Exercises in Spectral Theory and Operator Algebras II

1. Consider $L^1(\mathbb{R})$ and define a multiplication on $L^1(\mathbb{R})$ by convolution

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt, f, g \in L^1(\mathbb{R}).$$

 $(L^1(\mathbb{R})), *)$ is a commutative Banach algebra.

- Prove that $(L^1(\mathbb{R}), *)$ does not have an identity.
- For every $n = 1, 2, ..., \text{ let } \phi_n$ be a nonnegative function in $L^1(\mathbb{R})$ such that ϕ_n vanishes outside [-1/n, 1/n] and $\|\phi_n\|_1 = 1$. Show that $\{\phi_n\}_n$ is an approximate identity in the sense that $\|f * \phi_n f\|_1 \to 0$ as $n \to \infty$, for all $f \in L^1(\mathbb{R})$.
- Let $f \in L^1(\mathbb{R})$. The Fourier transform of f is defined by

$$\hat{f}(\xi) = \int_{-\infty}^{+\infty} e^{it\xi} f(t) dt, \xi \in \mathbb{R}.$$

Show that $+hat f \in C_0(\mathbb{R})$, the algebra of all continuous functions vanishing at infinity.

- Show that the Fourier transform is a homomorphism of $(L^1(\mathbb{R})), *)$ onto a subalgebra of $C_0(\mathbb{R})$ which is closed under complex conjugation and separates points of \mathbb{R} .
- 2. An operator $A \in B(E)$ is called compact if the norm closure of the image of the unit ball in E under A, i.e. $\{Ax : x \in E, \|x\| = 1\}$ is a compact subset of E. A is called finite-dimensional if the dimension of the vector space AE is finite.
 - Let $A \in B(E)$ be an operator with the property that there is a sequence of finite rank operators $\{A_n\}_n$ such that $||A A_n|| \to 0$ as $n \to \infty$. Show that A is compact.
 - Let $\{a_n\}_n$ is a bounded sequence of complex numbers and let A be a diagonal operator on the Hilbert space ℓ^2 ,

$$A\xi(n) = a_n\xi(n), \xi \in \ell^2, n \in \mathbb{N}.$$

Show that A is compact iff $\lim_{n\to\infty} a_n \to 0$.

3. Let k be a continuous complex-valued function defined on $[0, 1] \times [0, 1]$. Show that the operator A defined on C[0, 1] by

$$(Af)(x) = \int_0^1 k(x, y) f(y) dy, x \in [0, 1]$$

is a compact linear operator on C[0,1]. Hint: Start to looking at the case k(x,y) = u(x)v(y) with $u,v \in C[0,1]$ and apply Exercise 2.

- 4. Let T be the operator defined on $L^2([0,1])$ by $Tf(x) = xf(x), x \in [0,1]$. What is the spectrum of T? Does T have point spectrum?
- 5. Let $\{a_i\}$ be a sequence of complex numbers such that an $a_n \to 0$. Show that the associated weighted shift operator on ℓ^2 given by

$$Ae_n = a_n e_{n+1}, n \ge 1,$$

has spectrum $\{0\}$.

- 6. Show that every normed linear space E has a basis $B \subset E$ consisting of unit vectors, and deduce that every infinite-dimensional normed linear space has a discontinuous linear functional $l: E \to \mathbb{C}$. Recall that a basis for a vector space V is a set of vectors B with the following two properties: every finite subset of B is linearly independent, and every vector in V is a finite linear combination of elements of B.
- 7. Let A be a complex algebra and let I be a proper ideal of A. Show that I is a maximal ideal iff the quotient algebra A/I is simple.
- 8. Let A be a unital Banach algebra, let n be a positive integer, and let $w : A \to M_n$ be a homomorphism of complex algebras such that $w(A) = M_n$, M_n denoting the algebra of all $n \times n$ matrices over \mathbb{C} . Show that w is continuous (where M_n is topologized in the natural way by \mathbb{C}^{n^2} . Deduce that every linear functional $f : A \to \mathbb{C}$ satisfying $f(xy) = f(x)f(y), x, y \in A$, is continuous.
- 9. Let A be the algebra of continuous functions on the complex unit circle \mathbb{T} , and B the subalgebra of functions which are restriction to \mathbb{T} of functions which are analytic on the open complex unit disc \mathbb{D} and continuous on the closed complex unit disc $\overline{\mathbb{D}}$. Show that for f(z) = z we have $\sigma_A(f) = \mathbb{T}$ but $\sigma_B(f) = \overline{\mathbb{D}}$, where $\sigma_A(f) (\sigma_B(f))$ denotes the spectrum of f in A (resp. in B).
- 10. Let $a \in A$ be an element of the Banach algebra A; and let $\mathcal{O} \subset \mathbb{C}$, $\sigma(a) \subset \mathcal{O}$. Show that there exists $\delta > 0$ such that $\sigma(b) \subset O$ for any $b \in A$ such that $||b a|| \leq \delta$. Hint: use the fact that the set of invertible elements in Banach algebra is open.
- 11. Show that the Banach spaces ℓ^{∞} and $c = \{\{x_n\} \in \ell^{\infty} : \exists \lim_n x_n\}$ provided with pointwise multiplication are commutative Banach algebras.
 - Show that $c_0 = \{\{x_n\} \in \ell^\infty : \lim_n x_n = 0\}$ is a (norm) closed proper ideal in ℓ^∞ .
 - Show that c_0 is a maximal ideal in c finding a linear multiplicative functional with c_0 as its kernel.
 - Is c_0 a maximal ideal in ℓ^{∞} ?
- 12. Let V be the Volterra operator on $L^2[0,1]$ and let A be the Banach subalgebra of $B(L^2[0,1])$ generated by V and the identity operator, i.e. A is the smallest Banach algebra with identity that contains V. Determine the maximal ideal space of A and the radical of A.

Exercises 1-8 are from Arveson " A short course on spectral theory"