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Throughout, group means finite group and representation means finite-
dimensional representation over C.

Interpreting the character table

Let Irr(G) denote the non-equivalent irreducible characters of G and
Cl(G) the conjugacy classes. Then, the square matrix (χ(C))χ∈Irr(G), C∈Cl(G)

is called the character table of G. As we have seens, rows and colums satisfy
the orthogonality relations

δχ,ψ =
∑

C∈Cl(G)

|C|

|G|
χ(C)ψ(C), (1a)

|G|

|C|
δC,D =

∑

χ∈Irr(G)

χ(C)χ(D). (1b)

Although a group is not uniquely determined by its character table, a lot
of information about it is. In particular, we can read off all normal subgroups
and identify the center and the commutator subgroup.

To see how this is done, let N be a normal sungroup of G and consider a
representation of G/N , that is, a homomorphism from G/N to GL(V ). By
generalities on normal subgroups, there is a bijection between representations
of G/N and representations π of G such that N ⊆ Ker(π). By Lemma 1 be-
low, Ker(π) is easily obtained from the character χ = Tr(π). For this reason,
we will write Ker(χ) instead of Ker(π). It is easy to see that a representation
of G/N is irreducible if and only if the corresponding representation of G is.
Thus,

Irr(G/N) = {χ ∈ Irr(G); N ⊆ Ker(χ)}. (2)

Lemma 1. For any representation π with character χ,

Ker(π) = {g ∈ G; χ(g) = χ(1)}.
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Proof. If λ1, . . . , λm are the eigenvalues of π(g) we need to prove that

λ1 + · · ·+ λm = m ⇐⇒ λ1 = · · · = λm = 1.

As we have observed before, the eigenvalues λj are roots of unity. In partic-
ular, Re(λj) ≤ 1 with equality only for λj = 1, which proves the equivalence
above.

If g ∈ Ker(χ) for all χ, then choosing D as the conjugacy class of g and
C = {1} in (1b) we find that g = 1. Applying this fact to the group G/N
gives

N =
⋂

χ∈Irr(G), N⊆Ker(χ)

Ker(χ). (3)

Thus, any normal subgroup is an intersection of kernels of irreducible char-
acters. Since the converse is clear, all normal subgroups can be found from
the character table.

Proposition 2. The normal subgroups of G are precisely the intersections

of kernels of irreducible characters.

Let us now consider the commutator subgroup (or derived group) G′. By
definition, it is the smallest normal subgroup containing all elements of the
form aba−1b−1. Since G is abelian if and only if G′ is trivial, |G|/|G′| gives a
measure of how commutative G is. More generally, a quotient G/N is abelian
if and only if G′ ⊆ N .

Proposition 3. The subgroup G′ is the intersection of the kernels of all one-

dimensional representations of G. Moreover, the number of one-dimensional

representations of G is |G|/|G′|.

Proof. By (2),

Irr(G/G′) = {χ ∈ Irr(G); G′ ⊆ Ker(χ)}

and by (3),

G′ =
⋂

χ∈Irr(G), G′⊆Ker(χ)

Ker(χ).

Thus, it suffices to show that a representation of G is one-dimensional if and
only if it can be projected to G/G′. Since G/G′ is abelian, any represen-
tation of G/G′ is one-dimensional. Conversely, if π one-dimensional, then
π(aba−1b−1) = π(a)π(b)π(a)−1π(b)−1 = 1, so π projects to G/G′.
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Next we consider the center. Recall that Z(G) is the set of elements in
G that commute with all other elements; it is an abelian normal subgroup.
Since G is abelian if and only if Z(G) = G, |G|/|Z(G)| gives a measure of
how non-commutative G is.

When χ is a character, we define

Z(χ) = {g ∈ G; |χ(g)| = χ(1)}.

Again using that the eigenvalues of π(g) are roots of unity, this can only
happen when they are all equal, so we can also write

Z(χ) = {g ∈ G; π(g) ∈ C Id}, χ = Tr(π).

The reason for the notation is the following fact.

Lemma 4. The center of G is Z(G) =
⋂

χ∈Irr(G) Z(χ).

Proof. Let π be an irreducible representation on the vector space V and χ
its character. If g ∈ Z(G) then π(g)π(h) = π(h)π(g) for all h ∈ G. Thus,
π(g) ∈ EndG(V ). By Schur’s lemma, g ∈ Z(χ). Conversely, if π(g) = λ Id,
then for any h ∈ G we have π(g)π(h)π(g)−1π(h)−1 = Id, which implies
ghg−1h−1 ∈ Ker(π). If this holds for each irreducible representation π, then
(3) with N = {1} gives ghg−1h−1 = 1, so g ∈ Z(G).

Example. Suppose G has the character table

C1 C2 C3 C4 C5 C6

χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 i −i
χ3 1 1 1 1 −1 −1
χ4 1 −1 1 −1 −i i
χ5 2 2 −1 −1 0 0
χ6 2 −2 −1 1 0 0

.

We follow the convention that first column corresponds to the conjugacy
class C1 = {1} and the first row to the trivial representation. This can be
seen immediately since, by (1), they are the unique row and column with only
positive entries. The entries of the first column are then the dimensions of the
corresponding representations. In this case, χ1, . . . , χ4 are one-dimensional
and χ5, χ6 two-dimensional. The order of the group is thus 4 ·12+2 ·22 = 12.
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We can then compute the order of the conjugacy classes using (1b) and find
that |C1| = |C2| = 1, |C3| = |C4| = 2, |C5| = |C6| = 3. We may check again
that the total number of elements is 2 · 1 + 2 · 2 + 2 · 3 = 12. Writing for
short Ci1···ik = Ci1 ∪ · · · ∪ Cik , the kernels of the characters are Ker(χ1) =
C123456 = G, Ker(χ2) = Ker(χ4) = C13, Ker(χ3) = C1234, Ker(χ5) = C12,
Ker(χ6) = C1. Taking intersections of these does not lead to any further
subgroups; for instance, C13 ∩ C12 = C1. Thus, G has exactly five normal
subgroups. Moreover G′ =

⋂4
j=1Ker(χj) = C13. To compute the center, we

see at a glance that Z(χ) = G for the one-dimensional representations and
Z(χ) = C12 for the two-dimensional ones. Thus, Z(G) = C12. In conclusion,
the lattice of normal subgroups looks like

C1 = {1} ⊆

{

C12 = Z(G)
C13 = G′

}

⊆ C1234 ⊆ C123456 = G.

