On the other hand,

|
∫ b

a

f(x)dg(x)| ≤ ∥f∥∞V (g; [a, b]),

i.e. |l(f)| ≤ ∥f∥∞V (g; [a, b]) and hence ∥l∥ ≤ V (g; [a, b]) and we get ∥l∥ =
V (g; [a, b]).

Remark 16.7. Clearly lg(f) =
∫ b
a
f(x)dg(x) is a bounded linear functional for

any function g : [a, b] → R of bounded variation.
It is known that if g1 = g2 everywhere except for finite or countable number of

points in (a, b) then lg1 = lg2 .
If g1 = g2 +K, K is a constant, lg1 = lg2 . Conversely if g1, g2 define the same

functional one can prove that g1 − g2 = const everywhere except for some finite or
countable number of points.

Let for g ∈ BV ([a, b]), we denote by [g] the set of functions g1 ∈ BV ([a, b]) such
that the difference g1−g is constant except for finite or countable number of points
in (a, b). In each of such subsets one can choose a unique function g1 such that
g1(a) = 0 and right continuous. Therefore we will get a one-to one correspondence
between (C([a, b])∗ and the set of right continuous functions of bounded variation
vanishing in a and therefore with measures wg defined by such a function g.
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The weak* topology onM(X) = C0(X)∗, in which µn → µ iff
∫
fdµn →

∫
fdµ

for all f ∈ C0(X), is of considerable importance in applications.
Here is a useful criterion for weak* convergence for signed measures inM([a, b]).

Let NBV denote the space of all g ∈ BV that are right continuous on (a, b] and
such that g(a) = 0 (N for ”normalized”).

Proposition 16.8. Let {gn} ⊂ NBV , g ∈ NBV . Assume that supn V (gn; [a, b]) <

∞ and gn(x) → g(x) for every x ∈ [a, b]. Then
∫ b
a
fdgn →

∫ b
a
fdg for any

f ∈ C([a, b]).

Proof. Let ln and l be the linear functionals on C[a, b]) corresponding to gn and g
respectively. We must prove that ln → l weakly∗. For this we will use Theorem
14.9 (a characterisation of weak∗-convergence). By the Hahn-Banach theorem we
can extend ln and l to bounded linear functionals on

F = span{C[a, b] ∪ {χ(α,β], a ≤ α < β ≤ b}}

equipped with the sup-norm. One can show that

ln(χ(α,β]) =

∫
χ(α,β](t)dgn(t) = gn(β)− gn(α) → g(β)− g(α).

As span{χ(α,β] : a ≤ α < β ≤ b} is dense in F and ∥ln∥ = V (gn; [a, b]) ≤ C < ∞
for some C > 0 and all n, we have ln → l weak* in F ∗ and hence in C([a, b])∗.

Weak topology in C0(X):

Theorem 16.9. A sequence {fn} ∈ C0(X) converges to f ∈ C0(X) weakly if and
only if supx∈X ∥fn(x)∥ <∞ and fn(x) → f(x) for any x ∈ X.

Proof. Assume fn → f weakly. Then by Theorem 14.4 supx∈X ∥fn(x)∥ < ∞ and
as the point evaluation is a bounded linear functional on C0(X) we obtain the
pointwise convergence of fn to f . To see the other direction, note that for any
µ ∈M(X),

|
∫
X

(fn(x)− f(x))dµ(x)| ≤
∫
X

|fn(x)− f(x)|d|µ|(x) → 0

as supx∈X |fn(x) − f(x)| < ∞ and |µ| is a finite measure. The statement now
follows from the Riesz Representation theorem.

93



17 Adjoint Operators

Definition 17.1. Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) be normed spaces and let T : X → Y
be a bounded linear operator. The adjoint operator of T is the linear operator
T ∗ : Y ∗ → X∗ defined by

[T ∗(f)](x) = f(Tx)

for all f ∈ Y ∗ and x ∈ X.

Remark 17.2. One can see that T ∗f is the composition of bounded linear oper-
ators T and f , so T ∗f ∈ X∗.

Theorem 17.3. Let (X, ∥ ·∥X), (Y, ∥ ·∥Y ) be normed spaces and let T : X → Y be
a bounded linear operator. Then T ∗ is a bounded linear operator and ∥T ∗∥ ≤ ∥T∥.

Proof. (i) For all f, g ∈ Y ∗, λ, µ ∈ C and x ∈ X,

[T ∗(λf + µg)](x) = (λf + µg)(Tx)

= λf(Tx) + µg(Tx)

= λ[T ∗(f)](x) + µ[T ∗(g)](x)

= [λT ∗(f) + µT ∗(g)](x).

