Exercises in Functional Analysis, Week III

- 1. Suppose that X is a normed space and f is a linear functional on X. Let ker $f = \{x : f(x) = 0\}$. Prove that
 - (a) ker f is a subspace of X;
 - (b) ker f is a hyperplane if f is not identically zero (a linear subspace M of a vector space is called a hyperplane if for some (and hence all) $x \in X \setminus M$ the subspace M and the vector x together span X. In this case one says that M has codimension 1);
 - (c) any subspace of codimension 1 is the kernel of a linear functional;
 - (d) ker f is closed if and only if f is bounded (Hint: for "only if" use the result in (b));
 - (e) if two linear functionals have the same kernel then they are proportional, i.e. $f = \alpha g$ for some constant α .
- 2. For which $\alpha \in \mathbb{R}$ the following linear functionals are bounded? For bounded functionals find the norms.

(a)
$$X = l^p, 1 \le p \le \infty, f(x) = \sum_{n=1}^{\infty} \frac{x_n}{n^{\alpha}};$$

(b) $X = l^p, 1 \le p \le \infty, f(x) = \sum_{n=1}^{\infty} x_n ((n+1)^{\alpha} - n^{\alpha});$

3. Consider the normed space $(c_0, \|\cdot\|_{\infty})$, where

$$c_0 = \{ \underline{x} = (x_1, \dots, x_i, \dots) : x_i \in \mathbb{C}, \ x_i \to 0 \text{ as } i \to \infty \}$$

and $\|\underline{x}\|_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$. Prove that c_0^* is isometrically isomorphic to l^1 by proving that any continuous linear functional f on c_0 is given by

$$f(\underline{x}) = \sum_{i=1}^{\infty} x_i a_i, \underline{x} \in c_0$$

for some $\underline{a} = (a_1, \ldots, a_i, \ldots)$ in l^1 and that $||f|| = ||\underline{a}||_1$.

4. Consider the normed space $(c, \|\cdot\|_{\infty})$, where

$$c = \{ \underline{x} = (x_1, \dots, x_i, \dots) : x_i \in \mathbb{C}, \exists \lim_{i \to \infty} x_i \}$$

and $\|\underline{x}\|_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$. Prove that c^* is isometrically isomorphic to l^1 by proving that any continuous linear functional f on c is given by

$$f(\underline{x}) = a_0 \lim_{i \to \infty} x_i + \sum_{i=1}^{\infty} x_i a_i, \underline{x} \in c$$

for some $\underline{a} = (a_0, a_1, \dots, a_i, \dots)$ in l^1 and that $||f|| = ||\underline{a}||_1$. Deduce that neither of Banach spaces c_0 and c is isomorphic with its double dual.

- 5. A linear functional $f : C([a,b]) \to \mathbb{R}$ is called positive if $f(x) \ge 0$ for any $x(t) \in C([a,b])$ such that $x(t) \ge 0, t \in [a,b]$. Show that
 - (a) any positive linear functional is continuous and ||f|| = f(1) where 1 denotes the constant function x(t) = 1;
 - (b) if $f \in (C([a,b])^*$ and ||f|| = f(1) then f is a positive linear functional (Hint: write any $x \in C([a,b]), 0 \le x \le 1$ as x = 1 (1-x) and observe that 1-x is in the unit ball of C([a,b])).
- 6. (Extension by continuity) Let M be a dense subspace of the normed space X. Then clearly the restriction to M of the norm of X makes M into a normed space. Let Y be a Banach space. Show that any bounded linear operator $T: M \to Y$ has a unique extension to a bounded linear operator $X \to Y$.