Exercises in Functional Analysis, Week V

1. Let X be a Banach space of infinite dimension. Prove that X has no countable "basis" if we let this mean that any vector can be written as a finite linear combination of vectors from the "basis". Hint: If there were a countable basis then X could be written as a union of nowhere dense sets.
2. Let $Y=l^{1}$ and $X=\left\{x \in l^{1}: \sum_{n} n\left|x_{n}\right|<\infty\right\}$ equipped with the l^{1}-norm.
(a) Show that X is a proper dense subspace of Y.
(b) Define $T: X \rightarrow Y$ by $(T x)_{n}=n x_{n}$, for $x=\left(x_{1}, x_{2}, \ldots\right) \in X$. Show that T is closed but not bounded.
(c) Let $S=T^{-1}$. Show that $S: Y \rightarrow X$ is bounded and surjective but not open.

How this result agrees with the Open Mapping Theorem?
3. Let $Y=C([0,1])$ and $X=C^{1}([0,1])$ (the space of continuously differentiable functions on $[0,1]$ with one-sided derivatives at the endpoints), both equipped with the uniform norm. X is not complete (see exercise 3 , week I). Show that the map $d / d x: X \rightarrow Y$, $f \mapsto f^{\prime}$ is closed but not bounded.
4. Consider the Hilbert space l^{2} with the inner product denoted by $\langle\cdot, \cdot\rangle$. To each bounded operator $A \in L\left(l^{2}\right)$ we associate an infinite matrix $\left(a_{i, j}\right)_{i, j \in \mathbb{N}}$, where $a_{i, j}=\left\langle A e_{j}, e_{i}\right\rangle$; here $e_{n}=(0, \ldots, 0,1,0, \ldots) \quad(1$ in the nth position).
A function $\varphi: \mathbb{N} \times \mathbb{N}$ is called a Schur multiplier if $\left(\varphi(i, j) a_{i, j}\right)_{i, j \in \mathbb{N}}$ is the matrix of a bounded operator whenever so is $\left(a_{i, j}\right)$.
Prove that φ is a Schur multiplier if and only if the mapping $S_{\varphi}: L\left(l^{2}\right) \rightarrow L\left(l^{2}\right)$ which sends $A \in L\left(l^{2}\right)$ to $S_{\varphi}(A),\left\langle S_{\varphi}(A) e_{j}, e_{i}\right\rangle=\varphi(i, j)\left\langle A e_{j}, e_{i}\right\rangle$, is a bounded operator on $L\left(l^{2}\right)$ equipped with the operator norm. Hint: Use the Closed Graph theorem.
5. Let H be a Hilbert space and let $A: H \rightarrow H$ be a linear operator such that there exists a linear operator $B: H \rightarrow H$ such that

$$
\langle A x, y\rangle=\langle x, B y\rangle \text { for all } x, y \in H
$$

Show that A is bounded. Hint: Show that the graph of A is closed.
6. Let $1<p, q<\infty$ and $1 / p+1 / q=1$. Assume $f_{i} \rightarrow f$ in L^{p}, and $g_{i} \rightarrow g$ weakly in L^{q}. Show that $f_{i} g_{i} \rightarrow f g$ weakly in L^{1}.
7. Let $X=C^{1}([0,1])$ with the uniform norm. Define $A_{n}: X \rightarrow C([0,1])$ by

$$
\left(A_{n} x\right)(t)=n\left(x\left(t+\frac{1}{n}\right)-x(t)\right), t \in[0,1], x \in X, n \geq 1
$$

(if $t>1$ we let $x(t):=x(1)+x_{-}^{\prime}(1)(t-1)$). Show that
(a) $\left\{A_{n} x: n \geq 1\right\}$ converges for any $x \in X$;
(b) $\left\{\left\|A_{n}\right\|\right\}$ is unbounded;
(c) the space $L(X, C([0,1]))$ is not complete with respect to the strong operator convergence.
8. Let $1 \leq p, q \leq \infty$ be conjugate exponents.
(a) Let $a=\left(a_{1}, a_{2}, \ldots\right)$ be a sequence such that the series $\sum_{n=1}^{\infty} a_{n} x_{n}$ converges for any $x=\left(x_{1}, x_{2}, \ldots\right)$ in l^{p}. Prove that $a \in l^{q}$.
(b) Let p be a measurable function such that the functional $f(x)=\int_{a}^{b} p(t) x(t) d t$ is defined for all $x \in L^{p}([a, b])$. Show that $L^{q}([a, b])$.

Hint: Use the Uniform Boundedness Principle.