Thus T ∗ is linear.
(ii) For all f ∈ Y ∗,

∥T ∗f∥X∗ = sup
∥x∥X≤1

|[T ∗(f)](x)|

= sup
∥x∥X≤1

|f(Tx)|

≤ sup
∥x∥X≤1

∥f∥Y ∗∥T (x)∥Y

≤ sup
∥x∥X≤1

∥f∥Y ∗∥T∥∥x∥X

= ∥f∥Y ∗∥T∥.

Thus T ∗ is bounded and

∥T ∗∥ = sup
∥f∥Y ∗≤1

∥T ∗f∥X∗

≤ sup
∥f∥Y ∗≤1

∥T∥∥f∥Y ∗

= ∥T∥.
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Remark 17.4. Let H1, H2 be Hilbert spaces and let T : H1 → H2 be a bounded
linear operator. By the Riesz-Fréchet theorem, the adjoint operator of T is the
unique bounded linear operator T ∗ : H2 → H1 such that

⟨x, T ∗y⟩ = ⟨Tx, y⟩

for all x ∈ H1 and y ∈ H2.

Example 17.5. The adjoint of the shift operator. Recall that

S : ℓ2 → ℓ2 : (x1, x2, . . .) 7→ (0, x1, x2, . . .).

Find S∗, SS∗ and S∗S.

Solution. (i) Since ℓ2 is a Hilbert space, by the Riesz-Fréchet theorem, S∗ is the
linear operator S∗ : ℓ2 → ℓ2 such that

⟨x, S∗y⟩ = ⟨Sx, y⟩

for all x = (xi)
∞
i=1, y = (yi)

∞
i=1 ∈ ℓ2. Note

⟨Sx, y⟩ =
∞∑
i=1

(Sx)iyi

= 0 · y1 + x1 · y2 + . . .

=
∞∑
i=1

xiyi+1

= ⟨x, z⟩,

where z = (y2, y3, . . .). Therefore, since ⟨x, S∗y⟩ = ⟨Sx, y⟩, we have

⟨x, z⟩ = ⟨x, S∗y⟩

for all x ∈ ℓ2. This implies

S∗y = z = (y2, y3, . . .).

Thus S∗ is the backward shift operator.
(ii) For all x = (xi)

∞
i=1 ∈ ℓ2,

SS∗(x1, x2, . . .) = S(x2, x3, . . .)

= (0, x2, x3, . . .).

(iii) For all x = (xi)
∞
i=1 ∈ ℓ2,

S∗S(x1, x2, . . .) = S∗(0, x1, x2, . . .)

= (x1, x2, . . .).

Thus S∗S = Iℓ2 , the identity operator on ℓ2.
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Remark 17.6. For a matrix A = (aij)
m,n
i,j=1 the adjoint of A is the usual transpose

conjugate:

A∗ = (bij)
n,m
i,j=1,

where

bij = aji

for i = 1, . . . n, j = 1, . . . ,m.

96



18 Spectrum

If A is an n× n complex matrix then A has at least one eigenvalue: that is, there
exists λ ∈ C such that

Ax = λx

for some non-zero vector x. It is an important tool, and in the infinite dimensional
case, the spectrum of a linear operator is the analogue of the set of eigenvalues.

Remark 18.1. The shift operator S on ℓ2:

S(x1, x2, . . .) = (0, x1, x2, . . .)

has no eigenvalues.

Solution. Let there be λ ∈ C such that

Sx = λx

for some x ∈ ℓ2. Hence

(0, x1, x2, . . .) = (λx1, λx2, . . .),

so λx1 = 0, λx2 = x1, . . . , λxn = xn−1, . . .. Therefore λ = 0 or x1 = 0. If λ = 0,
then xn = λxn+1 = 0 for all n ≥ 1, and so x = 0. If x1 = 0 and λ ̸= 0, then

x2 =
x1
λ

= 0,

x3 =
x2
λ

= 0,

. . .

xn =
xn−1

λ
= 0,

. . . .

Thus x = 0. Hence Sx = λx implies x = 0, and so S has no eigenvalues.

Definition 18.2. Let (E, ∥ · ∥E), (F, ∥ · ∥F ) be normed spaces. A bounded linear
operator T : E → F is called invertible if there exists a bounded linear operator
S : F → E such that TS = IF and ST = IE where IF , IE are the identity
operators on F and E respectively. The operator S is called the inverse of T ,
denoted by T−1.

