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We will classify all finitely generated modules over a PID R. One very
important case is R = Z, when we obtain a classification of finitely generated
abelian groups. We will show that any such group is isomorphic to

Zs × Z/pk11 Z× · · · × Z/pkmm Z, (1)

where pj are primes. This is a good example to keep in mind throughout
the discussion. Another important case gives the “Jordan normal form” of
a complex matrix, which generalizes diagonalization to non-diagonalizable
matrices. This is useful for many applications of linear algebra.

To formulate the main theorem, consider the equivalence relation on
prime elements of R, defined by p ∼ q if p = eq with e a unit. Let P

be a set of representatives for these equivalence classes. (For instance, in Z

the equivalence classes are {±p} with p a prime number. Choosing always
the positive representative, we can take P as the set of prime numbers.)

Theorem 1. Any finitely generated module over a PID R is isomorphic to

Rs ×R/pk11 R× · · · ×R/pkmm R (2)

with pj ∈ P. Moreover, this decomposition is unique up to rearranging the
factors.

The decomposition (2) is called the primary decomposition ofM (an ideal
of the form pkR with p prime is called a primary ideal). Note that some of
the primes pj in Theorem 1 may be equal. As an example, if G is a finite
abelian group of order 24, then G is a product as in (1), where the factor Zs

is absent (s = 0) and where pk11 · · · pkmm = 24 = 23 · 3. Up to reordering the
factors, the only such groups are

Z8 × Z3, Z4 × Z2 × Z3, Z2 × Z2 × Z2 × Z3. (3)

The proof of Theorem 1 is rather long. The proof of exixtence of the
decomposition (2) will be divided into three steps, which we call A, B and
C. To illustrate these steps we consider the example

M = Z2 × Z2 × Z4 × Z3.
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In step A, we split M as

M = Z2 × (Z2 × Z4 × Z3),

where the first factor is a free module and the second one a so called torsion
module. In step B, the torsion part is split into factors corresponding to
distinct primes. In the example,

M = Z2 × (Z2 × Z4)× Z3.

In the final step C, the factor related to each prime p is split into modules
of the form R/pkR; in the example,

M = Z2 × Z2 × Z4 × Z3.

Before we start the proof, we note that the individual factors in (1) are
cyclic groups, which can either be defined as groups with one generator or
as quotients of Z. The corresponding concept for modules is cyclic modules.

Lemma 2. A module over a commutative ring R is generated by one el-
ement if and only if it is isomorphic to a quotient R/I for some ideal I.
More precisely, a module Rx generated by x is isomorphic to R/I with
I = Ann(x) = {r ∈ R; rx = 0} (the annihilator of x).

This also holds over non-commutative rings, but for left ideals rather than
ideals.

Proof. IfM = Rx, then φ(r) = rx gives a surjective homomorphism R →M
with kernel I = Ann(x), so Rx ≃ R/I. Conversely, if we let x = 1+I ∈ R/I,
then x generates R/I and Ann(x) = I.

Step A

We now start with Step A in the proof of Theorem 1. We define a torsion
element of a module M as an element x such that ax = 0 for some non-zero
a ∈ R. The set of all torsion elements form a submodule, which we denote
Mtor. A module with Mtor = {0} is called torsion free and a module with
Mtor =M is called a torsion module. It is easy to see that M/Mtor is torsion
free.

Lemma 3. A free module M over an integral domain R is torsion-free.
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Proof. Let (ej)j=∈Λ be a basis for M . Suppose that ax = 0, where x =
∑

j xjej. Then,
∑

j axjej = 0 so by the definition of a basis axj = 0 for each
j. Since R is a domain we have either a = 0 or xj = 0 for all j, that is,
x = 0.

In the context of (2), Lemma 3 shows that the factor Rs is torsion free.
The remaining factors form a torsion module, since they are annihilated by
pk11 · · · pkmm .

We will write dim(M) for the number of elements in a basis for a mod-
ule. Recall that this makes sense for finitely generated free modules over
commutative rings (but not over rings in general).

Proposition 4. If F is a finitely generated free module over a PID R and
M is a submodule, then M is again free and dim(M) ≤ dim(F ).

