Exercises in Functional Analysis, Week IV

1. The map $(s, 0) \mapsto s$ is a linear functional on the subspace $\mathbb{R} \times\{0\}$ of \mathbb{R}^{2}. Determine all its linear extensions to \mathbb{R}^{2} with the same norm if \mathbb{R}^{2} is given
(a) the l^{1} norm;
(b) the l^{p} norm, $1<p \leq \infty$.
2. Show that there exists a non-zero linear functional $F \in\left(L^{\infty}([a, b])\right)^{*}$ such that for any $f \in C([a, b]), F(f)=f((a+b) / 2)$. Prove that the inclusion map $T: L^{1}([a, b]) \rightarrow$ $\left(L^{\infty}([a, b])\right)^{*}, f \mapsto \phi_{f}$, where $\phi_{f}(g)=\int_{a}^{b} f(t) g(t) d t$, is not surjective.
3. Consider l_{F}^{2}, the linear subspace of l^{2} consisting of those sequences having only finitely many terms different from zero. Describe the space $\left(l_{F}^{2}\right)^{*}$.
4. Prove that there exists a linear functional $F \in\left(l^{\infty}\right)^{*}$ such that $F(x)=\lim x_{n}$ for any $x \in c$, where c is the linear subspace of l^{∞} consisting of convergent sequences. Show that the inclusion $T: l^{1} \rightarrow\left(l^{\infty}\right)^{*}, a \mapsto \phi_{a}, \phi_{a}(x)=\sum_{i=1}^{\infty} x_{i} a_{i}$, is proper, i.e. $T\left(l^{1}\right)$ is a proper subspace of $\left(l^{\infty}\right)^{*}$.
5. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a system of linearly independent elements of a normed space X. Let $c_{1}, \ldots, c_{n} \in \mathbb{C}$. Show that there exists $f \in X^{*}$ such that $f\left(x_{i}\right)=c_{i}$.
6. Let $\left\{x_{n}\right\}$ be a sequence of elements in a Banach space X. Let L be a subspace of all its finite linear combinations and \bar{L} is the closure of L. Show that $x \in \bar{L}$ if and only if for any $f \in X^{*}$ such that $f\left(x_{n}\right)=0$ one has $f(x)=0$.
7. Is it true that two elements x and y of a normed linear space X are equal iff $f(x)=f(y)$
(a) for all $f \in X^{*}$;
(b) for all f in a dense subset of X^{*}.
8. Let l^{∞} be a real Banach space. Let $G=\left\{\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots\right): x=\left(x_{1}, x_{2}, \ldots\right) \in\right.$ $\left.l^{\infty}\right\}$ and $e=(1,1, \ldots)$. Show that there exists $f \in\left(l^{\infty}\right)^{*}$ such that $f(x)=0, x \in \bar{G}$, $f(e)=1,\|f\|=1$ (Hint: Show that the distance from e to the closure of G equals 1). The functional is denoted by $L I M x_{n}:=f(x), x \in l^{\infty}$. Show that
(a) $L I M x_{n}=L I M x_{n+1}$, i.e. $f(x)=f(S(x))$, where S is the shift operator: $S\left(\left(x_{1}, x_{2}, \ldots\right)\right)=\left(x_{2}, x_{3}, \ldots\right)$.
(b) LIMx $x_{n}=a$ if $x_{n} \rightarrow a$;
(c) there exists $x \in l^{\infty}$ such that for any $N \geq 1$ there exists $n \geq N$ such that $x_{n}=1$ and $L I M x_{n}=0$.
9. Let X be a normed space, $G \subseteq X$ is a linear space, and $f: G \rightarrow \mathbb{C}$ is a bounded linear functional for which there exist $g, h: X \rightarrow \mathbb{C}$, two distinct linear bounded extensions such that $\|g\|=\|h\|=\|f\|$. Prove that f has infinity of linear bounded extensions of norm $\|f\|$. More precisely, one can prove that the set of all such extensions is convex in X^{*}.
10. (a) Let $1<p<\infty$ and $G=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{p}: \sum_{n=1}^{\infty} x_{n}=0\right\}$. Use a consequence from the Hahn-Banach theorem to prove that G is a dense linear subspace of l^{p}.
(b) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of scalars such that $\sum_{n=1}^{\infty}\left|a_{n}\right| \neq 0$ and let $1<p<\infty$. Find a necessary and sufficient condition on the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ for the linear subspace $G=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{p}: \sum_{n=1}^{\infty} a_{n} x_{n}=0\right\}$ be dense in l^{p}.
11. (Folland, exercise 25, chapter 5.2) Let X be a real vector space and let P be a subset of X such that (i) if $x, y \in P$, then $x+y \in P$, (ii) if $x \in P$ and $\lambda \geq 0$, then $\lambda x \in P$, (iii) if $x \in P$ and $-x \in P$, then $x=0$. (Example: if X is a space of real valued functions, P can be the set of nonnegative functions in X). Show

- The relation \leq defined by $x \leq y$ iff $y-x \in P$ is a partial ordering on X.
- (Krein's extension theorem) Suppose that M is a subspace of X such that for each $x \in X$ there exists $y \in M$ with $x \leq y$. If f is a linear functional on M such that $f(x) \geq 0$ for $x \in P \cap M$, there is a linear functional on M such that $F(x) \geq 0$ for $x \in P$ and $\left.F\right|_{M}=f$. (Consider $\left.p(x)=\inf \{f(y): y \in M, x \leq y\}\right)$.