Theorem 18.3. Let T : E → F be invertible. Then T is injective and surjective.
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Proof. (i) Suppose x1, x2 ∈ E are such that x1 ̸= x2 and Tx1 = Tx2. Then
x1 = T−1Tx1 = T−1Tx2 = x2. Thus x1 ̸= x2 implies Tx1 ̸= Tx2, so T is injective.

(ii) For any y ∈ F there exists x = T−1y such that

Tx = T (T−1y) = y.

Thus T is surjective.

Example 18.4. The backward shift operator T : ℓ2 → ℓ2 given by

T (x1, x2, x3, . . .) = (x2, x3, . . .)

is not injective, because (1, 0, . . .) ̸= (0, 0, . . .) but T (1, 0, . . .) = (0, 0, . . .) =
T (0, 0, . . .). Thus T is not invertible.

Definition 18.5. Let T : X → X be a bounded linear operator on a Banach
space X. The spectrum SpT of T is the set

{λ ∈ C : λIX − T is not invertible }.

Example 18.6. Consider the Banach space (C[0, 1], ∥·∥∞) and the bounded linear
operator

T : C[0, 1] → C[0, 1]

defined by the formula

(Tf)(t) = g(t)f(t)

where g ∈ C[0, 1]. Find the spectrum SpT of T .

Solution. By the definition

SpT = {λ ∈ C : λIX − T is not invertible }.

Note that, for all λ ∈ C,

Tλf
def
= (λIC[0,1] − T )(f) = λf − Tf,

so

Tλf(t) = [(λIC[0,1] − T )(f)](t)

= λf(t)− g(t)f(t)

= (λ− g(t))f(t)
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for all f ∈ C[0, 1] and t ∈ [0, 1].
1. For all λ ∈ C such that

λ /∈ Im g = {z ∈ C : z = g(t) for some t ∈ [0, 1]}

the function λ − g(t) ̸= 0 as t ∈ [0, 1]. Thus, for all λ /∈ Im g, we can define a
mapping

Sλ : C[0, 1] → C[0, 1]

by the formula

(Sλf)(t) =
1

λ− g(t)
f(t).

We proved before that Sλ is a bounded linear operator and

∥Sλ∥ =

∥∥∥∥ 1

λ− g(t)

∥∥∥∥
∞
.

Let us show that Sλ is the inverse of the operator Tλ. For all f ∈ C[0, 1] and
t ∈ [0, 1],

[SλTλf ](t) = [Sλ(Tλf)](t)

=
1

λ− g(t)
(Tλf)(t)

=
1

λ− g(t)
(λ− g(t))f(t) = f(t)

and

[TλSλf ](t) = [Tλ(Sλf)](t)

= (λ− g(t))(Sλf)(t)

= (λ− g(t))
1

λ− g(t)
f(t) = f(t).

Thus SλTλ = IC[0,1] and TλSλ = IC[0,1], so Tλ is invertible for all λ /∈ Im g.
2. For every λ ∈ Im g, the operator Tλ is not surjective, because, for any

f ∈ C[0, 1], the function

(Tλf)(t) = (λ− g(t))f(t)

is equal to zero at a point tλ such that λ = g(tλ). Therefore Tλ is not invertible
for all λ ∈ Im g.

3. The spectrum SpT = Im g.
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Lemma 18.7. Let T : X → X be a bounded linear operator on a Banach space
X. Then every eigenvalue λ of T belongs to SpT .

Proof. By the assumption, there exists a non-zero vector x ∈ X such that

Tx = λx.

Hence (λIX − T )x = λx− Tx = 0 and (λIX − T )0 = 0. Therefore λIX − T is not
injective, so λIX − T is not invertible. Thus λ ∈ SpT .

Remark 18.8. The spectrum is larger than the set of eigenvalues.

Example 18.9. Let T : C[0, 1] → C[0, 1] be the bounded linear operator defined
by

(Tf)(t) = tf(t), t ∈ [0, 1],

on the Banach space (C[0, 1], ∥ · ∥∞).

1. We have proved that SpT = [0, 1].

2. T has no eigenvalues.

Proof. If λ is an eigenvalue of T with eigenvector f ∈ C[0, 1], then (Tf)(t) = λf(t)
for all t ∈ [0, 1], so tf(t) = λf(t), and therefore

(t− λ)f(t) = 0

for all t ∈ [0, 1]. Thus f(t) = 0 for all t, and hence T has no eigenvalues.

Notation 18.10. Let X be a normed space. We shall abbreviate B(X,X) to
B(X). For T ∈ B(X) we denote TT, TTT, . . . by T 2, T 3, . . . etc.

Exercise 18.11. Show that, for any n ∈ N,

∥T n∥ ≤ ∥T∥n.