The condition of R being a PID is vital. Indeed, consider an integral
domain R as a module over itself. Then, R is free (with basis 1). A sub-
module of R is simply an ideal I. We claim that a non-principal ideal is not
free. Indeed, if e1 and e2 are two distinct elements from a basis for I, then the
equation e1e2 = e2e1 expresses the same element of I as a linear combination
of basis elements in two distinct ways, which is impossible. Thus, if I has a
basis it can consist only of one element, but then I is principal.

Proof of Proposition 4. Let e1, . . . , en be a basis for F . Let

Mk =M ∩ (Re1 + · · ·+Rek).

We will prove by induction on k that Mk is free and dimMk ≤ k. Our
starting point is the trivial case M0 = {0} and the endpoint case k = n is
the statement of the theorem.

Consider the map π : Mk → R defined by

π(x1e1 + · · ·+ xkek) = xk.

Then π is an R-module homomorphism so Im(π) is an ideal. By the PID
property, Im(π) = aR for some a ∈ R. If a = 0, clearly Mk = Mk−1 and we
are done.

Assuming from now on that a 6= 0, pick x ∈Mk with π(x) = a. We claim
that Mk =Mk−1 ⊕Rx or, equivalently, Mk =Mk−1 +Rx and Mk−1 ∩Rx =
{0}. For the first identity, pick any y ∈ Mk. We have π(y) = ab for some
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b ∈ R. Then, π(y−bx) = 0, so y−bx ∈Mk−1, which gives y ∈Mk−1+Rx. For
the second identity, if rx ∈ Mk−1 then 0 = π(rx) = rπ(x) = ra. Since a 6= 0
we get r = 0 (R is a domain) and thus rx = 0. Finally, we note that Rx is a
free module with basis x. Otherwise, we would have rx = 0 for some r 6= 0.
By Lemma 3, that would contradict F being free. Thus, it follows from the
induction hypothesis thatMk is free with dim(Mk) = dim(Mk−1)+1 ≤ k.

Corollary 5. Let M be a finitely generated module over a PID. Then any
submodule of M is finitely generated.

Proof. Suppose M is generated by v1, . . . , vn. Define f : Rn → M by
f(x1, . . . , xn) = x1v1 + · · · + xnvn. Then, f is a homomorphism. If N is
a submodule of M then f−1(N) = {x ∈ Rn; f(x) ∈ N} is a submodule
of Rn. By Prop. 4, f−1(N) is finitely generated. Acting by f on a set of
generators we obtain a finite set of generators for N .

By Lemma 3, a free module over an integral domain is torsion free. The
converse holds for finitely generated modules over a PID.

Lemma 6. If M is a finitely generated module over a PID and M is torsion
free then M is free.

Proof. Let v1, . . . , vn be generators for M and let e1, . . . , ek be a maximal set
of linearly independent elements among these generators. Then, e1, . . . , ek
generate a free module F ⊆M . We claim that we can find non-zero elements
aj ∈ R such that ajvj ∈ F . If vj is one of the generators ek this is true with
aj = 1. Else, {vj, e1, . . . , ek} are linearly dependent, so we can write

ajvj + x1e1 + · · ·+ xkek = 0, aj, x1, . . . , xk ∈ R,

where not all the coefficients are zero. Since e1, . . . , ek are linearly indepen-
dent, aj 6= 0. We now let a = a1 · · · an. Since ajvj ∈ F we have that avj ∈ F
for each j. It follows that f(x) = ax is a homomorphism fromM to F . Since
M is torsion-free, f is injective. Thus, M is isomorphic to a submodule of a
finitely generated free module. The conclusion now follows from Prop. 4.

We are now ready for the following weak version of Theorem 1. This
completes Step A in the proof.

Lemma 7. If M is a finitely generated module over a PID, then M ≃
Rs ×Mtor for some s.
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Proof. As we remarked above, M/Mtor is torsion free. Thus, by Lemma 6, it
is free. By Lemma 4 from the notes last time, Mtor is a direct summand of
M , so M = F ⊕Mtor for some submodule F . It follows that F ≃ M/Mtor,
so F is free. Finally, by Cor. 5, F is finitely generated, so F ≃ Rs for some
s.

