Group Representations

Finite Groups

Let V be a finite dimensional vectorspace over a field K. By a representation of
a group G on V is meant an action of G on v (written (g,v) — gv) satisfying the
following.

(i) glv+w)=gv+gw g(Av) = Agv
(ii) (gh)v = g(hv)

The first part (i) means that v — gv is a linear map. Thus we have a map
G — GlL(V)

The second part (ii) means that this map is a group homomorphism. Thus a
representation of G on V' is nothing but a group homomorphism from G into GI(V).
Thus the elements of G are represented by linear maps, and if a basis is chosen for
V, also represented by matrices.

Ex 1. The trivial representation. If G — (1) we say that V is a trivial rep-
resentation. This means that gv = v, Vg thus all vectors are invariant. Clearly
every vectorspace can be endowed with a trivial representation. Thus note that G
does not have to be a subgroup of GI(V).

Any representation of G on a vector space V extends to linearity to the whole
ring K[G] - the so called group algebra, consisting of elements of the form ) a(g)g,
which is a vectorspace with the elements g of the group as a basis. A multiplication
is defined by letting multiplication on the basis elements g X h = gh and then extend
by linearity.

Thus a representation of G on V is the same thing as a K[G]-module structure
on V. Thus a sub-representation is defined as a K[G]-submodule (and similarly for
quotient representations).

Ex 2. The regular representation K[G]is a module over itself (by multiplication
on the left). This defines the vector space K[G] as a representation called the
regular representation. Note that in this case, the representation is faithul, i.e. if
gv=v Yuv then g =1 (check it on basis elements!), thus G appears as a subgroup
of GI(K[G])

Two representations V and W are said to be isomorphic iff they are isomorphic
as K[G] modules. This means that there is a K-linear map ® : V.— W commuting
with all the elements of K[G] and a fortiori with G. This means

Q(gv) = g®(v)
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or equivalently for each g € G we have the commutative diagram

Vv 2 . w

s

vV 2 . w

Ex 3. Two different embeddings of G in GI(V') define the same representation

iff the two subgroups G, G5 are conjugated. This means that there is an element
A € GI(V) such that G; = AG2A™!

Given representations V, W we may cook-up new representations on V*,V ®
W,Hom(V, W) etc. E.g. on V ® W we define on the elements of type v ® w

g(v®@w) = gv ® gw

and on V*
(gv*)(v) = v* (g™ ")

As Hom(V, W) = V*®@ W we get likewise a representation on that space. Explicitly
g

(9f)(w) = g(f(g~"v))

Note that V* = Hom(V, K) with K endowed with the trivial representation.

Ex4. If V = W then G both act on Hom(V, V) and can be thought of as a
member of G (although not necessarily faithfully). Thus ¢gf can mean two things.
Either the action of g on the vector f or the composition of the two linear maps g
and f! To distinguish the two meanings let us write g o v for the former. Then we
have

(1) gof=gfg™!

To every representation V' we can associate the submodule Vj of invariant ele-
ment. namely v : gv = vVg. This is clearly a sub-representation.

Ex 5. We have that

Hom(V, W)y = Homge(V, W)

. . 1 .
To every vector v we can associate the weighted-average 1G] > geG 9V- This
clearly is an invariant element. As we can write

ﬁng:ev

with e = |—(1;|Z geg g this defines a K[G] linear map V' — V5. As one easily
computes that e? = e (a so called idempotent) in the group-algebra, we conclude



that this is a projection, and thus that V = V; & Vi, where V; is the image of the
projection 1 — e or equivalently the kernel of e.

Ex 6. If p e Hom(V,V) is a projection so is e o p? In fact by (1) we have

1 1

(gop)(gop) = (9pg~")(gpg™") = g’ =gpg~' =gop

As e is just a linear combinations of the elements g we would like to conclude that
the same holds for eop but this is not a linear condition. However if p is a projection
onto an invariant subspace then pgp = gp from which it easily follows that e o p is
an idempotent.

