Non-abelian groups of order p?

Let G be a non-abelian group of order p3 with p a prime. Then we know that its
center Z is non-trivial. Furthermore if a group is a central extension with a cyclic
quotient, then the group is commutative. Thus we have an extension

1-7Z—-G—>A—1

where A is isomorphic to Z, x Z, and Z ~ Z,. Furthermore we also conclude
that the commutator of G is contained in the center Z. As it is non-trivial by
assumption, we must have equality. We are now ready to set up the structure
theory.

Pick z, y two non-commuting elements, and set 1 # ¢ = zyz~ly~
a generator for the cyclic group Z.

We can write

L which is hence

Ty = cyx
And thus by repetition

oy = z(zy) = ca(yz) = c(zy)z = ’ya

and easily derive by induction the relations

and more generally
mn,n,m

x"y" ="y
In particular we note, what could of course been seen directly, that for any element
x we have P € Z. The structure of the group would be completly determined by
setting numbers ¢, r such that 2P = c?,y? = c"
Similarly we can compute

(zy)(zy) = z(yz)y = ¢ 'a’y?

or more generally
(xy)n — C—n(n+1)/2$nyn

Let us now assume p is odd and postpone a discussion of p = 2.
If we replace z by z® and y by y? then by the above ¢ will be replaced by ¢®?.

We thus get
(PP = ¢~ PP(p+1)/20a+Br — caq+hr

The right-hand side can be made to 1 by a judicious choice of «, 8 and hence we
can assume that there exists an element x not in the center such that zP = 1.

We conclude that in the odd case we have two cases. Either we have two non-
commuting elements of order p or we have just one non-central element (up to a
power). In both cases we can exhibit G as a semi-direct product

1-B—>G—->C—1

where C' is a cyclic group of order p disjoint from B where B is generated by the
center and an element y. In the first case y is any non-central element, while in
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the second case it is one not of order p. The structure of B will in the first case
be Z, x Z, and in the second Z,>. To describe the semi-direct product we need to
determine the representation of Z, on the automorphism group of B.

Case L.

Any element of B can be written uniquely as y®c? pick z such that the commu-
tator < z,y >= c and consider

a:(yo‘cﬁ)a:_1 = (a:ya)x_lcﬂ = yPrz 1P =yt

This corresponds to sending x to the matrix O) identifying in the process the

1
1 1
only subgroup of GL(2,F,) of order p. In particular G is uniquely determined.
Case 1II.
Any element of B can now be writen as y* we may choose x of order p such that

< z,y >= yP = c a similar calculation as above yields

a:yaa:_l — cayaxx—l — ya(p+1)
identifying in the same way the only subgroup of Aut(Z,2) ~ Zp_1) of order p.
Once again G is uniquely determined.

Note that both constructions also make sense for p = 2 but then they coincide.

Now let us turn to p = 2 we then have

(zy)? = cz’y?

where c¢ is a non-trivial element of order two. Thus we conclude that not both z
and y can be of order two. In particular we can always find elements of order 4.

Case 1. There is a non-central element of order two, then as above we can form
a semi-direct product of Zs with Z4. This is given by the canonical identification of
Zy with Aut(Z4) and the construction obviously yields the dihedral group of order
8.

Case 2. There is no non-central element of order two. We then have 22 = y2 = ¢
and the structure of the group is completly determined. In fact if we set ¢ = —1
(an element of order two) and = = i,y = j we get ij = —ji and if we set k = ij we
exhaust the possible elements of G naturally represented as

i ik
—1

—i —j —k
1

and we have in fact defined the so called Quaternionic group representing the units
of the integral quaternions.

1.1. Automorphism groups of non-abelian groups of order p>

As we have noted any two non-commuting elements z,y generate the group
G (abstractly as all proper subgroups are abelian) it is enough to determine an
automorphism by specifying the action of the automorphism on those two elements
alone. Thus set

m1

/
z—=ctr™y™ =g

y chx’rl’I,zynz — yl



m; np
ma N2

Set ¢ = ( ) and it is easy to check

< .’L‘I,yl >= cdet¢

Thus we get the condition that det(¢) # 0(p) and hence we get an exact sequence
0 — Zy x Z, — Aut(G) - GL(2,p)
Where Z, x Z,, is given by the automorphisms

T —=cx

y —cly

So let us as usual distinguish betwen the even and odd case. So from now on let
us assume p is odd, until explicitly assumed even. In the case I, every element has
order p so there are no obstructions, hence the righthand map is surjective and we
have indeed a short exact sequence.

0—Zp x Zp, — Aut(G) - GL(2,p) — 1

Where the quotient GL(2, p) clearly denotes the induced automorphism of the quo-
tient Z, x Z,. All automorphisms preserve the center Z and those that act trivial
on the center make up an extension

0— Zp x Zp, — Auto(G) — SL(2,p) = 1

and we have
1 — Auto(G) — Aut(G) — Z, — 1

where the righthandside map Aut(G) — Z, is given by the determinant.(The image
is clearly isomorphic to the automorphism group of the center).

Furthermore we have a natural split of Aut(G) in inner and outer automor-
phisms. The inner automorphisms are clearly given by G/Z = Z, x Z, and to
identify it we have to make a slight calculation, conjugating by the element x™y".

(wmyn)x(y—nm—m = ¢ My

(™y")y(y "™ =My

Thus we identify the outer automorphisms with GL(2, p) given by the first natural
splitting.

We note in passing that the order of the automorphism group is p3(p+1)(p—1)2.

In case 2. We note that the induced automorphisms on the quotient Z, x Z,
must have a fixed eigenspace, namely those elements of order p. Thus the image
will not be the full group GL(2,p) but a subgroup conjugate to lower triangular
matrices, which we will denote by GLg(2,p) this is a group of p(p — 1)? elements
so the total automorphismgroup will have order p3(p — 1)2. The rest of the above
discussion goes through, in particular GL¢(2,p) will be indentified with the outer
automorphisms.



Finally the case of p = 2. In the dihedral case we are now considering GL(2,2) ~
Lo

1.2. Conjugacy classes

As is obvious the elements of the center split up into conjugacy classes of just
one element each. For the non-central elements, the centralizers are groups of order
p? (generated by the elements and the central elements; or alternatively coinciding
with the normalizers of the generated cyclic subgroups) and hence the conjugacy
classes have p elements. As

xyx_l =cy
for some central element ¢ we can describe those simply as the cosets of the center.

Obviously an inner automorphism preserves the conjugacy classes. In this case
we also see that the automorphisms that do preserve conjugacy classes are indeed
inner.



