
Advanced linear and multilinear algebra (MMA200)

Time: 2016-01-07, 14:00-18:00.

Tools: No calculator or handbook is allowed.

Questions: Jakob Hultgren, 0703-088304

Grades: Each problem gives 6 points. At most 6 bonus points from the exercise sessions will be added to

the result. Grades are G (15-24 points) and VG (25-30).

1 Find all abelian groups of order 162. Give both the primary decomposition and the
invariant factor decomposition of each group.

2 Let

A =









1 0 0 0
0 1 0 0
−2 1 0 1
1 0 0 0









.

Find the Jordan canonical form and the minimal polynomial of A.

3 Let v1, . . . , vm be linearly independent elements of a finite-dimensional vector space
and let u ∈

∧k V be such that u ∧ vj = 0 for each j = 1, . . . ,m. Prove that k ≥ m

and that u = v1 ∧ · · · ∧ vm ∧ w for some w ∈
∧k−m V .

4 Prove that if V is a complex representation of a finite group G, and W is a subrep-
resentation of V , then there exists a subrepresentation W ′ with V = W ⊕W ′.

5 A finite group G has six conjugacy classes, which we denote C1, . . . , C6. We know
two irreducible characters χ1 and χ2 of the group, given by

C1 C2 C3 C4 C5 C6

χ1 1 −1 1 −1 i −i
χ2 2 2 −1 −1 0 0

Compute the whole character table of G. Also determine the number of commutators
in G, that is, the number of elements of the form aba−1b−1, with a, b ∈ G.
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1 Find all abelian groups of order 162. Give both the primary decomposition and the invariant factor
decomposition of each group.

Since 162 = 2 ·34, the groups are enumerated by the partitions of 4. There are 5 such
partitions, namely,

4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1.

These correspond to the groups

Z2 × Z81 ≃ Z162,

Z2 × Z3 × Z27 ≃ Z3 × Z54,

Z2 × Z
2
9 ≃ Z9 × Z18,

Z2 × Z
2
3 × Z9 ≃ Z

2
3 × Z18,

Z2 × Z
4
3 ≃ Z

3
3 × Z6,

respectively, where we have given first the primary decomposition and then the in-
variant factor decomposition.

2 Let

A =









1 0 0 0
0 1 0 0
−2 1 0 1
1 0 0 0









.

Find the Jordan canonical form and the minimal polynomial of A.

It is easy to compute det(A − λI) = λ2(λ − 1)2, so the eigenvalues are 0 and 1.
Both eigenvalues are double, so λ ∈ {0, 1} corresponds either to a 2× 2 Jordan block
[ λ 0
1 λ ] or to the sum of two 1 × 1-blocks, [ λ 0

0 λ ]. We can distinguish these cases by
noting that the dimension of the corresponding eigenspace is 1 and 2, respectively.
Starting with the case λ = 0, the eigenvalue equation Ax = 0x has the solution space
x1 = x2 = x4 = 0, which is a line (the x3-axis). For λ = 1, the equation Ax = 1x is
equivalent to

{

−2x1 + x2 − x3 + x4 = 0,

x1 − x4 = 0.

This is a plane (we can choose x3 and x4 arbitrarily and solve for x1, x2). We conclude
that A has Jordan canonical form









0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1









(the answer is not unique since we may permute the blocks). It follows that the
minimal polynomial is p(λ) = λ2(λ− 1).



3 Let v1, . . . , vm be linearly independent elements of a finite-dimensional vector space and let u ∈
∧k

V

be such that u∧ vj = 0 for each j = 1, . . . ,m. Prove that k ≥ m and that u = v1 ∧ · · · ∧ vm ∧w for

some w ∈
∧k−m

V .

Let n = dimV . We may complete v1, . . . , vm to a basis v1, . . . , vn for V . Then,
vI = vi1 ∧ · · · ∧ vik is a basis for

∧k V , where I = {i1, . . . , ik} runs over subsets of
{1, . . . , n} of size k, with i1 < · · · < ik. Expanding u in this basis, we can write

u =
∑

I

uI vI .

The condition u ∧ vj = 0 gives

0 =
∑

j /∈I

uI vI ∧ vj.

Since the terms are linearly independent, it follows that uI = 0 for j /∈ I. This holds
for j ∈ [m] = {1, . . . ,m}, so we can write

u =
∑

[m]⊆I

uI vI .

Since the sets I have size k, it follows that indeed k ≥ m and u = v1 ∧ · · · ∧ vm ∧ w
for some w.

4 Prove that if V is a complex representation of a finite group G, and W is a subrepresentation of V ,
then there exists a subrepresentation W ′ with V = W ⊕W ′.

See the course literature. For instance, two distinct proofs are given in the lecture
notes of Ulf Persson.

5 A finite group G has six conjugacy classes, which we denote C1, . . . , C6. We know two irreducible
characters χ1 and χ2 of the group, given by

C1 C2 C3 C4 C5 C6

χ1 1 −1 1 −1 i −i
χ2 2 2 −1 −1 0 0

Compute the whole character table of G. Also determine the number of commutators in G, that is,
the number of elements of the form aba−1b−1, with a, b ∈ G.

Recall that any group has a trivial conjugacy class Ctriv containing only the identity.
Moreover, if χ is the character of a d-dimensional representation, then χ(Ctriv) =
d. It follows that Ctriv = C1, since all other columns contain non-positive entries.
Moreover, χ1 is a 1-dimensional character. As we have discussed during the course, if
χ is any irreducible character and ψ is a one-dimensional character, then χψ is again
an irreducible character (it is the character of the tensor product, which is irreducible
by a standard criterion). In the case at hand, we can use this to find the characters
χ2
1, χ

3
1, χ

4
1 (which is the trivial character) and χ1χ2. Since we now have as many

irreducible characters as conjugacy classes, we have found the complete character
table

C1 C2 C3 C4 C5 C6

χ4
1 1 1 1 1 1 1
χ2
1 1 1 1 1 −1 −1
χ1 1 −1 1 −1 i −i
χ3
1 1 −1 1 −1 −i i
χ2 2 2 −1 −1 0 0
χ1χ2 2 −2 −1 1 0 0 .



For the last question, we use the fact that the number of one-dimensional represen-
tations is |G|/|G′|. Moreover, |G| is the sum of the squares of the dimensions of all
irreducible representations. In our case, |G| = 4 · 12 + 2 · 22 = 12 and we have 4
one-dimensional representations. Thus, |G′| = 3 so G′ = {1, x, x−1} for some x ∈ G.
Since G′ is generated by all commutators, either x or x−1 is a commutator. But if
x = aba−1b−1 is a commutator, so is x−1 = bab−1a−1. We conclude that there are
exactly three commutators.


