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Introduction, Hodge star

Exterior algebra is intimately related to the theory of determinants and
can be used to prove all their main properties. Rather than rederiving well-
known facts such as det(AB) = det(A) det(B), we will use exterior algebra
to prove two useful results on determinants that are typically not covered
in linear algebra courses. The first is Dodgson’s condensation method, the
second is the Plücker relations.

Throughout, V will be an n-dimensional vector space over a field K. We
write V ∗ = Hom(V,K) for the dual space. As is customary, we write 〈x, y〉
instead of y(x) when x ∈ V and y ∈ V ∗.

When A ∈ Hom(V,W ) we write A∗ ∈ Hom(W ∗, V ∗) for the dual map
defined by

〈Ax, y〉 = 〈x,A∗y〉.

Assume that we have chosen a basis e for the one-dimensional space
∧n V .

Then, if x ∈
∧m V and y ∈

∧n−m V , we have y ∧ x = ce for some c ∈ K.
For fixed x, the constant c depends linearly on y. Thus, we can define a map
φ :
∧m V →

∧n−m V ∗ by

y ∧ x = 〈y, φ(x)〉e, x ∈
∧m V, y ∈

∧n−m V.

(Here we are using the canonical isomorphism (
∧k V )∗ '

∧k(V ∗).) The map
φ is often called the Hodge star and written ∗x rather than φ(x).

Let (ej)
n
j=1 be a basis for V and (e∗j)

n
j=1 the dual basis. We may take

e = e1 ∧ · · · ∧ en. Then, it is easy to check that

φ(ek1 ∧ · · · ∧ ekm) = ε e∗l1 ∧ · · · ∧ e
∗
ln−m

, (1)

where (k1, . . . , km, l1, . . . , ln−m) is a permutation of (1, . . . , n) and ε ∈ {±1} is
the signature of that permutation. In particular, φ maps a basis to a basis, so
it is an isomorphism of vector spaces. We stress that it is “almost canonical”
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in the sense that it does not depend on a choice of basis for V , but only on
a choice of basis for the one-dimensional space

∧n V .
Geometrically, the choice of the element e means that V is equipped with

an orientation and a rule for computing n-dimensional volumes (but no rules
for computing k-dimensional volumes for k < n). Namely, if v1, . . . , vn are
any vectors and v1 ∧ · · · ∧ vn = ae, then we can define the volume of the
parallelepiped spanned by the vj to be |a|, and call them positively oriented
if a > 0.

Dodgson condensation

We start with the following rather elementary fact.

Proposition 1. For A ∈ End(V ) and 0 ≤ m ≤ n,

det(A)φ =
∧n−m(A∗) ◦ φ ◦

∧m(A). (2)

Proof. By linearity, it’s enough to compute

〈v1 ∧ · · · ∧ vn−m, Xvn−m+1 ∧ · · · ∧ vn〉e,

where X are the two sides of (2) and vj ∈ V . The left-hand side becomes

det(A)v1 ∧ · · · ∧ vn

and the right-hand side

〈v1 ∧ · · · ∧ vn−m,
∧m(A∗) ◦ φ ◦

∧n−m(A)vn−m+1 ∧ · · · ∧ vn〉e
= 〈Av1 ∧ · · · ∧ Avn−m, φ(Avn−m+1 ∧ · · · ∧ Avn)〉e

= Av1 ∧ · · · ∧ Avn =
∧n(A)v1 ∧ · · · ∧ vn.

Since
∧n(A) is multiplication by det(A), this completes the proof.

If det(A) 6= 0, this means that
∧m(A) is invertible with inverse

1

det(A)
φ−1 ◦

∧n−m(A∗) ◦ φ. (3)

In particular,

A−1 =
1

det(A)
φ−1 ◦

∧n−1(A∗) ◦ φ. (4)
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Working this out in coordinates gives a well-known identity for the matrix
inverse. However, we want to use it to find something less familiar. To this
end, we note that if A is invertible, then

∧m(A−1) is an inverse of
∧m(A).

