Exercises in Spectral Theory and Operator Algebras III

In Exercises 1-4, A is a commutative Banach algebra with unit.

- 1. Show that if A is nontrivial in the sense that $A \neq \{0\}$, one has $\operatorname{sp}(A) \neq \emptyset$.
- 2. Show that the mapping $\omega \in \operatorname{sp}(A) \to \ker \omega$ is a bijection of the Gelfand spectrum onto the set of all maximal ideals in A.
- 3. Show that the Gelfand map is an isometry, i.e. $\|\Gamma(a)\| = \|a\|$ for all $a \in A$, iff $\|a^2\| = \|a\|^2$ for every $a \in A$.
- 4. The radical of A is defined as the set rad(A) of all quasinilpotent elements of A. Show that rad(A) is a closed ideal in A with the property that A/rad(A) has no quasinilpotent elements (such A is called semisimple).
- 5. Let A and B be commutative unital Banach algebras and let $\theta: A \to B$ be a homomorphism of the complex algebra structures such that $\theta(1_A) = 1_B$. Do not assume that θ is continuous.
 - Show that θ induces a continuous map $\hat{\theta} : \operatorname{sp}(B) \to \operatorname{sp}(A)$ by $\hat{\theta}(\omega) = \omega \circ \theta$.
 - \bullet Assuming that B is semisimple, show that θ is necessarily bounded. Hint: Use the closed graph theorem.
 - Deduce that every automorphism of a commutative semisimple unital Banach algebra is a topological automorphism, i.e. continuous.
- 6. Let $A = C^1([0,1])$. A is a Banach algebra with respect to the norm $||f|| = \sup_{[0,1]} |f(t)| + \sup_{[0,1]} |f'(t)|$. Consider $x : [0,1] \to \mathbb{C}$, x(t) = t. Show that x generates A as a Banach algebra, i.e. A is the smallest Banach algebra with unit that contains x. Then show that $[0,1] \to \operatorname{sp}(A)$, $t \to \omega_t$, where $\omega_t(f) = f(t)$ is a homeomorphism and that the spectral radius $r(f) = ||f||_{\infty}$, $f \in C^1([0,1])$. Using this prove then that the Gelfand transform is not surjective.
- 7. Let $[\cdot, \cdot]: H \times H \to \mathbb{C}$ be a sesquilinear form defined on a Hilbert space H. Show that $[\cdot, \cdot]$ satisfies the polarization formula

$$4[\xi, \eta] = \sum_{k=0}^{3} [\xi + i^{k} \eta, \xi + i^{k} \eta].$$

8. Let $A \in B(H)$ be a Hilbert space operator. The quadratic form of A is the function $q_A : H \to \mathbb{C}$ defined by $q_A(\xi) = \langle A\xi, \xi \rangle$. The numerical range and numerical radius of A are defined, respectively, by

$$W(A) = \{q_A(\xi) : ||\xi|| = 1\} \subset \mathbb{C}$$

$$\omega(A) = \sup\{|q_A(\xi)| : ||\xi|| = 1\}.$$

- \bullet Show that A is selfadjoint iff q_A is real-valued.
- Show that $\omega(A) \leq ||A|| \leq 2\omega(A)$ and deduce that $q_A = q_B$ only when A = B. Hint: Polarize.
- Show that if A is selfadjoint then $q_{A^2}(\xi)=q_A(\xi)^2, \|\xi\|=1$, only if ξ is an eigenvector. Hint: Use Cauchy-Schwartz.

Exercises 1-5, 7,8 are from Arveson " A short course on spectral theory"