Exercises in Spectral Theory and Operator Algebras

- 1. Consider the Banach space C[0, 1] of continuous complex-valued functions on the unit interval with sup norm.
 - (a) Let k(x, y) be a continuous function defined on the triangle $0 \le y \le x \le 1$. Consider an integral map K defined on C[0, 1] as follows

$$Kf(x) = \int_0^x k(x, y) f(y) dy, f \in C[0, 1]$$

Show that K defines a bounded operator on C[0, 1].

(b) For the kernel $k(x,y) = 1, 0 \le y \le x \le 1$ consider the corresponding Volterra operator $V: C[0,1] \to C[0,1]$,

$$Kf(x) = \int_0^x f(y) dy, f \in C[0, 1].$$

Given a function $g \in C[0, 1]$, show that the equation Vf = g has a solution $f \in C[0, 1]$ iff g is continuously differentiable and g(0) = 0.

(c) Let k(x, y) be a continuous function defined on the unit square $0 \le x, y \le 1$. Consider an integral map K defined on C[0, 1] by

$$Kf(x) = \int_0^1 k(x, y) f(y) dy, f \in C[0, 1]$$

Let B_1 be the closed unit ball in C[0, 1]. Show that K is a compact operator in the sense that the norm closure of the image KB_1 is a compact subset of C[0, 1].

2. Let A, B be shift operators on ℓ^2 defined by

$$A(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$$
$$B(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$$

for $x = (x_1, x_2, \ldots) \in \ell^2$. Show that ||A|| = ||B|| = 1, and compute both BA and AB. Deduce that A is injective but not surjective, B is surjective but not injective, and that $\sigma(AB) \neq \sigma(BA)$.

3. Let *E* be a Banach space and let *A* and *B* be bounded operators on *E*. Show that 1 - AB is invertible if and only if 1 - BA is invertible. Hint: Think about how to relate the formal Neumann series for $(1 - AB)^{-1}$,

$$(1 - AB)^{-1} = 1 + AB + (AB)^{2} + \dots$$

to that for $(1 - BA)^{-1}$ and turn your idea into a rigorous proof.

- 4. Use the result of the preceding exercise to show that for any two bounded operators A, B acting on a Banach space, $\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$.
- 5. Let T be a bounded operator on a Banach space E.
 - Let $\lambda \in \sigma(T)$. Assume that there exists C > 0 such that $||Tx \lambda x|| \ge C||x||$ for all $x \in E$. Show that $\lambda \in \sigma_r(T)$, the residual spectrum of T.
 - Let $\lambda \in \sigma_c(T)$, the compression spectrum of T. Show that there exists a sequence $x_n \in E$, $||x_n|| = 1$, such that $Tx_n \lambda x_n \to 0$, as $n \to \infty$.
- 6. Show that the spectrum $\sigma(T)$ of $T \in B(E)$, E is a Banach space, coincides with the spectrum $\sigma(T^*)$ of the adjoint operator $T^* : E^* \to E^*$. Moreover,
 - if $\lambda \in \sigma_r(T)$, then $\lambda \in \sigma_p(T^*)$;
 - if $\lambda \in \sigma_p(T)$, then either $\lambda \in \sigma_p(T^*)$ or $\lambda \in \sigma_r(T^*)$;
 - if $\lambda \in \sigma_c(T)$, then either $\lambda \in \sigma_c(T^*)$ or $\lambda \in \sigma_r(T^*)$; if the space if reflexive the second possibility is impossible.
- 7. Let A be a diagonal operator on ℓ^p , $1 \le p \le \infty$, given by

$$A(x_1, x_2, \ldots) = (a_1 x_1, a_2 x_2, \ldots),$$

where $(a_i)_i$ is a bounded sequence. Show that $\sigma(A)$ is the closure of $\{a_i : i \in \mathbb{N}\}$, $\sigma_p(A) = \{a_i : i \in \mathbb{N}\}$. Moreover, $\sigma(A) \setminus \sigma_p(A)$ is $\sigma_c(A)$ if $p < \infty$ and $\sigma_r(A)$ if $p = \infty$.

- 8. Let (a_n) be a bounded sequence of complex numbers and let H be a Hilbert space having an orthonormal basis $\{e_i\}$.
 - Show that there is a (necessarily unique) bounded operator $A \in B(H)$ satisfying $Ae_n = a_n e_{n+1}, n = 1, 2, \ldots$ Such an operator A is called a unilateral weighted shift.
 - Show that for every complex number λ , $|\lambda|$ there is a unitary operator $U = U_{\lambda}$ such that $UAU^{-1} = \lambda A$.
 - Deduce that the spectrum of a weighted shift must be the union of (possibly degenerate) concentric circles about z = 0.
- 9. Let B be the left shift operator as defined in Exercise 2 on ℓ^p , $1 \le p \le \infty$. Determine the four sets $\rho(B)$, $\sigma_p(B)$, $\sigma_c(B)$, $\sigma_r(B)$ for all values of p. Hint: Exercise 6 and a modification of 8 can be useful.

Exercises 1-4 and 8 are from Arveson" A short course on spectral theory"