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The Schur–Weyl duality is a useful relation between representations of two
seemingly very different groups: the finite group Sn and the infinite group
GL(V ), with V a finite-dimensional complex vector space. It provides an
appropriate end for the course as it connects two of our main topics: tensor
products of vector spaces and representations of finite groups. It also gives
a glimpse into the representation theory of Lie groups, a subject with many
applications in mathematics and physics. A Lie group is a group which is
also a smooth manifold, such that the group operations are smooth functions.
(We will not define smooth manifold but mention that any open subset in
R

N is an example.) In particular, GL(V ) is a Lie group since if dimV = m
its elements can be identified with invertible m×m matrices, which form an
open subset of Cm2

≃ R
2m2

.
Let us first consider a tensor product V ⊗ V . Clearly, S2 acts on this

space by id(u ⊗ v) = u ⊗ v, (12)(u ⊗ v) = v ⊗ u. Since S2 has only one-
dimensional representations, it’s easy to decompose V ⊗ V under this group
action. Namely, V ⊗ V ≃ V+ ⊕ V−, where V± is the subspace consisting of
elements x with (12)x = ±x. Then, V+ is a multiple of the trivial represen-
tation and V− a multiple of the alternating representation. Moreover, the
decomposition of u⊗ v with respect to this splitting is

u⊗ v =
u⊗ v + v ⊗ u

2
+

u⊗ v − v ⊗ u

2
. (1)

Note that V± ≃ (V ⊗V )/V∓. In particular, V− can be identified with the
quotient of V ⊗V by the subspace generated by u⊗v+v⊗u. That’s exactly
our definition of V ∧ V . Similarly, V+ ≃ (V ⊗ V )/[u ⊗ v − v ⊗ u]. This is
the symmetric tensor product ; common notations are S2V and V ⊙ V . In
summary, the decomposition of V ⊗ V under S2 is

V ⊗ V = (V ∧W )⊕ (V ⊙ V ).

When n ≥ 3, the situation is more complicated. Consider the action of
Sn on

⊗n V given by

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)
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(we need inverses to get a left group action). The elements x ∈
⊗

V n

satisfying gx = x for all g ∈ Sn form an invariant subspace denoted
⊙n V

and the elements satisfying gx = sgn(g)x an invariant subspace isomorphic
to

∧n V . However, there are further components corresponding to the other
representations of Sn. To give an idea how to find these, consider again (1).
In this case, the irreducible representations are labelled by the partitions (2)
and (1, 1) and the corresponding Young symmetrizers are

c(2) = id+(12), c(1,1) = id−(12).

We see that, up to a multiplicative constant, the action of the Young sym-
metrizer cλ gives the projection from V ⊗ V to the corresponding invariant
subspace. Thus, it’s natural to look for invariant subspaces of the form
V λ = cλ

⊗n V .
We also need to incorporate the group GL(V ). The map A 7→

⊗n A
defines an action of GL(V ) on

⊗n V , that is, GL(V ) acts by

A(v1 ⊗ · · · ⊗ vn) = Av1 ⊗ · · · ⊗ Avn.

Clearly, this commutes with the action of Sn. It follows that V λ is a repre-
sentation of GL(V ). We can then formulate Schur–Weyl duality as follows.

Theorem 1. As representations of Sn ×GL(V ),

⊗n V ≃
⊕

λ Vλ ⊗ V λ, (2)

where the sum runs over partitions of n. Moreover, the spaces V λ are either
zero or irreducible.

In particular, ⊗n V ≃
⊕

λ dim(V λ)Vλ (3)

as a representation of Sn and

⊗n V ≃
⊕

λ dim(Vλ)V
λ (4)

as a representation of GL(V ). The notion of Schur–Weyl duality refers to
the symmetric role played by the groups Sn and GL(V ).

To prove Theorem 1, we will need the following result. We remark that
Lemma 2 is conversely an immediate consequence of Theorem 1, as the span
of the elements v ⊗ · · · ⊗ v is clearly invariant under GL(V ).
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Lemma 2. For any vector space V , the space V (n) =
⊙n V is spanned by

v ⊗ · · · ⊗ v, v ∈ V .