From this example we may draw the following important consequence.

Semi-simplicity If W is a sub-representation of a representation V', then there
exists another representation U such that V =W @ U.

We simply choose an arbitrary projection p: V — W and consider the average
ep which is a G-homomorphism, by the above example ep is also an idempotent,
and thus the invariant complement is given b y ker(1 — ep).

Another argument can be construed as follows. Given a positive definite Her-
mitian form. IL.e. a sesquilinear form H(z,y) such that H(z,y) = H(y,z) and
H(z,z) > 0 with equality iff z = 0 we can consider its average

1
eH = [ > " H(gz, gy)
g

. This average is non-zero, as for x = y # 0 the terms are strictly positive. We
conclude that there always exists non-degenerate invariant sesquilinear forms, in
fact positive definite Hermitian such.

We draw two consequences.

1) Every representation of a finite group G can be chosen unitary, i.e. one may
conjugate the image of G to lie in U(n, C).

2) Every submodule has an invariant complement, the orthogonality relation
given by the Hermitian form, and its G-invariance assured by the G invariant of
the form. In the case of real representations, we may instead look at positive definite symmetric
forms, and conclude that finite subgroups of GI(n, R) can be conjugated into O(n, R)

Note: Every unitary matrix can be diagonalised over the complex numbers. Thus all the
element g € GI(n,C) can be chosen to have a basis of eigenvectors. We can also see this directly
for elements of finite order by using the Jordan decomposition. Every matrix A can be written
as A = S+ N where S can be diagonalised and N is nilpotent commuting with S. We want to
show that N = 0 if A has finite order. If N # 0 we can choose v such that Nv # 0 and V an
eigenvector for § but N2v =0. Thenv=Iv=A"v=v+nS" v #v

DEFINITION A representation is said to be irreducible iff it does not contain
any proper sub-representations. Clearly every (finite-dimensional) representation
contains an irreducible representation.

We now come to the central observation on which much of representation theory
hinges.

Schurs Lemma Let V, W be two irreducible modules then either

(0) HomK[G](V, W) =0
(1) Homg g (V, W) = a skew-field over K



With the case zero corresponding to non-isomorphic modules, and the case one
corresponding to isomorphic modules.

PROOF Given a map ® : V — W between irreducible modules, its kernel and
cokernel will be submodules, thus either equal to zero or the whole thing. If there
exists a non-trivial map we are in case 1, (as every non-zero map is an isomorphism
and hence invertible) in which V' and W in particular will be isomorphic (by any
non-zero map), in the case of 0, V- and W clearly are non-isomorphic. &

Note: Homgg)(V, V) is of course a ring, sometimes denoted by End (V') the endo-
morphism ring, while Homgg(V, W) 'becomes’ a ring only when an isomorphism
between V' and W is presented.

In the case of K = C we can strentgthen the conclusion in one to state.

If V, W isomorphic then Homg)(V, W) = C, and in fact if V' = W every map is
given by a homothety x — Az.

PROOF The only finite-dimensional skew-fields over C are C itself. In fact for
any linear map ® : V' — V let A be an eigenvalue. Then the linear map ® — Al has
non-trivial kernel, hence the kernel is the whole module. &

As a first corollary of Schurs lemma we will note that in any direct sum de-
composition of an arbitrary module into a direct sum of irreducible components,
the types of irreducible modules that appear are independant of the decompo-
sition. In fact if V = @ W, is a decomposition into irreducible components
Homg(V,W) = @ Homg(W;, W) where the lefthand side is independant of the
decomposition.

We are now ready to make the central definition of a character of a representation.

DEFINITION Given a representation V by the character xy we mean the map
xv : G = K defined by xv(g9) = Tr(g) where g is considered as the linear map
v gu.

