
Representations of sl(2, C)

Let us consider the standard generators X,Y,H of sl(2, C) satisfying the com-
mutator relationships

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H

Now let V be a finite-dimensional irreducible representation. Under the action of
H we can split up V into eigenspaces V = ⊕αVα with a finite number of eigenvalues

α.

The first basic fact we want to establish is that X and Y permute these eigenspaces,
which follows from two simple calculations.

So let v ∈ Vα

HXv = XHv + [H,X]v = αXv + 2Xv = (α + 2)Xv

HY v = Y Hv + [H,Y ]v = αY v − 2Y v = (α − 2)Y v

Thus X shifts ”two steps” to the ”right” XVα ⊂ Vα+2 while Y shifts to the left
Y Vα ⊂ Vα−2

In particular XY and Y X (none of which actually belong to sl(2) operate on
each of the eigenspaces Vα. The underlying idea is now to look at eigenvectors of
these actions.

More specifically, consider Vα 6= 0 such that XVα = 0. This is always possible
for any non-trivial finite-dimensional V .

Pick a non-trivial element v ∈ Vα. The contention is that it is automatically an
eigenvector for XY (and trivially Y X). In fact

XY v = Y Xv + [X,Y ]v = HV = αv

Hence its eigenvalue is α.
We would now like to look at the iterates v, Y v, Y 2v . . . . They are all linearly

independent as they belong to distinct eigenvalues. But they are also all eigenvec-
tors for XY . In fact by induction we can assume that XY (Y kv) = λ(k)Y kv with
λ(0) = α. Thus

XY (Y k+1v) = Y X(Y k+1v) + HY k+1v = Y XY (Y kv) + (α − 2(k + 1))v =

= (λ(k) + α − 2(k + 1))Y k+1

showing incidentally that λ(k + 1) = λ(k) + α − 2(k + 1). By induction we prove
that λ(k) = (k + 1)α − k(k + 1) But the fact that Y kv are eigenvectors for XY

means that X permutes, in fact shifts, the iterates Y kv.

XY k+1v = λ(k)Y kv

. Thus the linear space spanned by those iterates is not only invariant under Y

(by construction) and H (each iterate an eigenvector of H) but also under X. By
irreducibility we conclude that they span the entire space V .
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Finally the iterates can only be finite in number, there is an N > 0 such that
Y N+1v = 0 but Y Nv 6= 0. This means

0 = XY N+1v = λ(N + 1)Y Nv

thus λ(N + 1) = 0 which translates into α = N .

We have now elucidated the structure of the finite-dimensional irreducible rep-
resentations of sl(2). The pertinent facts are

i) The only eigenvalues are integers, and they all differ by multiples of two.
ii) All eigenvalues belong to 1-dimensional eigenspaces.
The top eigenvalue is N and Y kv correspond to N − 2k. In particular the

lowest eigenvalue will be −N . Thus in particular we see that the eigenvalues are
symmetrical with respect to the origin.

All irreducible representations corresponding to a given N are isomorphic, and
by using the basis ei = Y kv with i = (N − 2k) we can describe the representation
as follows

Hei = iei

Y ei = ei−2

Xei =
(N + 1)2 − (i + 1)2

4
ei+2

for a set of vectors e−N , e−N+2, . . . eN−2, eN with an obvious convention for indices
going out of bound. Note that such a representation is N + 1 dimensional

It is also straightforward to check that this does indeed give a representation of
sl(2) by checking the commutator relations.

So let us look at the cases for small N .

N = 0 This is the trivial one dimensioanl representation
N = 1 This is the canonical, or standard, representation of sl(2) on C

2 as a
lie subalgebra of gl(2, C) The matrix representation fo H,X and Y becomes the
standard.

N = 2 This is the adjoint representation of sl(2) on itself. The irreducibility of
it shows that sl(2) is simple. The eigenspaces of H corresponding to −2, 0, 2 are of
course spanned by Y,H and X.

