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1 Bases of free modules

To understand the following discussion you must be familiar with the notions
of free module, finitely generated module and basis, see the course literature.

It’s easy to see that if twoR-modules have bases with the same cardinality,
then they are isomorphic. However, the converse is not true; a module can
have two bases with different cardinalities. We give a concrete example of
this phenomenon.

Consider infinite matrices (ajk)
∞

j,k=1
with entries ajk ∈ R (we could replace

R by any ring). We assume that only finitely many elements in each column
are non-zero. Thanks to this restriction, we can add and multiply matrices
as usual, obtaining a ring R. Consider R as an R-module. Obviously, the
identity matrix

e =











1 0 0 · · ·
0 1 0
0 0 1
...

. . .











forms a basis of R with one element. Now consider the two matrices

f1 =











1 0 0 0 0 · · ·
0 0 1 0 0
0 0 0 0 1
...

. . .











, f2 =











0 1 0 0 0 0 · · ·
0 0 0 1 0 0
0 0 0 0 0 1
...

. . .











.

It is then easy to see that any A ∈ R can be written uniquely as A =
A1f1 + A2f2, where A1 and A2 are obtained from A by deleting all even
and odd columns, respectively. Thus, f1 and f2 form a basis for R with two
elements. For this ring, R ≃ R2 as R-modules, an explicit isomorphism being
A 7→ (A1, A2). By a variation of the same argument, R ≃ Rn for any n.

For modules over commutative rings, one cannot construct such examples.
Any two bases for a free module over a commutative ring have the same
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cardinality. This is (partially) proved by Brzezinski but we prefer to give a
more pedestrian proof in the finite-dimensional case.

Proposition 1. For a finitely generated free module M over a commutative

ring R, any two bases have the same number of elements.

Proof. First note that any basis of a finitely generated free module is finite.
To see this, let x1, . . . , xn be generators and (ei)i∈Λ a basis. Expressing
each xj in terms of the basis elements, all coefficients outside a finite subset
Λj ⊆ Λ vanish. Consequently, taking x ∈M arbitrary, x can be expressed as
a combination of basis elements indexed by the finite set Λ1 ∪ · · · ∪ Λn. By
the definition of basis, this set must be all of Λ.

Assume now that we have two bases (ej)
m
j=1

and (fk)
n
k=1

for M . We can
write

ej =
n

∑

k=1

ajkfk, fj =
m
∑

k=1

bjkek, ajk, bjk ∈ R.

If we plug one of these expressions into the other one, we find that the
matrices A = (ajk) and B = (bjk) necessarily satisfy AB = Im and BA = In,
where Ik is the identity matrix of order k. We want to prove that m = n.
For a contradiction, assume m > n. We then create (m × m)-matrices A′

and B′ by filling out the matrices A and B by zeroes, that is,

A′ =
[

A 0
]

, B′ =

[

B
0

]

.

It is now easy to compute

A′B′ = Im, B′A′ =

[

In 0
0 0

]

.

Taking determinants we get

det(A′) det(B′) = 1, det(B′) det(A′) = 0,

which is a contradiction (if we assume 1 6= 0 as part of our ring axioms).

In the proof we used that

det(AB) = det(A) det(B)

for matrices over commutative rings. Indeed, looking at the proof for real
matrices found in any linear algebra textbook, it should be clear that it only
uses general properties of commutative rings.
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2 Direct sums and summands

We will now discuss direct sums of modules. Throughout, all modules will
be over a fixed ring R.

Lemma 2. Let M1, M2 be submodules of some module M . Then, the fol-

lowing are equivalent:

(A) Any element x ∈M can be written uniquely as x = m1+m2, mi ∈Mi.

(B) M1 +M2 =M and M1 ∩M2 = {0}.

(C) The map (m1,m2) 7→ m1 +m2 is an isomorphism M1 ×M2 →M .

The proof is very easy and left to the reader. If these conditions are
satisfied, we call M the (internal) direct sum of M1 and M2 and write M =
M1 ⊕M2.

If K and L are R-modules, then K × L contains submodules K ′ = K ×
{0} ≃ K and L′ = {0}×L ≃ L such that K ×L = K ′ ⊕L′. For this reason,
K ⊕ L is often used as an alternative notation for K × L (external direct
sum).

IfK is a submodule ofM , it is natural to ask whether there is a submodule
L ofM such thatM = K⊕L. If that is the case, we call K a direct summand

of M and L a complement of M .
Not all submodules are direct summands; for instance, you may check

that the Z-module Z/4Z contains a submodule isomorphic to Z/2Z, which
is not a direct summand.

We will now give criteria for determining whether a submodule is a direct
summand. We need some terminology. An exact sequence is a finite or
infinite sequence of modules and homomorphisms

· · · → L
f
−→M

g
−→ N → · · ·

such that Im(f) = Ker(g) at each step. A short exact sequence has the form

0 → L
f
−→M

g
−→ N → 0, (1)

where 0 = {0} is the trivial R-module. This means that f is injective,
Im(f) = Ker(g) and g is surjective. Then, L is isomorphic to a submodule
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of M and N is isomorphic to M/L. Thus, up to isomorphisms, a short exact
sequence has the form

0 → L→M →M/L→ 0 (2)

where L is a submodule of M .

Lemma 3. Given a short exact sequence (1), the following are equivalent:

(A) There is a homomorphism φ : M → L with φ ◦ f = id.

(B) There is a homomorphism ψ : N →M with g ◦ ψ = id.

(C) The submodule Im(f) = Ker(g) in M is a direct summand.

Proof. We prove the equivalence of (B) and (C). The equivalence of (A) and
(C) is similar and left as an exercise.

Assuming (B), we show that M = Im(f) ⊕ Im(ψ). By Lemma 2, it is
enough to check that M = Im(f)+ Im(ψ) and Im(f)∩ Im(ψ) = {0}. For the
first part, we write x = x1+x2, where x1 = x−ψ(g(x)) and x2 = ψ(g(x)). It
is then easy to check that x1 ∈ Ker(g) = Im(f) and, obviously, x2 ∈ Im(ψ).
For the second part, suppose y ∈ Im(f) ∩ Im(ψ), so y = f(a) = ψ(b). Then
b = g(ψ(b)) = g(f(a)) = 0 so y = ψ(0) = 0.

To show that (C) implies (B), let M1 = Ker(g) and suppose there exists
M2 with M = M1 ⊕ M2. Let h be the restriction of g to M2. We claim
that h : M2 → N is an isomorphism. Indeed, it is injective since Ker(h) =
Ker(g) ∩ M2 = M1 ∩ M2 = {0}. To see that h is surjective, take y ∈ N
arbitrary and choose x ∈ M with g(x) = y. Decomposing x = x1 + x2,
xi ∈ Mi, we have y = g(x1) + g(x2) = 0 + h(x2) so y ∈ Im(h). Since h is an
isomorphism, so is ψ = h−1, and it is clear that g ◦ ψ = id.

We can now prove the following result, which will be the starting point
for classifying finitely generated modules over a PID.

Lemma 4. If L ⊆ M is a submodule such that M/L is free, then L is a

direct summand of M .

Proof. Consider the exact sequence (2). We will apply criterion (B) in
Lemma 3. Take a basis e1, . . . , en for M/L and pick for each j a repre-
sentative fj ∈M of the coset ej. Define ψ : M/L→M by

ψ(x1e1 + · · ·+ xnen) = x1f1 + · · ·+ xnfn, x1, . . . , xn ∈ R.

It is then easy to check that ψ satisfies the appropriate condition.
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