Theorem 18.12. Let T : X → X be a bounded linear operator on a Banach space
X. If ∥T∥ < 1 then the operator IX − T is invertible and

(IX − T )−1 =
∞∑
n=0

T n = lim
n→∞

(IX + T + T 2 + . . . T n)

in the Banach space B(X).
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Proof. Let Sn = IX + T + . . .+ T n. We have

∥Sn − Sm∥ = ∥
m∑

k=n+1

T k∥ ≤
m∑

k=n+1

∥T∥k.

As ∥T∥ < 1, the series
∑∞

k=0 ∥T∥k is convergent and hence {Sn}n is a Cauchy
sequence. Since B(X) is a Banach space, {Sn} has a limit S ∈ B(X). It is easy
to see that

(IX − T )Sn = IX − T n+1 = Sn(IX − T ).

Letting n→ ∞, we obtain (IX−T )S = IX = S(IX−T ). Thus IX−T is invertible
with the inverse S = limn→∞(IX + T + . . .+ T n).

Corollary 18.13. Let T : X → X be a bounded linear operator on a Banach space
X. Then

SpT ⊂ {λ ∈ C : |λ| ≤ ∥T∥}.

Proof. Note that, for λ such that |λ| > ∥T∥,∥∥∥∥1λT
∥∥∥∥ =

1

|λ|
∥T∥ < 1.

Thus the operator (IX− 1
λ
T ) is invertible, so there exists a bounded linear operator

S : X → X such that

S(IX − 1

λ
T ) = IX = (IX − 1

λ
T )S.

Then (
1

λ
S

)
(λIX − T ) = IX = (λIX − T )

(
1

λ
S

)
.

Thus 1
λ
S is the inverse of (λIX − T ), so (λIX − T ) is invertible for all λ such that

|λ| > ∥T∥. Therefore

SpT ⊂ {λ ∈ C : |λ| ≤ ∥T∥}.

Theorem 18.14. Let T : X → X be a bounded linear operator on a Banach space
X. Then SpT is a closed bounded non-empty subset of C and is contained in the
closed disc {λ ∈ C : |λ| ≤ ∥T∥}.

Let’s first look at some examples.
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Example 18.15. Let T be the left shift operator on ℓ2.

(i) Show that vectors (1, λ, λ2, λ3, . . .), where λ ∈ C and |λ| < 1, are eigenvectors
of T .

(ii) Find the spectrum SpT of T .

Solution. (i) For λ ∈ C such that |λ| < 1, the series

∞∑
n=0

|λn|2 =
∞∑
n=0

|λ|2n <∞.

Thus xλ = (1, λ, λ2, λ3, . . .) ∈ ℓ2. One can see that

Txλ = T (1, λ, λ2, . . .)

= (λ, λ2, λ3, . . .)

= λ(1, λ, λ2, . . .)

= λxλ.

Therefore, for λ ∈ C such that |λ| < 1, xλ is an eigenvector with eigenvalue λ.
(ii) We know that every eigenvalue of T belongs to SpT . Hence

{λ ∈ C : |λ| < 1} ⊂ SpT.

We proved above that

SpT ⊂ {λ ∈ C : |λ| ≤ ∥T∥}.

Recall that ∥T∥ = 1 and SpT is a closed subset of C. Therefore

SpT = {λ ∈ C : |λ| ≤ ∥T∥}.

Example 18.16. Volterra Integral Operator. Let V : C([0, 1]) → C([0, 1]) be
a linear operator given by

(V f)(s) =

∫ s

0

f(r)dr.

Then SpV = {0}.
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Proof. Using induction and integration by parts one can prove that

(V nf)(s) =
1

(n− 1)!

∫ s

0

(s− r)n−1f(r)dr.

Hence for any s ∈ [0, 1] we have

|(V nf)(s)| ≤ 1

(n− 1)!

∫ s

0

(s− r)n∥f∥∞dr ≤
∥f∥∞
n!

.

Thus ∥V nf∥∞ ≤ ∥x∥∞/n! and ∥V n∥ ≤ 1/n! that gives lim ∥V n∥1/n = 0. If λ ∈
SpV then λn ∈ SpV n. Hence |λ|n ≤ ∥V n∥, |λ| ≤ ∥V n∥1/n and therefore λ = 0.

To prove Theorem 18.14 we need the following lemmas.

Lemma 18.17. Let T : X → X be a bounded linear operator on a Banach space
X. Then SpT is closed.