Thus, the m-th exterior product of (4) must agree with (3). After replacing
A∗ by A and m by n−m we arrive at the following result.

Corollary 2. In the notation above,

det(A)n−m−1 ◦
∧m(A) = φ ◦

∧n−m(φ−1 ◦
∧n−1(A) ◦ φ) ◦ φ−1. (5)

To be precise, we have only proved this for invertible matrices. Over the
complex numbers, it’s clear that it holds for any matrix since both sides are
polynomials in the matrix elements of A, and the non-invertible matrices
form an open subset in the space of all matrices. One can use this to prove
that Cor. 2 holds for matrices over any commutative ring, but we will not go
into the details.

Let us now write Cor. 2 in coordinate form. As above, pick a basis (ej)
n
j=1

such that e = e1 ∧ · · · ∧ en. We write [n] = {1, . . . , n}. When S ⊆ [n], we
write

eS = es1 ∧ · · · ∧ esm ,

where sj are the elements of S written in increasing order. Then, (eS)S⊆[n], |S|=m
is a basis for

∧m V . Moreover, if

Aek =
n∑
l=1

aklel,

then ∧m(A)(eS) =
∑
T⊆[n]

det
ST

(A)eT ,

where we write
det
ST

(A) = det
1≤i,j≤m

(asi,tj),

with sj and tj the elements of S and T , written in increasing order. That is,
the matrix elements of

∧m(A) are exactly the m ×m minors of A. To see
this is a straight-forward computation, or a non-computation using defining
properties of the determinant. In this notation, (1) takes the form

φ(eS) = ±e∗Sc
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(where the sign depends on S).
Thus, acting by the left-hand side of (5) on a basis element eS gives

det(A)n−m−1
∑
|T |=m

det
ST

(A)eT .

On the right-hand side, we note that φ−1(eS) = ±e∗Sc . Moreover, with jc =
[n] \ j, we have

φ−1
∧n−1(A)φe∗j =

∑n
k=1± detjc,kc(A)e∗k.

It follows that the right-hand side gives

±
∑
|T |=m

det
ScT c

(A])eT ,

where A] is the matrix with elements detjc,kc(A). Identifying the coefficient
of eT , we obtain the following fact.

Corollary 3 (Jacobi). For any n × n-matrix A and any S, T ⊆ [n] with
|S| = |T | = m,

det(A)n−m−1 det
ST

(A) = ± det
ScT c

(A]).

In future versions of this draft we will be more careful with the sign. Note
that, up to multiplying some rows and columns by −1, which only changes
the minors by a sign, A] is the adjugate matrix, equal to det(A)A−1 in the
invertible case. That’s exactly the meaning of (4).

One particularly ineresting case of Corollary 3 is the case m = n − 2.
Without loss of generality, we may choose S = T = {1, . . . , n− 2}. Writing
out the 2×2-determinant on the right-hand side explicitly gives the following
result.

Corollary 4 (Dodgson condensation). The following identity holds:

det
1≤j,k≤n

(ajk) det
1≤j,k≤n−2

(ajk)

= det
j,k 6=n

(ajk) det
j,k 6=n−1

(ajk)− det
j 6=n,k 6=n−1

(ajk) det
j 6=n−1,k 6=n

(ajk).
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This is often called the ”Lewis Carroll identity”, since Dodgson (also
known as Carroll) promoted it as a method for computing determinant re-
cursively. As an example, we could compute a 3× 3-determinant as

1×

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =

∣∣∣∣1 2
4 5

∣∣∣∣ ∣∣∣∣1 3
7 9

∣∣∣∣− ∣∣∣∣1 2
7 8

∣∣∣∣ ∣∣∣∣1 3
4 6

∣∣∣∣ .
For numerical determinants, this is much slower than using row and column
reductions. However, for determinants with symbolic entries, it is very pow-
erful (see the exercise sheet for two nice examples).