Now any (finite-dimensional) representation of sl(2) is a sum of irreducible. From
this we can conclude som general facts.

So let V be a representation and let w(α) = dim Vα. Then the weight function
w takes non-zero values only on the integers, and is zero for almost all.

Furthermore
A) w(α) = w(−α)
B) V has a unique decomposition V = V+ ⊕ V− such that the corresponding

weight functions w− and w+ vanish on even and odd integers respectively. For
those weight functions we have uni-modularity i.e w(α) ≥ w(β) if |α| ≤ |β|.

We also note that we can recover the representation from the weight function,
thus it determines the representation uniquely. Furthermore any function satisfying
A) and B) can occur as a weight-function.
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The symmetry condition A) shows that the dual V ∗ of a sl(2) representation is
isomorphic to V . Another way of putting this is to say that there is a sl(2) invariant
linear map q : V → V ∗ which gives rise to a sl(2) invariant non-degenerate bilinear
form Q via Q(x, y) := q(x)(y). Conversely given such a bilinear form, we can get
an invariant map q : V → V ∗ by reversing the equality q(x)(y) := Q(x, y). We
have hence showed that the space V × V contains trivial summands (intersecting
the open subset non-degenerate forms).

In general we would like to compute the weight function for representations. So
let us consider some standard examples.

V ⊗ W . Writing V = ⊕Vα and W = ⊕Wβ we get a decomposition V ⊗ W =
⊕Vα ⊗Wβ . If v⊗w ∈ Vα ⊗Wβ then H(v⊗w) = Hv⊗w + v⊗Hw = (α+β)v⊗w.
Hence Vα ⊗ Wβ corresponds to eigenvectors with eigenvalue α + β.

As we have dim V =
∑

α dim Vα and dimW =
∑

β dimWβ we get

dimV ⊗ W =
∑

α,β

dimVα dimWβ =
∑

α,β

dimVα ⊗ Wβ

exhausting the tensor product.
Hence we can write down the weightfunction wV ⊗W in terms of the weightfunc-

tions wV and wW . In fact we get

wV ⊗W (γ) =
∑

α+β

wV (α)wW (β)

thus in fact it is given by the convolution of wV and wW .
In particular this applies to Hom(V,W ) = V ∗ ⊗ W = V ⊗ W . We can also look

at V = W and the symmetric and alternating part.
Clearly

wS2(V )(γ) =
∑

α≤β

wV (α)wV (β)

w∧

2

(V )
(γ) =

∑

α<β

wV (α)wV (β)

More generally we can write down the corresponding formulas for Sn(V ) and
∧n

(V ).
If V is the standard 2-dimensional representation of sl(2) given by x ∈ V1 and

y ∈ V−1 we can consider Sn(V ) the vectorspace of all binary forms of degree n.
By the product rule we easily see that Hxn = nxn and Hyn = −nyn and

more generally Hxkyn−k = (n − 2k)xkyn−k. Thus we recognise this as the unique
irreducible module of dimension n + 1. Thus from now on we will have a standard
notation for them.

Thus a general problem (an equivalent reformulation of the weightfunction) is
to decompose any representation into sums of the Sn(V ). So let us do this for a
few examples.

So let V be the standard representation with w(1) = w(−1) = 1. Then the
weight function of V × V will satisfy w(−2) = w(2) = 1, w(0) = 2 hence we have
the decomposition

Hom(V, V ) = V × V = S2(V ) ⊕ C
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Where the last summand is the trivial representation, which is actually isomorphic
with

∧2
(V ).

Now we have in general a map Hom(V, V ) → C given by the Trace. This is
actually not only linear but g linear for any liealgebra g operating on V provided
C is given the trivial structure. To see this in general we make use of the identity
V ∗ × V = Hom(V, V ) for which each decomposable element v∗ ⊗ v is mapped onto
the map x 7→ v∗(x)v. The trace of this map is easily computed to be equal to v∗(v).