Note that isomorphic representations will give rise to the same character. This
follows from the fact that isomorphic representations give rise to conjugate linear
maps (or matrices). Furthermore as Tr(AB) = Tr(BA) which implies

Tr((AB)A™') = Tr(A~Y(AB)) = Tr(B)

. Thus we are done.

Let us note some simple but important properties of characters

a) A character is a class-function, i.e. it is constant on conjugacy classes.

This follows from the fact that trace is constant on conjugacy classes as we noted
above. Alternatively we note that the trace is the sum of the eigenvalues, which
are independant of the conjugacy class of a matrix.

b) We have |x(g)| < dimV with x(g) = dim V iff g acts as the identity.

As g™ =1 for some n, the eigenvalues are roots of unity, hence in particular of
absolute value at most one. As noted above the trace is the sum of the eigenvalues.

c) A 1-dimensional character is a homomorphism G +— C* and conversely any
homomorphism G — C* (sometimes refered to as a character of G) is the character
of a 1-dimensional representation (namely itself!).

In the 1-dimensional case GIl(1,C) is simply C* and the trace of a map can
naturally be identified with the map.



Ex 7. The character of the regular representation is given by

x(1) = |G|
x(g)=0 g#1

Given the character of a representation we can also compute the character of
associated representations. More specifically, let xy, xw be the characters of V
and W respectively. Then
Xv+ =XV
Xvew = XV + Xw
XVew = XVXW
XHom(V,W) = XWXV

a
b
c
d

~— — o —

PROOF Given an element g we can choose a basis of eigenvectors. Thus let
ge; = A\je; where e; constitute a basis for V' and similarly gf; = p; f; where f; is a
basis for W. Now let e} be a dual basis for e; then

ger(ej) = ef(g "ej) = A el (e;)

thus e} is also a basis of eigenvectors, but with eigenvalues )\Z-_l. The eigenvalues
are roots of unity, in particular |)\;| = 1 thus )\i_l = \; and thus the trace, being
the sum of eigenvalues will be the conjugate.

Furthermore (e;,0), (0, f;) will constitute a basis of eigenvectors for the action
of g on V @ W with the eigenvalues \;, uu; respectively hence b).

We also note that e; ® f; will be a basis of eigenvectors for the action on V@ W
as

9(e; ® fj) = gei ® gfj = Ninj(ei ® fj)
from which c) follows.
As Hom(V,W)=V* @ W a) and c¢) implies d) &

For future references it may also be useful to note that the module of sesquilinear forms also
gets, as we have already observed, a natural action. Given a basis e; as above we get

H(gei,gej) = AiS\jH(ei, ej)

from which we conclude that the corresponding character is given by |xv|2, which incidentally is
the same character as for Hom(V, V).

Now we want to establish the following formula

1 .
1€ Z xv(g) = dimVj
geG

PROOF Recall the idempotent e = |—Cl¥| > gea
puted in two different ways. Either as dimIm(e) = dim Vj or simply as the sum on
the lefthand side. &

Now we apply this to the module Hom(V, W) obtaining the following orthogo-
nality relation between irreducible characters

g € K[G]. Tts trace can be com-

G > xw(9)xv(g) = dim Homg (V, W)

1
G| 22



Let us define the Hermitian innerproduct on C[G] (i.e. on complex-valued func-
tions on G) as follows

<, x >=

=) _tlg)x(g™h) =

geG

> w(9)x(e)

1
G v

1
|G|

We can thus state for irreducible representations over C

0 1,x different representations
<Y, x >= :
1 1,x ,the same representation
Let us first note a startling consequence, namely the character of an irreducible

representation (and hence any representation) determines the representation.

Thus in particular if a finite group G is mapped into GI(V) in two different ways such that
elementwise the matrices are conjugate (a priori by different matrices) then there exists a fixed
(common) linear transformation performing all the conjugations!

