Exercises in Functional Analysis, Week VII

- 1. Let H be a Hilbert space and M, N, $M \subset N$, be subsets of H. Show that
 - (a) $M^{\perp} \supset N^{\perp};$
 - (b) $(M^{\perp})^{\perp} = \overline{\operatorname{span}\{M\}}$, the closed linear span of M.
- 2. Find the orthogonal complement in $L^2([0,1])$ to the following sets:
 - (a) all polynomials;
 - (b) all polynomials p such that p(0) = 0.
- 3. Let H be a Hilbert space, and $G \subset H$ a closed subspace. Prove that any linear bounded functional on G has a unique extension on H that preserves the norm. More precisely:
 - (a) If $f : G \to \mathbb{C}$ is a linear bounded functional, then $\tilde{f} : H \to \mathbb{C}$ defined by $\tilde{f}(x) = f(P_G(x)) \ \forall x \in H$ is the unique extension of f to H such that $||f|| = ||\tilde{f}||$, where P_G is the orthogonal projection onto G.
 - (b) If $b \in H$ and $f : G \to \mathbb{C}$ is defined by $f(x) = \langle x, b \rangle$, $x \in G$, then the unique extension preserving the norm for f is $\tilde{f} : H \to \mathbb{C}$ defined by $\tilde{f}(x) = \langle x, P_G(b) \rangle$, $x \in H$, and $\|f\| = \|\tilde{f}\| = \|P_G(b)\|$.
- 4. Let $B = \operatorname{span}\{e^{i\lambda t} : \lambda \in \mathbb{R}\}$. For $x, y \in B$ define

$$\langle x, y \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) \overline{y(t)} dt.$$

Show that

- (a) $\langle \cdot, \cdot \rangle$ is an inner product on *B*;
- (b) the system $\{e^{i\lambda t} : \lambda \in \mathbb{R}\}$ is orthonormal. Conclude that the completion of B with respect to the given inner product is a non-separable Hilbert space.
- 5. Let P and Q denote orthogonal projections onto two subspaces in a Hilbert space. Prove that $||P - Q|| \le 1$.
- 6. Let H be a Hilbert space. Show that every weakly closed set is closed in the norm topology but the converse is not true. Show that if we assume that the set is a closed subspace of H then it is weakly closed.
- 7. Let *H* be a Hilbert space. Show that the norm convergence is the same as weak convergence uniformly on the unit sphere, i.e. $||f_n f|| \to 0$ if and only if $\langle f_n, g \rangle \to \langle f, g \rangle$ uniformly for ||g|| = 1.

- 8. Prove that $l \in C([a, b])^*$ and find ||l|| if
 - (a) $l(x) = \alpha x(a) + \beta x(b), \ (\alpha, \beta \in \mathbb{R});$
 - (b) $l(x) = \int_{a}^{b} x(t)p(t)dt, \ p \in C([a, b]);$
 - (c) $l(x) = \int_{a}^{b} x(t)dt x\left(\frac{a+b}{2}\right).$
- 9. Show that $l(g) = \int_0^{1/2} dg(t)$ is a linear bounded functional on $C([0,1])^*$. Conclude that C([0,1]) is not reflexive.