Proof. Let ρ(T ) = {λ ∈ C : λI − T is invertible}. As ρ(T ) = SpT c we must see
that ρ(T ) is closed. Let λ ∈ ρ(T ) and µ ∈ C such that |λ − µ| < ∥(λ − T )−1∥−1.
Then

µI − T = (µ− λ)I + (λI − T ) = (λI − T )(I + (µ− λ)(λI − T )−1).

As ∥(µ− λ)(λI − T )−1∥ = |µ− λ|∥(λI − T )−1∥ < 1, by Theorem 18.12, I + (µ−
λ)(λI − T )−1 is invertible. As product of two invertible operators is invertible we
obtain that µI − T is invertible and hence

B(λ, ∥(λI − T )−1∥−1) = {µ ∈ C : |µ− λ| < ∥(λI − T )−1∥−1 ⊂ ρ(T ).

The proof is done.

Lemma 18.18. The map λ 7→ (λI − T )−1 is differentiable on ρ(T ), i.e. for any
λ ∈ ρ(T ) there exists a bounded linear operator Uλ,T such that

lim
h→0

∥((λ+ h)I − T )−1∥ − (λ− T )−1 − Uλ,Th

|h|
= 0.

Proof. Let λ ∈ ρ(T ). By the previous lemma, ρ(T ) is open and B(λ, r) ⊂ ρ(T )
for some r > 0. Take Uλ,T = −(λI − T )−2 and h ∈ C such that |h| < max((λI −
T )−1∥−1, r). Then

((λ+ h)I − T )−1 − (λI − T )−1 + (λI − T )−2h

= (λI − T )−1(I + h(λI − T )−1)−1 − (λI − T )−1 + (λI − T )−2h
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As ∥h(λI − T )−1∥ < 1, by Theorem 18.12, I + h(λI − T )−1 is invertible with the
inverse (I + h(λI − T )−1)−1 =

∑∞
k=0 h

k(λI − T )−k. Hence

((λ+ h)I − T )−1 − (λI − T )−1 + (λI − T )−2h

=
∞∑
k=0

hk(λI − T )−k−1 − (λI − T )−1 + (λI − T )−2h

=
∞∑
k=2

hk(λI − T )−k−1 = h2
∞∑
k=0

hk(λI − T )−k−3

Therefore,

lim
h→0

(∥(λ+ h)I − T )−1 − (λI − T )−1 + (λI − T )−2h∥
|h|

= lim
h→0

|h2|∥
∑∞

k=0 h
k(λI − T )−k−3∥
|h|

= 0.

Proof of Theorem 18.14. From Lemma 18.17 and Corollary 18.13, we have
that the spectrum is a closed subset of {λ ∈ C : |λ| ≤ ∥T∥}. We must only
see that SpT is non-empty. Assume contrary that SpT = ∅. By Lemma 18.18,
λ→ (λI − T )−1 is differentiable on C and hence continuous. As

|∥(λI − T )−1∥ − ∥(µI − T )−1∥| ≤ ∥(λI − T )−1 − (µI − T )−1∥,

one can easily see that the scalar function λ 7→ ∥(λI − T )−1∥ is continuous on C.
Thus the latter is bounded on the compact subset {λ ∈ C : |λ| ≤ 2∥T∥}. For λ,
|λ| > 2∥T∥, we have

∥(λI − T )−1∥ = |λ|−1∥∥(1− λ−1T )−1∥

≤ ( as ∥λ−1T∥ < 1/2) = |λ|−1∥
∞∑
k=0

λ−kT k∥

≤ |λ|−1

∞∑
k=0

|λ|−k∥T∥k = |λ|−1 1

1− |λ|−1∥T∥

<
|λ|−1

2
≤ ∥T∥−1

Thus the function λ 7→ ∥(λI − T )−1∥ is bounded on the whole complex plane.
Take now f ∈ X∗, ξ ∈ X. Then the function ψ : C → C, λ → f(λI − T )−1ξ)

is bounded. In fact, by the previous argument, we have

|f(λI − T )−1ξ)| ≤ ∥f∥∥(λI − T )−1ξ∥ ≤ ∥f∥∥(λI − T )−1∥∥ξ∥ < C
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for some C > 0. Moreover, as λ → (λI − T )−1 is differentiable on C one can
easily see that so is ψ : C → C. By Liouville’s theorem from complex analysis, we
have that ψ is a constant function. In particular, ψ(0) = ψ(1), i.e. f(−T−1ξ) =
f((I−T )−1ξ). As this holds for any f ∈ X∗ and ξ ∈ X we obtain−T−1 = (I−T )−1

and hence −T = I − T which is impossible. Thus SpT is non-empty.
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