Exercises in Spectral Theory and Operator Algebras V

- 1. Let r be a real number satisfying 0 < r < 1. Show that an infinite-dimensional Banach space contains a sequence of unit vectors $\{u_n\}$ satisfying $||u_n u_m|| \ge r$ for all $n \ne m$. Deduce then that the unit ball of a Banach space E is compact iff E is finite-dimensional.
- 2. Let F be a finite-dimensional subspace of a Banach space E. Show that there is an operator $P \in B(E)$ satisfying $P^2 = P$ and PE = F. Hint: Pick a basis x_1, \ldots, x_n for F and find bounded linear functionals f_1, \ldots, f_n on E such that $f_i(x_j) = \delta_{ij}$. Deduce then that every finite-dimensional subspace $F \subset E$ is complemented in the sense that there is a closed subspace $G \subset E$ with $G \cap F = \{0\}$ and G + F = E.
- 3. Show that for any Banach space E, $\mathcal{K}(E)$ is a norm-closed two-sided ideal in B(E).
- 4. Let $T \in \mathcal{K}(E)$. Show that $T^* \in \mathcal{K}(E^*)$. Hint: Use Ascoli's theorem.
- 5. Find a necessary and sufficient condition that the diagonal operator T on ℓ^p , $1 \le p < \infty$, given by

$$T(x_1, x_2, \ldots) = (a_1 x_1, a_2 x_2, \ldots)$$

is compact.

- 6. Show that $M_f: L^2([a,b]) \to L^2([a,b]), M_f \xi(x) = f(x)\xi(x), f \in L^{\infty}([a,b])$ is compact iff f = 0.
- 7. Let $C_2(H)$ be the space of Hilbert-Schmidt operator on a separable Hilbert space H. Let $\{e_k\}$ be an orthonormal basis in H. Show that $\langle A, B \rangle = \sum_k \langle A_k, Be_k \rangle$ defines an inner product on $C_2(H)$ and $C_2(H)$ is complete with respect to $||A||_2 = \langle A, A \rangle^{1/2}$. Show also that $||A|| \leq ||A||_2$, $A \in C_2(H)$. Moreover, if $k \in L^2(X \times X, \mu \times \mu)$, then $||I_k||_2 = ||k||_2$, where $I_k \in B(L^2(X, \mu))$ is given by

$$I_k \xi(x) = \int k(x, y) \xi(y) d\mu(y), \xi \in L^2(X, \mu).$$

8. Let (X, μ) be a finite measure space. We will call a system of measurable subsets $D = \{\alpha_j \times \beta_j \subset X \times X : 1 \leq j \leq J\}$ diagonal if $\alpha_i \cap \alpha_j = \emptyset$, $\beta_i \cap \beta_j = \emptyset$. For such D let

$$\pi_D(T) = \sum_{j=1}^{J} M_{\chi_{\beta_j}} T M_{\chi_{\alpha_j}}, T \in B(L^2(X, \mu)),$$

and $r(D) = \max_{1 \leq j \leq J} (\min\{\mu(\alpha_j), \mu(\beta_j)\})$. Show that if D^k is a sequence of diagonal systems such that $r(D^k) \to 0$, $k \to \infty$. Then $\|\pi_{D^k}(T)\| \to 0$ for each compact operator T. Hint: prove the statement first for rank one operators using the previous exercise.

- 9. Can a compact operator A on infinite-dimensional space satisfy the equation $\sum_{k=0}^{n} c_k A^k = 0$, where we set $A^0 = I$. Formulate a criterium when this is possible.
- 10. Find the spectrum of the compact operator on $L^2([0,1])$ given by

$$Ax(t) = \int_0^1 \min\{t, s\} x(s) ds, x \in L^2([0, 1]).$$

11. Find parameters p, q, r for which the integral equation

$$x(t) = \lambda \int_{-1}^{1} (1 + 2t + 3st)x(s)ds + pt^{2} + qt + r$$

has a solution in $L^2([-1,1])$ for any $\lambda \in \mathbb{C}$.

Assignment: 8, 10, 11.

The exercises 1-4 are from Arveson " A short course on spectral theory"