Also we note that on a fixed vector-space (i.e. fixing the dimension = n) only a finite number
of different representations can be induced. Namely the group being finite there is a common
exponent N say. Thus there is only N possibilities for the eigenvalues, and thus at most N™
possibilities for the traces of any given element. The number of element being finite, we note that
there will only be a finite number of possible characters. Furthermore as we have noted above, the
dimension of an irreducible representation is at most the order of the group, thus there can only
be a finite number of irreducible characters and hence irreducible representations. The estimates
that we have given are, however, ridiculously crude

We finally note that as the module of sesquilinear forms is isomorphic to the endomorphism
module, there will for irreducible modules only be one, up to multiplication by scalar, invariant
form. As one example is given by a positive definite Hermitian, that invariant form will in fact
be positive definite Hermitian!

Now let V' be an arbitrary representation and let @ m;V; be a decomposition
of V into irreducible representations. Then the m; and the irreducible components
are uniquely determined by V. In fact we have

m; =< V,V; >

PROOF this is an immediate consequence of the orthogonality relations. The
characters of irreducible components span the space of generated by all characters,
and being an orthonormal system, they provide in fact a basis, thus every character
can be uniquely written as a linear combination. The coefficients are in fact given
by the formula above. &

Given an arbitrary representation x = ). m;x; we compute
<X >=» m;
i

Thus we see that a character x corresponds to an irreducible representation iff
<x,x >=1.

Ex 8. The decomposition of the regular representation is given by

ClG] = @ m; Vi

where m; = dimV;



PROOF Let x be the regular character, and y; the character corresponding to
the irreducible representation V;, then

1 .
S XX 2= @ ZX(Q)Xi(g_l) =x1(1) =dimV;
g

[ )

As a corollary we note that every irreducible representation V; occurs in the
regular representation (with a multiplicity given by its dimension). This gives a
much sharper bound on the number of irreducible representations than the one
above. In particular if we exploit the identity

X = Z miXi
i
we get

> mi =G|
mixi(9) =0 g#1
2

The subrepresentations W; = @}, V; are refered to as the isotopic components.
Those are unique components of V. However each isotopic component can be
represented as a sum of its irreducible components (all isomorphic to the irreducible
'type’) in many different ways.

Ex 9. The isotopic component corresponding to the trivial irreducible represen-
tation has been refered to above as V. Its dimension is equal to the number of times
the trivial irreducible representation appears. The latter is given by |—le,| >4 x(9)

Ex 10. The group Z- has only two types of irreducible representations, namely
the two maps of Zo — C*. The non-trivial representation is given by the unique
embedding of Z; as +1. A general representation is determined by the action of
the non-trivial element ¢ which is an involution (i.e. :2 = 1). The two isotypic
components are determined by (v = v and (v = —wv respectively. Projections onto
each component are given respectively by

1
v E(U—l-w)

1
— —(v —
v g (v — w)

Maps of Zy into GI(V') are classified up to conjugacy by the number of +1 eigen-
values and —1 eigenvalues. Which also is the classification of involutions up to
conjugacies. Fixing the dimension to n the trace will take every other value from
—n to n a total number of possibilities given by n + 1. Involutions can be thought
of reflections in the linear subspace V}, those reverse the orientation iff there is an
odd number of —1 eigenvalues.

We have noted that characters are constant on conjugacy classes. A function
constant on conjugate classes is called a classfunction. Those make up a subring



of the groupalgebra C[G] and its dimension is clearly equal to the number of con-
jugacy classes. As irreducible characters are linearly independant, their numbers
is bounded by the number of conjugacy classes. We would like to show that it is
in fact equal to the number. To do so, we would like to show that a classfunction
orthogonal to all characters is equal to zero.

