Exercises in Spectral Theory and Operator Algebras IV

C^* -algebras.

- 1. Let A be a C^* -algebra.
 - (a) Show that the involution in A satisfies $||a^*|| = ||a||, a \in A$.
 - (b) Show that if A contains a unit 1, then $\|\mathbf{1}\| = 1$.

In the next three exercises, X and Y denote compact Hausdorff spaces and $\theta : C(X) \to C(Y)$ denotes an isomorphism of complex algebras. Continuity is not assumed.

2. Let $p \in Y$. Show that there is a unique point $q \in X$ such that

$$\theta f(p) = f(q), f \in C(X)$$

- 3. Show that there is a homeomorphism $\phi: Y \to X$ such that $\theta f = f \circ \phi$. Hint: Think in terms of the Gelfand spectrum.
- 4. Conclude that θ is necessarily a self-adjoint linear map in the sense that $\theta(f^*) = \theta(f^*)$, $f \in C(X)$.
- 5. Formulate and prove a theorem that characterizes unital algebra homomorphisms $\theta : C(X) \to C(Y)$ in terms of certain maps $\phi : Y \to X$. Which maps give rise to isomorphisms?

Next exercise shows that for non-commutative C^* -algebras we may have isomorphisms that do not preserve involution.

6. Let *H* be a Hilbert space and let $T \in B(H)$ be an invertible bounded operator. Define $\theta : B(H) \to B(H)$ by $\theta(A) = TAT^{-1}$, $A \in B(H)$. Show that θ is an automorphism of the Banach algebra structure of B(H) and that $\theta(A^*) = \theta(A)^*$ for all $A \in B(H)$ if and only if *T* is a multiple of a unitary operator.

Functional calculus.

7. Show that the spectrum of a normal operator $T \in B(H)$ is connected if and only if the C^* -algebra generated by T and $\mathbf{1}$ contains no projections other than $\mathbf{0}$ and $\mathbf{1}$.

Consider the algebra \mathcal{C} of all continuous functions $f : \mathbb{C} \to \mathbb{C}$. There is no natural norm on \mathcal{C} , but for every compact $X \subset \mathbb{C}$ there is a seminorm

$$||f||_X = \sup_{z \in X} |f(z)|.$$

 ${\mathcal C}$ is a commutative *-algebra with unit.

8. Given a normal operator $T \in B(H)$, show that there is a natural extension of the functional calculus to a *-homomorphism $f \in \mathcal{C} \to f(T) \in B(H)$ that satisfies $||f(T)|| = ||f||_{C(\sigma(T))}$.

Fix a function $f \in \mathcal{C}$ and let $(T_n)_n$ be a sequence of normal operators that converges in norm to an operator T. Show that $(f(T_n))_n$ converges to f(T).

Diagonalization.

- 9. Let X be a Borel space, let f be a bounded complex-valued Borel function defined on X, and let μ and ν be two σ -finite measures on X. The multiplication operator M_f defines a bounded operator A on $L^2(X, \mu)$ and B on $L^2(Y, \nu)$. Assuming that μ and ν are mutually absolutely continuous, show that there is a unitary operator $W: L^2(X, \mu) \to L^2(Y, \nu)$ such that WA = BW. Hint: Use the Radon-Nikodym theorem.
- 10. Show taht every diagonalizable operator on a separable Hilbert space is unitarily equivalent to a multiplication operator M_f acting on $L^2(X,\mu)$, where (X,μ) is a probability measure space, i.e. $\mu(X) = 1$.
- 11. The following exercise concerns the selfadjoint operator A defined on $\ell^2(\mathbb{Z})$ by

$$(A\xi)_n = \xi_{n+1} + \xi_{n-1}, n \in \mathbb{Z}, \xi = (\xi_n)_{n \in \mathbb{Z}}.$$

- (a) Show that A is diagonalizable by exhibiting an explicit unitary operator $W : L^2(\mathbb{T}, d\theta/2\pi) \to \ell^2(\mathbb{Z})$ for which $WM_f = AW$, where $f : \mathbb{T} \to \mathbb{R}$ is $f(e^{i\theta}) = 2\cos\theta$. What is the spectrum/the point spectrum of A?
- (b) Let U be a unitary operator defined on $L^2(\mathbb{T}, d\theta/2\pi)$ by

$$U\xi(e^{i\theta}) = \xi(e^{-i\theta}), 0 \le \theta \le 2\pi$$

Show that U is a unitary operator $U^2 = \mathbf{1}$, and which commutes with M_f with f given above.

- (c) Let \mathcal{B} be the set of all operators $L^2(\mathbb{T}, d\theta/2\pi)$ that have the form $M_g + UM_h$, where $g, h \in L^{\infty}(\mathbb{T}, d\theta/2\pi)$ and U is the unitary given in the previous paragraph. Show that \mathcal{B} is a C^* -algebra isomorphic to the C^* -algebra of all 2×2 matrices of functions $M_2(\mathcal{B}_0)$, where \mathcal{B}_0 is the abelian C^* -algebra $L^{\infty}(\mathbb{T}^+, d\theta/2\pi)$, \mathbb{T}^+ being the upper half of the unit circle \mathbb{T} .
- 12. This exercise asks you to compare A to a related operator B on $L^2([-2,2],\nu)$, ν being Lebesque measure on [-2,2], given by

$$B\xi(x) = x\xi(x), \xi \in L^2([-2,2],\nu).$$

- (a) Argue that B has spectrum [-2, 2], no point spectrum and deduce that ||f(A)|| = ||f(B)|| for every $f \in C[-2, 2]$.
- (b) Show that A and B are not unitarily equivalent. Hint: Compare the commutants of A and B that is the algebras of operators commuting with A and B respectively.
- (c) Show that A is unitarily equivalent to $B \oplus B$.

Assignment: 11 a,b and 12 a,b. You may also try to do 11c, it can be used to answer 12b.

The exercises are from Arveson " A short course on spectral theory"