Step B

We will now study torsion modules. We first say a few words about
greatest common divisors. When a and b are elements of a PID, we write
gcd(a, b) = c for any element c such that (a, b) = (c) (it is determined up to
multiplication by a unit). We can obtain c as the product of all prime powers
that divide both a and b. Since c ∈ (a, b) we can write c = as + bt for some
s, t ∈ R.

When M is a module over R and a ∈ R, let Ma = {x ∈ M ; ax = 0}.
Clearly, Ma is a sub-module.

Lemma 8. If M is a module over a PID R and a, b, c ∈ R with a = bc and
gcd(b, c) = 1, then

Ma =Mb ⊕Mc.

Proof. We can write 1 = sc + tb for some s, t ∈ R. We need to show that
Ma =Mb+Mc and thatMb∩Mc = {0}. Both statements follow from writing
x = scx + tbx. Indeed, if x ∈ Ma, then scx ∈ Mb and tbx ∈ Mc. Moreover,
if x ∈Mb ∩Mc then scx = tbx = 0.

We can now obtain a preliminary decomposition of a finitely generated
torsion module. This completes Step B in the proof of Theorem 1.

Lemma 9. If M is a finitely generated torsion module over a PID, then

M =M
p
k1
1

⊕ · · · ⊕Mpkmm
(4)

for certain distinct primes pj ∈ P and positive integers kj.

Note that, in contrast to the decomposition (2), the pj appearing in (4)
are distinct. We should think of each summand in (4) as gathering all factors
in (2) that involve a fixed prime.

Proof of Lemma 9. The annihilator of M is defined as

Ann(M) = {a ∈ R; ax = 0 for all x ∈M}.
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It is an ideal in R. We prove that Ann(M) 6= {0}. Indeed, if v1, . . . , vn are
generators for M , then ajvj = 0 for some non-zero aj ∈ R and it follows that
a1 · · · an ∈ Ann(M).

By the PID property, we can write Ann(M) = aR for some non-zero
a ∈ R. Since a PID is a UFD, we may factor a as a product of primes.
Since multiplying a by a unit does not change the ideal aR, we may assume
a = pk11 · · · pkmm , where pj ∈ P. The desired result now follows by iterating
Lemma 8.

Step C

We will now look at the individual terms in (4). Note that, for any module
M , Ann(Mpk) is an ideal in R containing pkR and thus has the form plR for
some l ≤ k. Thus, the following result shows that each summand in (4) can
be decomposed as a product of modules of the form R/plR.

Lemma 10. Let M be a finitely generated module over a PID R, such that
Ann(M) = pkR, where p ∈ P and k ≥ 0. Then, M is isomorphic to a
product

R/(pl1R)× · · · ×R/(plmR) (5)

for some positive integers lj.

To prove Lemma 10, we will argue by induction on the “size” of M . It’s
not immediately obvious how the size should be measured, but it turns out
that the following idea works. It’s easy to see that, for any module M ,
M/pM is a module over R/pR (cf. Prop. (3.14) in Brzezinski). (Note that
R/pR is a field, soM/pM is in fact a vector space.) Moreover, ifM is finitely
generated, then the cosets containing the generators generate M/pM . Thus,
|M |p = dimR/pR(M/pM) is a non-negative integer. We will prove Lemma 10
by induction on |M |p. It is easy to check that if M is given by (5), then
|M |p = m (cf. Lemma 11 below). Thus, we are actually performing induction
over the number of factors in (5), but of course that does not make sense
until we have proved the lemma.

Proof of Lemma 10. IfM is the trivial module, we interpret (5) as an empty
product. Otherwise, k ≥ 1 and there is an element x ∈M such that pk−1x 6=
0. Note that x /∈ pM since x = py would give pky 6= 0. This means in
particular that pM ( M so that |M |p ≥ 1. Thus, |M |p = 0 only for the
trivial module, which we can use as the starting case for the induction.