Consider for each classfunction f the element f = 3 s f(9)g € C[G]. Then fis

invariant under conjugation (i.e. g fg_l = f. This means that f commutes with

all elements g and thus belongs to the center of the groupalgebra. In particular
multiplication by f is a G homomorphism, and thus its restriction on an irreducible
module V' is given by a homethety v — Av. The trace of this homethety is given by
on one hand Adim V on the other hand by > f(g)x(g). If f is assumed orthogonal
to all irreducible components, it restricts to zero on all irreducible modules in
particular on the regular representation. But f 1= f thus f = 0 which means (as
g constitute a basis for C[G]) that all the f(g) vanish.

If we apply the above argument to the classfunctions x themselves we can state that the
element e, = % deG MQ is an idempotent, and that the map v +— ey v is a projection onto
the isotopic component Vy

PROOF Let us restrict ey to the irreducible components. Being a G-homomorphism it is a

homothety, its value being given by the trace. Let us choose an irreducible component W with
character 9. The trace will be given by

x(1)

G D x@)wle) = x(1) < x>

9€G

Thus we note it will act as the identity on components isomorphic to W and as zero on others.

o

Thus we are able to each group G associate a character-table. To fix ideas we let
the horizontal row denote the different conjugacy classes c, each by a multiplicity u.
given by the number of elements in it, while the vertical column will list the different
irreducible representations. Thus each horizontal row will encode a character, its
values given on the different conjugacy classes, while each vertical row will denote
the traces of the possible irreducible representations of elements in a given conjugacy
class.

Ex 11. the horizontal row corresponding to the trivial (irreducible) represen-
tation will consist of just 1’s; while the vertical row corresponding to the unique
conjugacy class of the identity, will list the various dimensions.

The square array of numbers will satisfy a number of numerical relations. The

horizontal rows will constitute an orthonormal basis under the innerproduct given
by

<X, >= é ;x(C)Wuc

while the vertical columns will likewise constitute an orthonormal basis under the
innerprocuct given by

1 1
<c¢d>= el ;C(x)d(x) =Gl ;X(C)X(d)

Note: For the case of ¢ = {1} this has already been established above in con-
nection with the regular representation. In general let f. be a class-function which



is one on ¢ and zero on the other classes. We can write fo = >° acx where the
coefficients a, are given

1
o, =< fe,x >= 5 x(c
Te] (c)

Thus 1
fe(d) = e > x(e)x(d)

from which we can read it off.

Ex 12. The trivial character table is given simply by the number 1. The char-
acter table for Zo = {£1} is given by the 2 x 2 array

1 -1
1 1 1
-1 1 -1

While finally the character table for the group S3 (given by permutation on three
letters) is given as follows.

0 (12 (123

1 1 1 1
-1 1 -1 1
0 2 0 -1

The reader is encouraged to check that all the numerical conditions are satisfied!

A group is abelian iff all of its irreducible representations are 1-dimensional.

PROOF If two matrices A, B commute, then they preserve each others eigen-
spaces. In fact if Av = Av then A(Bv) = BAv = BAv = ABv. Thus any two
commuting matrices can be simulaneously diagonalised. This clearly generalises to
any set of pair-wise commuting matrices. Thus the common eigenspaces constitute
an irreducible decomposition.

Conversely if all representations are 1-dimensional, then there must be G = > 1
different representations, hence the same number of different conjugacy classes, i.e.
each conjugacy class reduces to one element, thus G is abelian. (This argument is
incidentally reversible, showing that by numerology each irreducible representation
of an abelian group is 1-dimensional) &

Note that any representation of an abelian group can be effected by diagonal
matrices, the entries of which are given by the (1-dimensional) characters. Thus it
is easy to read off from the character table explicit matrices for a representation.

Ex 13. Every non-commutative group has at least one multi-dimensional irre-
ducible representation. If the group G has an abelian subgroup A of index d then
any irreducible representation W of G has dimension at most d. In fact let Wy C W
be a 1-dimensional A-submodule generated by w say. Then the space spanned by
the d vectors gAw is invariant under G.
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Real representations

There are three types of irreducible representations W over the reals, classified
by the skew-field Homg[g (W, W). The three cases are summarized below

skewfield <X, X >
real 1
complex 2
quaternions 4

where the numbers in the right column are just the dimensions (over R) of the
corresponding skew-fields.

