Exercises in Functional Analysis, Week I

1. Let $X \neq\{0\}$ be a real or complex linear space. Prove that there is at least one norm on X.
2. (a) Prove that the formula

$$
\langle A, B\rangle=\operatorname{trace}\left(B^{*} A\right)
$$

defines an inner product on the space $M_{m \times n}(\mathbb{C})$ of $m \times n$-matrices. By the trace of a $n \times n$-matrix A we mean the sum of its diagonal elements.
(b) What is $\|A\|_{2}$ for $A \in M_{n \times n}$? Let $A=A^{*}$. Show that $\|A\|_{2}=\sqrt{\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}}$ where λ_{i} are the A :s eigenvalues counted with their multiplicities. Hint: Show that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$ for any pair of $n \times n$ matrices A and B.
3. Consider the Banach space l^{1}. Show that the parallelogram law does not hold in l^{1}. Conclude that $\|\cdot\|_{1}$ is not induced by some inner product.
4. Show that equivalent norms define the same open sets and Cauchy sequences.
5. Consider the space $X=C^{1}([0,1])$ of continuously differentiable functions on $[0,1]$ with one-sided derivatives at the endpoints and equip X with the norm

$$
\|f\|=\sup \{|f(x)|: x \in[0,1]\}
$$

Show that X is not a Banach space (see exercise 5.1.9 in Folland).
6. Take the underlying vector space $X=C([0,1]$ with two different norms

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in[0,1]\}
$$

and

$$
\|f\|_{2}=\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}
$$

Consider the sequence

$$
f_{n}(t)=\left\{\begin{array}{cl}
-n t+1, & t \in\left[0, \frac{1}{n}\right] \\
0, & t \in\left[\frac{1}{n}, 1\right]
\end{array}\right.
$$

Show that the sequence converges to $g \equiv 0$ in $\left(C([0,1]),\|\cdot\|_{2}\right)$ but not in $(C([0,1]), \|$. $\left.\|_{\infty}\right)$. Conclude that the given norms are inequivalent on $C([0,1])$ (See Example 6.7 in Lecture Notes). Is the sequence convergent in $\left(C([0,1]),\|\cdot\|_{\infty}\right)$.
7. Which of the following sequences are convergent in the respective normed spaces? For convergent sequences find the limit.

- $\left(C([0,1]),\|\cdot\|_{\infty}\right), f_{n}(t)=\sin ^{n} \pi t, t \in[0,1] ;$
- $\left(C([0,1]),\|\cdot\|_{\infty}\right), f_{n}(t)=\frac{n t}{1+n^{\alpha} t^{2}}$, where $\alpha \geq 1$ is fixed;
- $\left(l_{p},\|\cdot\|_{p}\right), 1 \leq p \leq \infty, x^{(n)}=(\underbrace{0, \ldots, 0}_{n-1}, 1,0, \ldots)$.

8. Show that the vector space $C([0,1])$ with the inner product $\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t$ is an inner-product space which is incomplete with respect to the norm $\|f\|_{2}=\langle f, f\rangle^{1 / 2}$ and so is not a Hilbert space.
9. Show that if \mathcal{X} is a real Banach space then $\mathcal{X} \times \mathcal{X}$ becomes a complex Banach space $\mathcal{X}_{\mathbb{C}}$ when its linear structure and norm are defined by

$$
\begin{aligned}
(x, y)+(u, v) & =(x+u, y+v) \\
(a+i b)(x, y) & =(a x-b y, b x+a y) \\
\|(x, y)\| & =\sup \{\|(\cos \theta) x+(\sin \theta) y: 0 \leq \theta \leq 2 \pi\|\}
\end{aligned}
$$

for all $x, y, u, v \in \mathcal{X}$ and $a, b \in \mathbb{R}$.
10. (a) Prove that any ball B (open or closed) in a normed vector space is convex, i.e. that $\lambda x+(1-\lambda) y \in B$ whenever $x, y \in B, 0 \leq \lambda \leq 1$.
(b) Consider the real two-dimensional l_{2}^{p}, i.e. \mathbb{R}^{2} with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left(\left|x_{1}\right|^{p}+\right.$ $\left.\left|x_{2}\right|^{p}\right)^{1 / p}$. Sketch the unit ball for several values of p, including $p=1,3 / 2,2,3, \infty$. For which p :s is the closed unit ball strictly convex?(i.e. for which p :s does $\|x\|,\|y\| \leq 1$, $x \neq y$ and $\lambda \in(0,1)$ imply that $\|\lambda x+(1-\lambda) y\|<1$?)
(c) Prove that the triangle axiom from the definition of a norm is equivalent with the convexity of the closed unit ball. More precisely, if X is a linear space on which is given a function $p: X \rightarrow[0, \infty)$ with the properties: (1) $p(x)=0 \Leftrightarrow x=0$; (2) $p(\lambda x)=|\lambda| p(x) \forall x \in X, \forall \lambda \in \mathbb{C}$, then p is a norm if and only if the closed unit ball is convex.
11. Consider the spaces l^{1}, l^{2} and l^{∞}. For which of these normed vector spaces is it true that $\|x+y\|=\|x\|+\|y\|$ implies that x and y are parallell (i.e.one is a scalar multiple of the other).
12. Show that all norms $\|\cdot\|$ on a finite-dimensional vector space X are equivalent, using the following arguments: let e_{1}, \ldots, e_{n} be a basis and define the norm $\left\|\sum_{i=1}^{n} a_{i} e_{i}\right\|_{1}=$ $\sum_{i=1}^{n}\left|a_{i}\right|$. First show that there is a C such that $\|x\| \leq C\|x\|_{1}$ for all $x \in X$. From this conclude that $\|\cdot\|$ is bounded away from 0 on the compact set $\left\{x:\|x\|_{1}=1\right\}$ of X with the topology defined by $\|\cdot\|_{1}$. Finally conclude from this that there exists C^{\prime} such that $\|x\|_{1} \leq C^{\prime}\|x\|$ for all $x \in X$. (see exercise 5.6 in Folland).
13. Show that every finite-dimensional subspace, V, of a normed vector space, X, is closed.