We have by definition

g(v∗ ⊗ v) = (gv∗ ⊗ v + v∗ ⊗ gv)

Thus evaluating trace gives

Tr(g(v∗ ⊗ v)) = (gv∗(v) + v∗(gv) = v∗(−gv) + v∗(gv) = 0

The kernel of the trace map is hence a submodule which hence should be iden-
tified with S2(V ) the traceless matrices.

We also see that
∧2

(V ) is trivial, thus the alternating bilinear forms (unique up
to a scalar) on V are sl(2) invariant, and it must be those that effect the isomorphism
between V and V ∗ as we see that S2(V ) is irreducible and hence do not contain
any invariant elements.

We can now in general decompose

Sn(V ) ⊗ Sm(V ) =
m

⊕

α=0

Sn+m−2α(V )

One of the projections Sn(V ) ⊗ Sm(V ) → Sn+m(V ) can be given a natural
interpretation as the multiplication of binary forms. The other projections are a
little bit more subtle.

Let V be the standard 2-dimensional representation of sl(2, C). To this there
will be a corresponding representation of the Lie-group SL(2, C) in the obvious
way. Both representations induce actions on P (V ) = CP 1 which in the latter case
coincides with the standard representation of the group of Moebius transformations
PSL(2, C) on the Riemannsphere CP 1.

To each Moebius transformation A is associated two fixed points, those are given
by the eigenvectors to the corresponding action on V . In the same way to each
element a ∈ sl(2) there are two corresponding eigenvectors, which corresponds to
the fixed points on the Riemann sphere.

Conversely given any two fixed points, there is a 1- parameter subgroups fixing
them. It is given by the exponentiation of the line of elements ta ∈ sl(2) with the
given eigenspaces.

There are two types of elements. Either the fixedpoints are distinct, or they
coincide. The first type corresponds to semi- simple elements the second to nilpotent
elements.

In the action of sl(2) on V all elements v are equivalent. Each v determines either
a 2-dimensional subgroup of PSL(2, C) or a 2-dimensional subalgebra of sl(2) given
by the projective stabilisator Sv = {a : av = λv}. (The stabilisator of the action
on P (V )) It contains a distinguished element (up to a multiplicative scalar) - the
uni-(nil)potent element (corresponding to λ = 1, (0)). Any two Sv1 and Sv2 have
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a non-empty intersection, the 1-parameter subgroup generated by the fixed points
v1, v2.

The un-ordered pairs of points on CP 1 = P (V ) are parametrised by a CP 2, more
precisely by P (S2(V )), the linear system of binary quadrics, via its zeroes. This
CP 2 comes equipped with a canonically given conic, corresponding to the nilpotent
elements.

This projective plane can also be thought of as parametrising all 1-parameter
subgroups of PSL(2, C) or equivalently, all vector fields, up to multiplication with
a scalar. Thus the lifting to sl(2) gives a parametrisation of all complex vector
fields on the Riemann-sphere.

Clearly the lie-algebra structure on S2(V ) is the one given by the identification
of this space with sl(2). It can be useful to explain this in detail.

Recall that we have a map π : V ⊗V →
∧2

(V ) ≡ C given by x⊗y 7→ x∧y. The
kernel of this map is obviously given by S2(V ). Now recall that the wedge product
on V determines a sl(2) invariant bilinear form on V which effects the isomorphism
with V with its dual V ∗. Hence we can write down an identification of V ⊗V with
Hom(V, V ) via v ⊗w 7→ (x 7→ (v ∧ x)w). The trace of this mapping is clearly v ∧w

which actually identifies π with the Trace.
A basis for S2(V ) is given by x2 = x⊗x, xy = 1

2 (x⊗ y + y⊗x), y2 = y⊗ y given
a basis x, y for V . It is natural to chose the latter basis as self- dual (i.e. letting
x ∧ y = 1). Via the identification of V × V with Hom(V, V ) we will get matrix
representations for the elements x2, xy, y2 as follows

x ⊗ x 7→

(

0 1
0 0

)

x ⊗ y 7→

(

−1
2 0

0 1
2

)

y ⊗ y 7→

(

0 0
−1 0

)

Thus to each binary form ax2 + bxy + cy2 we associate the element

(

− b
2 a

−c b
2

)

.