6



Assume that the statement of the lemma holds for all modules N with
|N |p < |M |p. Choose x as above and let N = M/Rx. We claim that
|N |p < |M |p. To see this, note that the natural projectionM → N/pN maps
pM to 0, so there is a surjective homomorphism φ : M/pM → N/pN . As we
have observed above, x /∈ pM , so x is a non-trivial element in Ker(φ). By the
dimension theorem, it follows that |M |p = |N |p + dimR/pR(Ker(φ)) > |N |p.

Having proved that |N |p < |M |p, it follows from our induction hypothesis
that N is isomorphic to a product like (5). If we can show that the sequence

0 → Rx→M → N → 0 (6)

splits, then M ≃ N × Rx. Since, by Lemma 2, Rx ≃ R/pkR, this would
complete the proof. Using again Lemma 2, if N has the form (5) then we
can write

N = Rx̄1 ⊕ · · · ⊕Rx̄n, (7)

where x̄j ∈ M/Rx are such that Ann(x̄j) = pljR. To split the sequence, we
need to find representatives yj for the coset x̄j so that

ψ(a1x̄1 + · · ·+ amx̄m) = a1y1 + · · · amym (8)

is a well-defined homomorphism from N to M . The only potential problem
with this definition is that the coefficients aj ∈ R are not uniquely determined
by

∑

ajx̄j. If
∑

ajx̄j =
∑

j bjx̄j then, since the sum (7) is direct, bj − aj ∈

Ann(x̄j) = pljR for each j and thus bj = aj + pljrj for some rj ∈ R. The
right-hand side of (8) is invariant under aj 7→ bj provided that pljyj = 0. If
we can find such representatives yj for x̄j, then ψ splits the sequence and the
proof is complete.

To find appropriate representatives yj , let xj be an arbitrary representa-
tive of x̄j. Then pljxj ∈ Rx, so we can write pljxj = pscx, where (c, p) = 1.
Since pkx = 0, we may assume s ≤ k. If s = k we can choose yj = xj. If s ≤
k−1, then pk−1−s+ljxj = pk−1cx. We want to prove that pk−1cx 6= 0. To this
end, we write 1 = tp+uc, which gives 0 6= pk−1x = tpkx+upk−1cx = upk−1cx.
It follows that k− 1− s+ lj ≤ k− 1, that is, s ≥ lj. With yj = xj − ps−ljcx,
we then have yj ∈ xj + Rx and pljyj = 0. As we have seen, with this choice
of yj the map (8) splits the sequence (6) and the proof is complete.

Together, Lemma 7, Lemma 9 and Lemma 10 prove the existence part of
Theorem 1.

For the uniqueness, the following simple result will be useful.
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Lemma 11. If R is a PID, p and q are prime elements and M = R/qkR,
then

plM/pl+1M ≃

{

R/pR, p ∼ q and l ≤ k − 1,

0, else

as R-modules (and hence also as R/pR-modules).

Proof. By Lemma 3, we can write M = Rx with Ann(x) = qkR. Then,
plM is generated by plx and N = plM/pl+1M is generated by the coset
y = plx+ pl+1M . Clearly py = 0 so, again by Lemma 3, we have either N ≃
R/pR (when plx /∈ pl+1M so that y 6= 0) or N = {0} (when plx ∈ pl+1M).
If p = q and l ≥ k, then plx = 0 so we are in the second case. If p = q and
l ≤ k − 1, then plx = pl+1z would give pk−1x = pk−1−lplx = pkz = 0, which
contradicts Ann(x) = pkR. Then we are in the first case. Finally, if p 6∼ q
then 1 = tqk + upl+1 for some t and u. Then, z = upl+1z ∈ pl+1M for any
z ∈M , so we are in the second case.

We can now prove the uniqueness part of Theorem 1. We need to show
that if M denotes the module (2), then s, pj and kj can be constructed
uniquely from M (up to reordering). It is clear that s = dimR(M/M tor) so
it’s enough to consider the torsion part. If M is a torsion module (that is,
there is no factor Rs in (2)) let us compute the numbers

dl(p) = dimR/pR(p
lM/pl+1M) (9)

for p ∈ P and l ≥ 0. By generalities on direct products, we can compute
dl(p) by adding up the contribution from each factor. Thus, by Lemma 11,
dl(p) is the number of indices j such that pj = p and l ≤ kj−1. Consequently,

dl−1(p)− dl(p) (10)

is the number of indices j such that pj = p and kj = l. This shows that pj
and kj can be reconstructed from the module M . The proof of Theorem 1 is
now complete.