Proof. Let U ⊆
⊙n V be the span of all elements v ⊗ · · · ⊗ v. If (ej)

m
j=1 is a

basis for V and αj ∈ C, then

u = (α1e1 + · · ·+ αmem)⊗ · · · ⊗ (α1e1 + · · ·+ αmem)

=
m∑

k1,...,kn=1

αk1 · · ·αknek1 ⊗ · · · ⊗ ekn ∈ U.

If we consider u as a function of α1, then h−1(u(α1 + h) − u(α1)) ∈ U . By
continuity ∂u/∂α1 ∈ U . Repeating this argument,

∂l1 · · · ∂lmu

∂αl1
1 · · · ∂αlm

m

∈ U.

If l1 + · · ·+ lm = n, this gives

∑

σ∈Sn

σ(e1 ⊗ · · · ⊗ e1 ⊗ · · · ⊗ en ⊗ · · · ⊗ en) ∈ U,

where each ej appears lj times. These vectors clearly span
⊙n V .

We will also need the following Lemma. It probably seems familiar, as
we essentially derived it twice last time as part of the proof of Theorem 2
and Lemma 10.

Lemma 3. If R is a ring, e and idempotent in R and M an R-module, then

HomR(Re,M) ≃ eM,

where x ∈ eM corresponds to the homomorphism y 7→ yx, y ∈ Re.

Proof. Let φ ∈ HomR(Re,M) and let x = φ(e). Then x = φ(e2) = eφ(e) =
ex, so x ∈ eM . Moreover, for any y ∈ Re we have φ(y) = φ(ye) = yφ(e) =
yx. Conversely, if x ∈ eM , φ(y) = yx is clearly an R-module homomorphism.

We apply Lemma 3 when R = C[Sn], e is proportional to cλ and M =⊗n V . It follows that HomSn
(Vλ,

⊗n V ) ≃ V λ. This is equivalent to (3).
The equation (2) means that, in addition, the map Vλ ⊗ V λ →

⊗n V given
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by x ⊗ y 7→ xy, commutes with the action of GL(V ). But that’s just a
restatement of the fact that the actions of Sn and GL(V ) commute.

It remains to prove that V λ is either zero or irreducible under the action of
GL(V ). Let us first consider the action of the algebra B = EndC[Sn](

⊗n V ).
It follows from (2) and the fact that Vλ is irreducible that

B =
⊕

λ,µ

HomC[Sn](Vλ ⊗ V λ, Vµ ⊗ V µ) ≃
⊕

λ

EndC(V
λ).

Thus, when restricted to V λ, B acts as the full matrix algebra. Clearly, V λ

has no non-trivial invariant subspaces under that action, since any non-zero
vector is mapped to any other non-zero vector by some linear transformation.
Thus, as a representation of B, V λ is either zero or irreducible.

Lemma 4. The algebra B = EndC[Sn](
⊗n V ) is spanned algebraically by

End(V ) (acting diagonally on
⊗n V ) and topologically by GL(V ).

Proof. We have EndC[Sn](
⊗n V ) =

⊙n End(V ). By Lemma 2, this space
is indeed spanned by the elements A ⊗ A ⊗ · · · ⊗ A, where A ∈ End(V ).
The second fact follows since GL(V ) is dense in End(V ) (the determinant is
a continuous function of the matrix elements, so if det(A) = 0 there is an
arbitrarily small perturbation of A with non-zero determinant).

If a subspace U of V λ is closed under GL(V ), it follows from Lemma 4
that U is closed under B and from the preceeding discussion that U = {0}
or U = V λ. Thus. V λ is either zero or irreducible. This completes the proof
of Theorem 1.

There is a converse of Lemma 4, saying that EndEnd(V )(
⊗n V ) is given

by the action of C[Sn]. Thus, when acting on
⊗n V , each of the algebras

End(V ) and C[Sn] is the commutant of the other. The “double commutant
theorem” is a far-raching generalization of Theorem 1 within the general
theory of semisimple algebras, which we do not go into here.

We will also compute the character of V λ. To this end, we first note the
following fact.

Lemma 5. Let A ∈ GL(V ) and let σ ∈ Sn have cycle structure (c1, . . . , cn)
(that is, it contains exactly k cycles of length k). Then,

Tr⊗n V (Aσ) =
n∏

k=1

TrV (A
k)ck .
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Proof. Choosing a basis (ej)
m
j=1 in V , we write Aej =

∑
k A

k
j ek. Then,

(Aσ)(ej1 ⊗ · · · ⊗ ejn) =
m∑

k1,...,kn=1

Ak1
j
σ−1(1)

. . . Akn
j
σ−1(n)

ek1 ⊗ · · · ⊗ ekn .