Taking an irreducible real representation W and complexifying it to W =
W ®r C we get a complex representation which may or may not be irreducible.
Clearly complexifying a real representation does not change the character (we are
simply looking at the real representation with real matrics and everything and just
considering them to be complex numbers). Thus we can conclude

type <X, X > decomposition
real 1 We

complex 2 |4 @ V*
quaternions 4 \%4 @ |4

Thus to every real irreducible representation corresponds either an irreducible
complex representation, or a pair of two conjugate irreducible complex representa-
tions. The first case (one and four) means that the complex irreducible character
is real, while the second case (two) corresponds to non-real characters.

Note that case one means that the irreducible complex representation W¢ is
defined over R. But not every complex representation G — Gl(n, C) can be realised
over R. A necessary condition for this to be possible is that the characters are real,
or equivalenty that ¥ = x. This can also be reformulated as V = V* which means
that there is a non-degenerate bilinear form B invariant under G which defines an
isomorphism via x — B(x,*). If V is irreducible there can, up to homethety, only
exist one such form B.

We can compute the dimension of the invariant part of V ® V (the space of bilinear forms) as
given by

1
@ ZX2(9) =<Xx,X >
g

If x is real then x,x >=< x,x >= 1 otherwise it is zero by orthogonality of distinct irreducible
representations. In the case of non-real characters, there will be a unique sesqui-linear form,

actually a postive definite Hermitian as we have observed above.

On the space V x V of bilinear forms there is an action of Zs given by v ® w —
w®v and extended by linearity. The isotopic components correspond to symmetric
and alternating forms respectively, denoted by S(V) and A(V). This action of Z,
commute with the action of GG, so both of those are also G modules. By setting
vw=1(v@wW+w®v) and v Aw = 1(v®ww ®v), a basis e; of eigenvectors for g
with eigenvalues A; gives a both a basis for S(V') via e;e; with ¢ < j and for A(V)
via e; A ej with ¢ < j with eigenvalues A;A;. Adding up we get the characters x,
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and x, as follows

x(9) = 3 6C(9) + x(5)
xa(9) = 5 (0) ~ X(6*)

as the eigenvalues for g2 are given by A? If V is irreducible, then the non-zero
invariant bilinearform is either symmetric or alternate (never both). In fact by
considering the sum

ﬁ D (xs(9) — Xal9)) = ﬁ > x(g?)

which will take values 1,0, —1 we can from the character itself distinguish the
different cases, corresponding to the existence of either an invariant symmetric
form, an invariant Hermitian form, or an invariant alternate form.

We can also make another division into three classes of irreducible complex
representations. Namely each n-dimensional complex representation V' becomes
a 2n-dimensional real representation by restriction of scalars (i.e. forgetting that
we can multiply with ). Let us denote the real representation by Vk. As before,
starting with an irreducible complex representation V' there is no reason why Vg
should be an irreducible real representation.

The first thing we need to know is to compute the real character x from the
complex character ¥. Recall that multiplication by the complex number a + b on

C is rendered by the matrix (Z _ab) when C is identified with R? via the natural

basis 1,4. From this we conclude that the trace a + b of the complex multiplikation
is turned into 2a. From this we conclude that

X = 2Rey)

The second thing we should observe is that either is Vg irreducble (over R) or
there is a maximal real-submodule W # V. Now W NiW is a complex submodule,
hence equal to zero, thus W & «W is a complex submodule of V', the letter being
irreducible we note V.= W @ «W. Also any real submodule Wy C W will give
rise to a complex submodule Wy & W, hence W is real irreducible. Not also that
multiplication by ¢ commutes with G so tW and W are isomorphic, and thus V as
a real module is isotopic.