It is sometimes useful to rewrite the decomposition (2) in the following
alternative form.

Theorem 12. Any finitely generated module M over a PID R is isomorphic
to

Rs ×R/q1R×R/q2R× · · · ×R/qmR, (11)

where qj are non-zero non-units of R and q1|q2| . . . |qm. Moreover, this de-
composition is unique (up to multiplying qj by units).
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The elements qj are called invariant factors and (11) the invariant fac-
tor decomposition. In particular, a finitely generated torsion module is iso-
morphic to (11), where the factor Rs is absent (s = 0). In this case,
Ann(M) = qmR.

To prove the existence part of Theorem 12, we writeM as in (2). We may
assume that s = 0. We then rearrange the product in a rectangular array so
that all factors involving a fixed prime are placed in the same row, with the
entries in each row ordered by increasing exponent of p. Moreover, the rows
are aligned to the right so that the right-most entry of each row ends up in
the same column. We then define qk as the product of all prime powers in
the k-th column.

An example should clarify the definition of qk. If

R = Z/2Z× Z/2Z× Z/3Z× Z/5Z× Z/16Z× Z/25Z,

we write

R = Z/2Z × Z/2Z ×Z/16Z

×Z/3Z

× Z/5Z ×Z/25Z.

Then, q1 = 2, q2 = 2 · 5 and q3 = 16 · 3 · 25.
Having defined qk in this way, it is obvious that qk | qk+1. Moreover, by

(12) below, each R/qkR is isomorphic to the direct product of those factors
in (2) that were put in the k-th column (in the example above, we have for
instance that Z/10Z ≃ Z/2Z× Z/5Z). This shows the existence part.

To prove uniqueness, we reverse the argument. Given a factorization (11)
with qj | qj+1 we can factorize qj into primes and construct a rectangular
array of factors R/pkR as above. This leads to a decomposition of M as in
(2). Since that factorization is unique, so is the factorization (11).

To prove (12), we use the module case of the following fact.

Lemma 13. If R is a PID and a, b ∈ R with gcd(a, b) = 1, then

R/abR ≃ R/aR×R/bR

as rings, and also as R-modules.
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Proof. Consider the map f : R → R/aR × R/bR given by f(x) = (x̄, x̄).
Clearly, Ker(f) = aR∩ bR = abR. To show that f is surjective, take (x̄1, x̄2)
arbitrary and write 1 = sa+ tb. Then, if we let

x = x1 + sa(x2 − x1) = x2 + tb(x1 − x2)

we have f(x) = (x̄1, x̄2). Note that f is both a ring homomorphism and an
R-module homomorphism, since

f(xy) = (xy, xy) = (x̄, x̄)(ȳ, ȳ) = f(x)f(y)

in the ring and
f(x, y) = (xy, xy) = x(ȳ, ȳ) = xf(y)

in the module.

Iterating this lemma, we have that if a = pk11 · · · pkmm , with pj distinct
prime elements, then

R/aR ≃ R/pk11 R× · · · ×R/pkmm R, (12)

both as rings and as R-modules.

10



Canonical forms

We now come to an important application of the theory described above,
canonical forms for matrices. Any linear operator on a finite-dimensional
vector space can be represented by a matrix, which expresses how it acts
on a basis. However, changing the basis leads to a different matrix. We
would like to find a basis such that the matrix has an especially simple form.
Moreover, the form should be canonical in the sense that this basis is unique
(possibly up to reordering the basis vectors). As a conseqence, if we want
to know whether two matrices are similar in the sense that they express
the same linear map in different bases, we can check whether their canonical
forms agree or not. One familiar example is diagonalization, but not any
matrix can be diagonalized. The Jordan canonical form explained below can
be viewed as an analogue of diagonalization for arbitrary complex matrices.

