Exercises in Functional Analysis, Week II

1. Let $p \in(0,1)$. Show, using characteristic functions of disjoint sets that $\|\cdot\|_{p}$ is not a norm on $L^{p}([0,1])$. Show also that the "unit ball" $\left\{f:\|f\|_{p} \leq 1\right\}$ is not convex.
2. Let $1 \leq p \leq \infty$. Prove that the normed spaces $L^{p}(\mathbb{R}), L^{p}(0,1)$ are isometrically isomorphic, i.e. there exists a bijective linear map $I: L^{p}(\mathbb{R}) \rightarrow L^{p}(0,1)$ such that $\|I(f)\|_{p}=\|f\|_{p}, f \in L^{p}(\mathbb{R})$.
3. Show that for $1 \leq p<q<\infty$ neither $L^{p}(\mathbb{R}) \subset L^{q}(\mathbb{R})$ nor $L^{q}(\mathbb{R}) \subset L^{p}(\mathbb{R})$.
4. (Packing of balls) Let $1 \leq p \leq \infty$. Find, inside the unit ball of l^{p}, infinitely many pairwise disjoint balls of the same positive radius. Conclude from this that the closed unit ball in l^{p} cannot be compact.
5. Let M be a complete metric space and K a subset of M. Show that the following are equivalent
(a) K is compact, i.e. every open cover of K can be reduced to a finite subcover.
(b) K is sequentially compact, i.e. every sequence in K has a convergent subsequence.
6. (a) Let X be an infinite-dimensional normed vector space. Show that for sufficiently small $r>0$ one can find infinitely many pairwise disjoint balls of radius r inside the unit ball.
(b) Make the conclusion that a ball in X is compact if and only if X is finite dimensional.
7. Prove that l^{∞} and $L^{\infty}([0,1])$ are not separable, i.e. they does not contain a countable dense subset. Hint: Find uncountable set of points, all at mutual distance at least r for some $r>0$.
8. Let (X, \mathcal{M}, μ) be a measure space. We say that μ is separable if there exists a countable family $\mathfrak{A}=\left\{A_{1}, A_{2}, \ldots\right\}$ of measurable sets such that

$$
(\forall \varepsilon>0)(\forall B \in \mathcal{M})\left(\exists A_{k} \in \mathfrak{A}\right): \mu\left(A_{k} \triangle B\right)<\varepsilon
$$

here \triangle denotes the symmetric difference: $A \triangle B=(A \backslash B) \cup(B \backslash A)$.
(a) Show that $L^{p}(X, \mu), 1 \leq p<\infty$, is a separable Banach space if μ is a separable measure.
(b) Show that $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, is separable (the measure is the Lebesgue measure. Observe that the Lebesque measure on \mathbb{R}^{n} is not separable!).
9. Define a mapping $T: C([0,1] \rightarrow \mathbb{C}$ by the formula

$$
T(f)=\int_{0}^{1} f(t) t^{2} d t
$$

Prove that T is a bounded linear functional with respect to the norm $\|f\|_{p}, 1<p<\infty$, where $\|f\|_{p}=\left(\int_{0}^{1}|f(t)|^{p}\right)^{1 / p}$. Find the norm of this functional.
10. Let $X=l_{2}, f(x)=\sum_{k=1}^{\infty} \frac{1}{2^{k}}\left(x_{k}+x_{k+1}\right), x \in l^{2}$. Show that f is a linear bounded functional on X and find its norm.
11. Let $F: C^{1}([0,1]) \rightarrow \mathbb{C}$ be defined by $F(f)=f^{\prime}(1), f \in C^{1}([0,1])$. Show that F is a linear functional. Prove that F is discontinuous with respect to $\|f\|_{2}$.
12. Set $(A x)(t)=x^{\prime}(t)$ and $(B x)(t)=t x(t), 0<t<1$, for $x \in C^{\infty}(0,1)$. Prove that $A B-B A=I$. Prove that it is impossible to find a norm on $C^{\infty}(0,1)$ such that A and B are bounded operators with respect to this norm by proving the following general result: If E be a non-trivial normed space then there are no bounded linear operators A and B on E such that $A B-B A=I$. Hint: Show that $A^{n} B-B A^{n}=n A^{n-1}$.
13. (a) Let X be a finite-dimensional space. Find a general form of a linear functional on X. Show that any linear functional on this space is continuous.
(b) Show that any linear functional on $M_{n}(\mathbb{C})$ is given by $f(A)=\operatorname{trace}(A B)$ for all $A \in M_{n}(\mathbb{C})$ and some $B \in M_{n}(\mathbb{C})$. What is the norm of this linear functional if $M_{n}(\mathbb{C})$ is equipped with the Hilbert-Schmidt norm $\|A\|_{2}=\operatorname{trace}\left(A^{*} A\right)^{1 / 2}$?