We remark that, in this example, the character table does not determine the
group. There are five groups of order 12, two of which have the table above
as their character table (one of them is the symmetries of a regular hexagon).

The group algebra

Recall that the group algebra C[G] of G is the complex vector space with
G as a basis. Equivalently, it is the space of all functions from G to C. The
correspondence between these two descriptions is that a linear combination
∑

g∈G agg corresponds to the function f(g) = ag; in particular, the generator
g to the delta function δg(h) = δg,h. We multiply two elements of the group
algebra simply by using the multiplication in G:

∑

g

agg
∑

g

bhh =
∑

g,h

agbhgh.

In the description as functions, this is a convolution:

(φψ)(g) =
∑

h∈G

φ(h)ψ(h−1g).

Left multiplication π(g)h = gh extends to a representation of G on C[G].
This is the regular representation. We have already seen that

C[G] ≃
⊕

V ∈Irr(G)

(dimV )V (4)
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(here we use Irr(G) to denote the representation spaces rather than their
characters). This does not say anything about the algebra structure on C[G].
However, we can easily obtain a refinement of (4) that does. To this end,
we consider C[G] as a representation of G×G ny the rule π(g, h)k = ghk−1.
Note that if V is any representation of G, End(V ) is a representation of G×G
under π(g, h)φ = π(g) ◦ φ ◦ π(h−1). Moreover, End(V ) is an algebra (under
composition of maps). This gives a meaning to the following result.

Theorem 5. As a representation of G×G and as an associative algebra,

C[G] ≃
⊕

V ∈Irr(G)

End(V ).

Proof. A representation of V is a homomorphism π from G to GL(V ). It
extends by linearity to a map πV : C[G] → End(V ). It is trivial to check that
πV commutes with the action of G×G and preserves multiplication. Thus, it
is enough to check that Φ =

⊕

V πV is bijective. If Φ(x) = 0 for some element
x =

∑

g agg, then x acts trivially in any irreducible representation and hence
in any representation. But then, in the regular representation, x = π(x)e =
0. This shows that Φ is injective. The surjectivity follows by comparing
dimensions; indeed, by (4), dim(C[G]) =

∑

V dim(V )2 =
∑

V dimEnd(V ).

We write L2(G) for C[G], viewed as a space of functions, with scalar
product

〈φ, ψ〉 =
1

|G|

∑

g∈G

φ(g)ψ(g).

We have previously seen that the characters of irreducible representations
form an orthonormal basis for a subspace of L2(G). We will now prove that
the matrix elements of irreducible representations form an orthonormal ba-
sis for the whole space. By a matrix element, we simply mean an element
π(g)kl of the matrix for π(g) ∈ End(V ), with respect to some basis of the
representation V . To obtain genuine orthogonality relations, we must choose
this basis in a good way. Recall that any representation carries an invariant
Hermitian form (see e.g. p. 3 of Persson’s lecture notes; for irreducible rep-
resentations, this form is unique up to multiplication by a positive scalar).
Invariant means that 〈π(g)v, π(g)w〉 = 〈v, w〉. We fix a basis for each irre-
ducible representation which is orthogonal with respect to such a form. In
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terms of the matrix elements, it is easy to see that invariance means that

π(g−1)kl = π(g)lk. (5)

Theorem 6 (Peter–Weyl theorem for finite groups). With the matrix ele-

ments πV (g)ij defined as explained above, the collection of all such elements,

for all irreducible representations V , form an orthogonal basis for L2(G).
Explicitly, the orthogonality relation is

1

|G|

∑

g∈G

πV (g)ij πW (g)kl =
δikδjlδVW
dimV

. (6)

Proof. Fixing the indices (j, k), let A ∈ Hom(V,W ) be defined by AeVj = eWk
and AeVm = 0 for m 6= j. In terms of matrix elements, Axy = δxjδyk. Let
Ā ∈ HomG(V,W ) be the average of this operator over the group action, that
is,

Ā =
1

|G|

∑

g∈G

πW (g−1) ◦ A ◦ πV (g). (7)

Then, by Schur’s lemma, Ā = δV,Wλ IdV for some λ ∈ C. In the case V = W
we have Trace(Ā) = Trace(A) = δjk, which gives λ = δjk/ dim(V ). We
conclude that

Ā =
δVW δjk
dimV

IdV . (8)

In terms of matrix elements, (7) takes the form

Āmn =
1

|G|

∑

g∈G

∑

xy

πW (g−1)mxAxyπ
V (g)yn =

1

|G|

∑

g∈G

πW (g−1)mjπ
V (g)kn.

By (8), the left-hand side is δVW δjkδmn/ dimV . Using (5) on the right-hand
side we obtain (6). It remains to prove that the matrix elements span L2(G).
That follows from a dimension count; the total number of matrix elements
is
∑

V dim(V )2 = dim(L2(G)).

Versions of Theorem 6 can be obtained for various classes of infinite groups
and is then a basis for harmonic analysis on groups. In particular, the cases
R/Z and R relate to the classical theory of Fourier series and Fourier trans-
form.
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