## Exercises in Functional Analysis, Week III

1. Suppose that $X$ is a normed space and $f$ is a linear functional on $X$. Let ker $f=\{x$ : $f(x)=0\}$. Prove that
(a) $\operatorname{ker} f$ is a subspace of $X$;
(b) ker $f$ is a hyperplane if $f$ is not identically zero (a linear subspace $M$ of a vector space is called a hyperplane if for some (and hence all) $x \in X \backslash M$ the subspace $M$ and the vector $x$ together span $X$. In this case one says that $M$ has codimension 1);
(c) any subspace of codimension 1 is the kernel of a linear functional;
(d) ker $f$ is closed if and only if $f$ is bounded (Hint: for "only if" use the result in (b));
(e) if two linear functionals have the same kernel then they are proportional, i.e. $f=\alpha g$ for some constant $\alpha$.
2. For which $\alpha \in \mathbb{R}$ the following linear functionals are bounded? For bounded functionals find the norms.
(a) $X=l^{p}, 1 \leq p \leq \infty, f(x)=\sum_{n=1}^{\infty} \frac{x_{n}}{n^{\alpha}}$;
(b) $X=l^{p}, 1 \leq p \leq \infty, f(x)=\sum_{n=1}^{\infty} x_{n}\left((n+1)^{\alpha}-n^{\alpha}\right)$;
3. Consider the normed space $\left(c_{0},\|\cdot\|_{\infty}\right)$, where

$$
c_{0}=\left\{\underline{x}=\left(x_{1}, \ldots, x_{i}, \ldots\right): x_{i} \in \mathbb{C}, x_{i} \rightarrow 0 \text { as } i \rightarrow \infty\right\}
$$

and $\|\underline{x}\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right|$. Prove that $c_{0}^{*}$ is isometrically isomorphic to $l^{1}$ by proving that any continuous linear functional $f$ on $c_{0}$ is given by

$$
f(\underline{x})=\sum_{i=1}^{\infty} x_{i} a_{i}, \underline{x} \in c_{0}
$$

for some $\underline{a}=\left(a_{1}, \ldots, a_{i}, \ldots\right)$ in $l^{1}$ and that $\|f\|=\|\underline{a}\|_{1}$.
4. Consider the normed space $\left(c,\|\cdot\|_{\infty}\right)$, where

$$
c=\left\{\underline{x}=\left(x_{1}, \ldots, x_{i}, \ldots\right): x_{i} \in \mathbb{C}, \exists \lim _{i \rightarrow \infty} x_{i}\right\}
$$

and $\|\underline{x}\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right|$. Prove that $c^{*}$ is isometrically isomorphic to $l^{1}$ by proving that any continuous linear functional $f$ on $c$ is given by

$$
f(\underline{x})=a_{0} \lim _{i \rightarrow \infty} x_{i}+\sum_{i=1}^{\infty} x_{i} a_{i}, \underline{x} \in c
$$

for some $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{i}, \ldots\right)$ in $l^{1}$ and that $\|f\|=\|\underline{a}\|_{1}$. Deduce that neither of Banach spaces $c_{0}$ and $c$ is isomorphic with its double dual.
5. A linear functional $f: C([a, b]) \rightarrow \mathbb{R}$ is called positive if $f(x) \geq 0$ for any $x(t) \in$ $C([a, b])$ such that $x(t) \geq 0, t \in[a, b]$. Show that
(a) any positive linear functional is continuous and $\|f\|=f(1)$ where 1 denotes the constant function $x(t)=1$;
(b) if $f \in\left(C([a, b])^{*}\right.$ and $\|f\|=f(1)$ then $f$ is a positive linear functional (Hint: write any $x \in C([a, b]), 0 \leq x \leq 1$ as $x=1-(1-x)$ and observe that $1-x$ is in the unit ball of $C([a, b]))$.
6. (Extension by continuity) Let $M$ be a dense subspace of the normed space $X$. Then clearly the restriction to $M$ of the norm of $X$ makes $M$ into a normed space. Let $Y$ be a Banach space. Show that any bounded linear operator $T: M \rightarrow Y$ has a unique extension to a bounded linear operator $X \rightarrow Y$.