Plücker relations

By a pure tensor, we mean an element of the form u = v1 ∧ · · · ∧ vk,
vj ∈ V . Pure tensors are geometrically interesting for the following reason.
If we declare two non-zero pure tensors to be equivalent if u = av for some
a ∈ K, then there is a one-to-one correspondence between the equivalence
classes and k-dimensional subspaces in V . Namely, the tensors equivalent
to v1 ∧ · · · ∧ vk correspond to span{v1, . . . , vk} (Brzezinski, Ex. 5.7). The
space of all k-dimensional subspaces of V is called a Grassmannian. If we
can describe the pure tensors algebraically, we obtain a description of the
Grassmannian as an algebraic variety.

It will be convenient to write λu(v) = u ∧ v. If u ∈
∧k V , then λu :

V →
∧k+1 V . We then have a map λφ(u) : V ∗ →

∧n−k+1 V ∗, whose dual is

λ∗φ(u) :
∧n−k+1 V → V . Thus, we can introduce the map

µu = λu ◦ λ∗φ(u) :
∧n−k+1 V →

∧k+1 V.

Since µu is a quadratic function of u, the following result describes the Grass-
mannian by quadratic relations, which are known as Plücker relations. As
an example, you can check from Theorem 5 that an element

u =
∑

1≤j<k<4

ajkej ∧ ek ∈
∧2(R4)

is a pure tensor if and only if u ∧ u = 0, which amounts to the quadratic
identity

a12a34 − a13a24 + a14a23 = 0.
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Theorem 5. The element u is a pure tensor if and only if µu = 0.

Proof. Assume first that u = v1 ∧ · · · ∧ vk. If the vectors vj are linearly
dependent, then u = 0 and hence µu = 0. Else, complete the vectors to a
basis (vj)

n
j=1 for V . Choosing e = v1 ∧ · · · ∧ vn, we get from (1) that

φ(u) = v∗k+1 ∧ · · · ∧ v∗n.

We then have, for any v ∈
∧n−k+1 V ,

〈λ∗φ(u)v, v∗j 〉 = 〈v, φ(u) ∧ v∗j 〉 = 0, k + 1 ≤ j ≤ n.

It follows that λ∗φ(u)v ∈ span{v1, . . . , vk}, which gives µu(v) = u∧ λ∗φ(u)v = 0.

For the converse, assume that fu = 0 and let (vj)
m
j=1 be a basis for

Im(λ∗φ(u)). As before, we complete it to a basis (vj)
n
j=1 for V and let e =

v1 ∧ · · · ∧ vn. That fu = 0 means that u ∧ vj = 0 for 1 ≤ j ≤ m. By

Lemma 6 below, u = v1 ∧ . . . vm ∧ w for some w ∈
∧k−m V . By (1), φ(u) ∈

span{v∗m+1, . . . , v
∗
n}. Suppose first that φ(u) ∧ v∗j 6= 0 for some j ≥ m + 1.

Then, we can pick x ∈
∧n−k+1 V with 0 6= 〈x, φ(u) ∧ v∗j 〉 = 〈λ∗φ(u)x, v∗j 〉. But

this contradicts the fact that Im(λ∗φ(u)) = span{v1, . . . , vk}. It follows that

φ(u)∧ v∗j = 0 for all j ≥ m+ 1. Then, Lemma 6 gives φ(u) = v∗m+1 ∧ · · · ∧ v∗n
and consequently u = v1∧· · ·∧vm is a pure tensor (in particular, m = k).

In the proof, we used the following result.

Lemma 6. If v1, . . . , vm are linearly independent elements of V and u ∈∧k V is such that u∧vj = 0 for each j, then k ≥ m and u = v1∧· · ·∧vm∧w
for some w ∈

∧k−m V .

We leave the proof to the reader; one possible starting point is to extend
vj to a basis for the whole space.

If u = v1 ∧ · · · ∧ vk and A is the matrix with columns vj, then Theorem 5
is a compact way of stating a number of relations for minors of A. I haven’t
worked out the details, but the result should be∑

j∈Sc∩T

(−1)j det
S∪j,[n]

(A) det
T\j,[n]

(A) = 0.

This holds for any m×n-matrix A and any subsets S, T ⊆ [m] with |S|+1 =
|T | − 1 = n.
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