Let K be a field, V an n-dimensional vector space over K and A ∈
EndK(V ), that is, A is a linear map from V to itself. The main idea is to
study A by viewing V as a module over R = K[x]. The module structure
is obtained from the ring homomorphism Φ : K[x] → EndK(V ) given by
Φ(p) = p(A). More explicitly,

(k0+k1x+· · ·+kmx
m)v = k0v+k1Av+k2A

2v+· · ·+kmA
mv, ki ∈ K, v ∈ V.

It is natural to ask what propertied of A are reflected by the module structure
of V . The following simple lemma gives a very clear answer to that question.

Lemma 14. If VA denotes the K[x]-module associated to A ∈ EndK(V ), then
VA ≃ VB if and only if A and B are similar over K, that is, A = T−1BT for
some invertible element T ∈ EndK(V ).

The proof is trivial: a K[x]-module isomorphism T : VA → VB is an in-
vertible element of EndK(V ) such that p(A) = T−1p(B)T for all polynomials
p. With p(x) = x, this gives A = T−1BT . Conversely, if A = T−1BT , then
Ak = T−1BkT and consequently p(A) = T−1p(B)T for all polynomials p.

Let us now start investigating V as a K[x]-module. We know that R is
a PID and V is finitely generated (any basis for V generates V ). Note also
that, as vector spaces over K, K[x] is infinite-dimensional and EndK(V ) is
n2-dimensional. Since Φ is K-linear, it follows that Ker(Φ) = Ann(M) is
non-zero. In particular, V is a torsion module.
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We can now apply Thm. 1 and Thm. 12. We have

V ≃ R/q1R× · · · × R/qmR (13)

for some polynomials qj. We may either choose qj = p
kj
j with pj irreducible

polynomials or qj as non-constant polynomials with q1 | q2 · · · | qm. Note
that the units in R are the non-zero constant polynomials, so if we normalize
qj to be monic (leading coefficient 1) then they are unique (in the first case
up to reordering).

If φ is an R-module isomorphism from V to the right-hand side of (13),
then φ(Av) = xφ(v). So to understand how A acts on the left we must
understand how multiplication by x acts on the right. Consider first the
action on R/qR, where q(x) = a0 + a1x + · · · + ak−1x

k−1 + xk is a monic
polynomial of degree k. We choose 1, x, x2, . . . , xk−1 as a basis for R/qR.
Then, multiplication by x maps each basis element to the next, except that
xk−1 is mapped to xk = −a0 − a1x − · · · − ak−1x

k−1. Thus, the matrix for
multiplication by x is given by

Mq =















0 0 · · · −a0
1 0 −a1
0 1 −a2
...

...
0 0 · · · −ak−1















, (14)

the so called companion matrix to q. We can then interpret (13) as saying
that there is a basis for V where A is expressed by the block matrix











Mq1 0 · · · 0
0 Mq2 0
...

...
0 0 · · · Mqm











. (15)

In the first case (qj = p
kj
j ), we call (15) the primary canonical form and in the

second case the rational canonical form. (Brzezinski calls the first of these
”rational canonical form”, which seems quite unorthodox.) The primary
canonical form is unique up to reordering the blocks whereas the rational
canonical form is unique. We remark that, by expanding (14) along the right
column, it is easy to see that det(xI −Mq) = q(x). Thus, the characteristic
polynomial for A is in both cases given by det(xI − A) = q1 · · · qm.
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One important difference between these two forms is that the primary
canonical form depends heavily on the base field. Given, say, a matrix with
integer entries, the primary canonical form will typically look different if we
work over Q, R or C. This is because these fields have different irreducible
polyomials: x2+1 is irreducible over R but not over C and x2−2 is irreducible
over Q but not over R. By contrast, the rational canonical form does not
change if we extend the field. This follows from uniqueness; if K ⊆ K ′ the
canonical form over K is also a canonical form over K ′. One non-trivial
consequence is that the notion of similarity does not depend on the field.
For instance, if A and B are integer matrices such that A = TBT−1 for a
complex matrix T , then there is such a matrix T with rational entries.