Now if 9 is real, we get that y = 2¢ and thus < x,x >=4 <Y, >=4. If Vi is
irreducible, it is thus of quaternionic type, and if it is reducible, we have yw = ¥
and thus they define the same module, V = W ®g C and W is of real type.

But if ¢ is not real than at least for some g we have |x(g)|? < 4/1(g)|? from
which we conclude that < x,x >< 4 thus only the cases < x,x >= 1,2 occurs.
Also we may not form x/2 (the putative character of a summand W) so that Vi has
to be irreducible. If < y,x >= 1 then V ®g C is irreducible, as we have observed
above, but that is impossible as V itself is a submodule, and so we are left with
< X, X >= 2 - the complex case.

We have now shown how we can go back and forth between irreducible complex
modules and real. The real irreducible are classified into type 1,2,4 (real, com-
plex, quaternionic respectively), while we have a similar classification of complex

|2
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irreducible in terms of real (real character and split over real), quaternionic (real
character and irreducible over reals) and finally complex (non-real character). Thus
real corresponds to real. (A real real gives a real complex upon extension of scalars,
and a real complex gives rise to a real real when restricting). Similarly a complex
real give rise to a pair of conjugate complex complex, each of which when restricted
give a complex real). Finally a quaternionic real give rise to a quaternionic complex,
which in its turn becomes a quaternionic real when scalars are restricted.

What we finally need to know to tie things together is to connect this classifica-
tion of complex irreducibles to the one pertaining to invariant forms. One part is
clear. Real and Quaternionic are characterized by the existence of invariant bilin-
ear forms, and we need only to make the right connection between symmetric and
alternate.

First we note that if V' can be realised over the reals, then we can cook up an
invariant symmetric form, by taking the average of an arbitrary positive definite
quadratic form on the real part (as we have noted above). This survives by tensoring
over the complexes.

Now assume that the irreducible complex representation is quaternionic. This
allows us multiplication by 7 and £ in addition to ¢, and in fact real linear combi-
nations of those (or equivalently complex multiplications of j) make up elements
a such that ai = —ia. Now pick an invariant Hermitian form H(z,y) and set
B(z,y) = H(z,ay). Clearly B(z,y) is invariant bilinear. Furthermore the form
H(azx,ay) is anti-linear in the first variable, thus by uniqeuness of H we have
H(az,ay) = AH(z,y), normalizing o so that a®> = —1 we note by repeated ap-
plication of the identity that |A| = 1. By multiplying « with a suitable complex
number of lenngth one, we may assume A = 1, it is then natural to set 7 = . Now

—H(jZL',SL') = H(J"Ba _J’.) = H(xhjl.) = H(J:Ea:[;)

where the last equality follows from H being Hermitian. This implies that B(z,z) =
0 and thus B is alternating.

This allows us to identify quaternionic with alternating forms, real with sym-
metric forms (and complex with Hermitian), and the picture is complete. It is now
a straightforward exercise to produce the irreducible real characters from having
the complex character table.

Ex 14. Real irreducible representations of Abelian groups are either real or
complex (i.e. quaternionic do not appear). Thus they are either 1-dimensional (in
case of real characters (taking the values +1)) or 2-dimensional (being the sum of
two conjugate characters).

Ex 15. The quaternionic group {+1, +4, +3j, £k} of eight elements has five rep-
resentations. Its center is given by +1, and the quotient is simply Zs @ Zs which
gives rise to four 1-dimensional representations. Remains a 2-dimensional repre-
sentation. This is not defined over the reals, but the sum of itself, gives rise to a
quaternionic real representation. In fact the quaternions, and a fortiori the quater-
nionic group, can be represented by 4 X 4 real matrices.

It is a nice exercise to show directly that the existence of a symmetric invariant
form defines a real subspace, as well as the existence of an alternating form allows
a quaternionic structure.