Notice that the discriminant 4ac − b2 corresponds to the determinant (up to a
trivial factor 4) of the matrix.

By this transportation of structure we get the liealgebra structure on S2(V ). Set
X = x2, Y = y2 and Z = xy and we get [Z,X] = −X, [Z, Y ] = Y, [X,Y ] = 2Z.

The adjoint action of sl(2) on S2(V ) has more structure. As we noted there
is a distinguished conic D (the discriminant conic of nilpotent elements). Given
any semi-simple element H its polar with respect to D will intersect the conic
in two points X,Y corresponding to the eigenvectors of the adjoint map ad(H).
Conversely given any line L in P (S2(V ) it is in general not a subalgebra, in fact
[L,L] will correspond to the polar of the line. Thus the subalgebras will correspond
exactly to the lines tangent to the distinguished conic D. We hence get a geometric
picture of all the subalgebras of sl(2). The 1-dimensional ones will correspond to
the points, and the 2-dimensional to the tangents to D.

As a vectorspace S2(V ) is clearly not homogenous with respect to the action.
Given an element v ∈ sl(2) its stabilisator Sv will depend on what type of element
v is. If v is semi-simple (i.e v 6∈ D) then Sv is simply the subalgebra spanned by
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v (i.e. the point v itself considered projectively). But if v ∈ D then Sv coincides
with the tangent line.

As the reader already must have suspected the conic D is sl invariant. (In fact it
is given by the Killing form on sl(2))S2(V ) is irreducible, but the space S2(S2(V )
is not. In fact given

S2V ⊗ S2(V ) = S4(V ) ⊕ S2(V ) ⊕ S0(V )

we can identify

S2(S2(V ) ⊗ S2(V )) = S4(V ) ⊕ S0(V )

2
∧

(S2(V )) = S2(V )

Clearly S0(V ) = C is identified with the space spanned by the invariant conic D.
Note that the isomorphism between S2(V ) and its dual S2(V ∗) is now effected by
D which is symmetric.

Thus the projection S2(V )⊗ S2(V ) → C is given by evaluation of the quadratic
form D. Conversely given any other quadratic form Q complementary to D we can
evaluate Q by plugging in x2, y2 and xy appropriately and get a binary quartic,
an element of S4(V ). Finally the projection map S2(V ) ⊗ S2(V ) →

∧2
(S2(V )) ≡

S2(V ) recaptures the adjoint representation.

Exercises

1 Given a sl(2) representation W with weightfunction w. Show that the dimension of the
trivial subrepresentation is given by

w(0)2 − w(1)2 + 2
∑

α>0

w(α)2 − w(1 + α)w(1 − α)

and check that this expression is always non-negative. Give conditions when it is zero.

2 Let V be the standard representation of sl(2). Decompose the following modules into
irreducible components

i) S2(V ) ⊗ S2(V ) ⊗ S2(V )

ii) S3(S2(V ))
iii) S2(S3(V ))
iv) S3(S3(V ))

3 With V as in the previous exercise. Given the decomposition

S
2(V ) ⊗ V = S

3(V ) ⊕ V

Show that the projection S2(V ) ⊗ V → V gives the standard representation of sl(2) on V .

In the same vein given

S
2(V ) ⊗ S

2(V ) = S
4(V ) ⊕ S

2(V ) ⊕ C

Interpret the projections

S2(V ) ⊗ S2(V ) → S2(V ) and S2(V ) ⊗ S2(V ) → C