Let us look more closely at the primary decomposition in the case when
K is algebraically closed. (In fact, it is enough to assume that K contains
all eigenvalues of A.) For instance, we can take K = C. Then, any monic
irreducible polynomial has the form x − λ for some λ ∈ K. Consider the
matrix for multiplication by x in the module R/qR, with q = (x − λ)k.
Instead of choosing the basis vectors xj as above, it’s nicer to work with
(x− λ)j. Then, x(x− λ)j = λ(x− λ)j + (x− λ)j+1, so we obtain instead of
Mq the matrix

Jq =















λ 0 0 · · · 0
1 λ 0 0
0 1 λ 0
...

...
0 0 0 · · · λ















. (16)

In the corresponding basis, A takes the form











Jq1 0 · · · 0
0 Jq2 0
...

...
0 0 · · · Jqm











. (17)

This is called the Jordan canonical form. It is unique up to reordering the
blocks.

In all but the very simplest cases, it makes little sense to compute canon-
ical forms by hand. Therefore, we will not focus on how that can be done,
except for a brief discussion on the case K = C. Note that C[x]/(x−λ) ≃ C,

13



so with p = x− λ the numbers (9) are given by

dl = rank((A− λI)l)− rank((A− λI)l+1)

= dimKer((A− λI)l+1))− dimKer((A− λI)l)).

It is easy to understand directly why the primary canonical form is deter-
mined by the solutions to (A − λI)lv = 0. If J is the block (16), then we
have e.g.

(J − λ)2 =























0 0 0 · · · 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
...

...
0 0 0 · · · 0























.

In general, (J − λ)k has only zeroes except for a diagonal of 1:s, which is
pushed to the southwest as k increases. Thus, the solutions of the equation
(J − λ)kv = 0 is the linear span of the k right-most columns. For the block
matrix (17), the solution space is spanned by the k right-most columns in all
blocks with λ on the diagonal.

To give a simple example, suppose we are given a complex 6 × 6-matrix
A. We compute the characteristic polynomial det(xI−A) = (x−1)4(x−2)2.
We start with the eigenvalue x = 1 and look for eigenvectors. It turns out
that the equation (A − I)v = 0 has a two-dimensional space of solutions.
This means that there are exactly two Jordan blocks with diagonal entries
1. The sum of their dimension must be equal to 4. So the blocks have
either size (3, 1) or (2, 2). Next, we look at the equation (A − I)2v = 0. In
the first case, the solution space would be 3-dimensional and in the second
case 4-dimensional. Let’s say that we are in the first case. We then turn to
the eigenvalue 2 and find that the space of eigenvectors is two-dimensional.
There are then two blocks with diagonal entries 2, which necessarily have
size 1. We conclude that the Jordan canonical form for A is

















1
1 1

1 1
1

2
2

















,
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where we didn’t write the zero entries. The prime powers corresponding to
the Jordan blocks are (x − 1)3 = x3 − 3x2 + 3x − 1, (x − 1), (x − 2) and
(x− 2), so the primary canonical form is

















−1
1 −3

1 −3
1

2
2

















.

To get the rational canonical form we arrange the prime powers in an array
as explained in the proof of Theorem 2. We get

(x− 1) (x− 1)3

(x− 2) (x− 2)

and can read of the invariant factors as the columns: c1 = (x− 1)(x− 2) and
c2 = (x− 1)3(x− 2). Note that c1c2 is indeed the characteristic polynomial.
Since

(x− 1)3(x− 2) = x4 − 5x3 + 9x2 − 7x+ 2,

the rational canonical form is
















−2
1 3

−2
1 7

1 −9
1 5

















.

As a final remark, note that since Ann(M) is a non-zero ideal in R, it is
equal to qR for a unique monic polynomial q, called the minimal polynomial
of A. Equivalently, q is the smallest degree monic polynomial such that
q(A) = 0. In terms of the rational canonical form, it is clear that q = qm,
the largest invariant factor of M . As was remarked above, the characteristic
polynomial for A is p = q1 · · · qm. This implies the following useful result.

Theorem 15 (Cayley–Hamilton). If p is the characteristic polynomial of a
square matrix A, then p(A) = 0.
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