It follows that

Tr⊗n V (Aσ) =
m∑

k1,...,kn=1

A
kσ(1)

k1
· · ·A

kσ(n)

kn
.

Since
Tr(Aj) =

∑

k1,...,kj

Ak1k2Ak2k3 · · ·Akj−1kjAkjk1 ,

this can be written as indicated. For instance, when n = 5 and σ = (12)(345),
the sum is ∑

k1,...,k5

Ak2
k1
Ak1

k2
Ak4

k3
Ak5

k4
Ak3

k5
= Tr(A2) Tr(A3).

Suppose now that A has eigenvalues x1, . . . , xm. Then,

Tr⊗n V (Aσ) =
n∏

k=1

(xk
1 + · · ·+ xk

m)
ck =

∑

λ

χλ(σ) TrV λ(A), (5)

where the first equality follows from Lemma 5 and the second from Theo-
rem 1.

On the other hand, Frobenius character formula (Theorem 3 last time)
says that χλ(g) is the coefficient of xλ+ρ in the generating function

∏

1≤i<j≤m

(xi − xj)
n∏

k=1

(xk
1 + · · ·+ xk

m)
ck , (6)

where ρ = (m−1, . . . , 1, 0). The following simple Lemma will now be useful.

Lemma 6. Let P be an anti-symmetric polynomial in m variables, that is,
P (xσ(1), . . . , xσ(m)) = P (x1, . . . , xm). Write

P (x1, . . . , xm) =
∑

k1,...,km≥0

Ck1,...,kmx
k1
1 · · · xkm

m .
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Then,

P (x1, . . . , xm)∏
1≤i<j≤m(xi − xj)

=
∑

λ1≥λ2≥···≥λm≥0

Cλ+ρ Sλ(x1, . . . , xm),

where Sλ is the Schur polynomial

Sλ(x1, . . . , xm) =
det1≤i,j≤m(x

λj+m−j

i )∏
1≤i<j≤m(xi − xj)

. (7)

Proof. That P is anti-symmetric means that the coefficients Ck1,...,km are
anti-symmetric in (k1, . . . , km). In particular, Ck1,...,km = 0 when ki = kj for
some i 6= j. If that is not the case, we can write k = σ(λ + ρ) for a unique
sequence λ1 ≥ · · · ≥ λm ≥ 0 and a unique σ ∈ Sm. This gives

P (x1, . . . , xm) =
∑

λ1≥λ2≥···≥λm≥0

Cλ+ρ

∑

σ∈Sn

sgn(σ)xλ1+ρ1
σ(1) · · · xλm+ρm

σ(m) .

Writing the inner sum as a determinant completes the proof.

Note that Sλ is really a polynomial, since when xi = xj for some i 6= j, two
rows in the determinant are equal and hence the numerator in (7) vanishes.

Frobenius character formula says that when P is given by (6) and λm > 0,
then Cλ+ρ = χλ(g). If we want to compute Cλ+ρ when λk > 0 and λk+1 = 0
then it follows from the case m 7→ k of Frobenius character formula that
Cλ+ρ = χ[λ](g), where [λ] is obtained from λ by deleting 0s at the end.
Comparing this with (5), we can draw the following conclusion.

Proposition 7. Let dim(V ) = m, let λ be a partition with k rows and
A ∈ GL(V ) have eigenvalues x1, . . . , xm. Then, if k ≤ m,

TrV λ(A) = Sλ(x1, . . . , xm),

where on the right-hand side we complete λ to an m-dimensional vector by
defining

(λ1, . . . , λm) = (λ1, . . . , λk, 0, . . . , 0). (8)

Moreover, if k > m, then V λ = {0}.
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We can easily use Proposition 7 to compute the dimension of V λ. Using
the Vandermonde determinant, it follows that

Sλ(1, t, . . . , t
m−1) =

∏

1≤i<j≤m

tλi+m−i − tλj+m−j

tm−i − tm−j
.

As t → 1, this gives

dim(V λ) = Sλ(1, 1, . . . , 1) =
∏

1≤i<j≤m

λi − λj + j − i

j − i
,

where we are still using (8).
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