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We will describe all irreducible representations of the group Sn and com-
pute the character table. There are several approaches for doing this. Our
main source has been the excellent book ”Representation Theory” by Fulton
and Harris, which we can recommend for further reading and an unusually
large number of instructive examples. We will state and explain all main
results before going into the proofs. As before, when we make general state-
ments about group representations, we mean finite-dimensional representa-
tions over C of finite groups. The group algebra C[Sn] will be denoted An.

Statement of results

Let us start with some remarks relevant for general groups. We have seen
that

C[G] ≃
⊕

V ∈Irr(G)

End(V ), (1)

where the isomorphism is both in the sense of algebras and in the sense of
representations of G. Choosing a basis for V , we can view End(V ) as a ring
of matrices. The group action is then given by matrix multiplication πV (g)A,
or equivalently

πV (g)[A1 · · · An] = [πV (g)A1 · · · πV (g)An],

where Aj are the columns of A. Hence, the representation V can be identified
with the space of matrices that have non-zero entries only in (say) the first
column. This space equals End(V )E11, where E11 ∈ End(V ) is the matrix
with 1 in the upper left corner and 0 elsewhere. Note that E2

11 = E11,
that is, E11 is an idempotent. If Φ is an isomorphism from the right-hand
side of (1) to the left, it follows that Φ(E11) is an idempotent in C[G] and
V ≃ C[G]Φ(E11). This proves the following fact.

Proposition 1. Any irreducible representation V of G is equivalent to a left
ideal C[G]e, where e is an idempotent.

As a simple example, if c =
∑

g∈G g then hc =
∑

g∈G hg =
∑

g∈G g = c

for all h. Moreover, with e = c/|G|, we have e2 = e. Thus, C[G]e is a
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one-dimensional representation where each element of G acts as the identity;
that is, it’s the trivial representation.

It may be very difficult to construct idempotents that generate all irre-
ducible representations (unless one knows these representations in advance).
However, for the group Sn there is an explicit construction that we will now
describe. We stress that we will not actually use Proposition 1; it is only
included here for motivation.

The starting point for our construction is a partition λ of n, that is, a
sequence λ1 ≥ λ2 ≥ · · · ≥ λm of positive integers with

∑

j λj = n. Partitions
are conveniently pictured as Young diagrams. To explain this, the following
example should be sufficient.

λ = (4, 2, 1)

By a tableau (pl. tableaux), we mean a filling of the boxes of a Young dia-
gram with the symbols 1, . . . , n, such that each symbol is used exactly once.
The canonical tableau is the particular tableau defined as in the following
example.

1 2 3 4
5 6
7

Let P denote the subgroup of Sn consisting of permutations fixing the
symbols in each row of the canonical tableau and Q the subgroup fixing the
symbols in each column. In the above example, P ≃ S4 × S2 consists of
permutations of {1, . . . , 7} fixing {1, 2, 3, 4}, {5, 6} and {7} and Q ≃ S3×S2

is the permutations fixing {1, 5, 7}, {2, 6}, {3} and {4}. Now let

cλ =
∑

p∈P

p
∑

q∈Q

sgn(q)q ∈ An. (2)

This is known as a Young symmetrizer. Our main result is then as follows.

Theorem 2. The irreducible representations of Sn are exactly the left ideals
Vλ = Ancλ, where λ ranges over all partitions of n.

The one-row partition λ = (n) corresponds to c =
∑

g∈Sn
g. As we saw

above, this gives the trivial representation. By a similar computation, the
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one-column partition λ = (1, . . . , 1) corresponds to the alternating repre-
sentation, which is one-dimensional and where each g acts by multiplication
with sgn(g).

To give a less trivial example, the partition λ = (n − 1, 1) gives the
standard representation, equivalent to the action by Sn on the space Vn =
{x ∈ C

n; x1 + · · ·+ xn = 0}. Let us check this explicitly when n = 3. In this
case we have P = {id, (12)}, Q = {id, (13)}, so

c = (id+(12))(id−(13)) = id+(12)− (13)− (132).

We compute
(13)c = (13) + (123)− id−(23)

and let V = span{c, (13)c}. We claim that Vλ = V ; in particular, dim(Vλ) =
2. Since S3 is generated by (12) and (13) and obviously (13)V = V , it’s
enough to check that (12)V ⊆ V . To this end, we compute

(12)c = (12) + id−(132)− (13) = c,

(12)(13)c = (132) + (23)− (12)− (123) = −c− (13)c.

We leave for the reader to check that π : V3 → Vλ is intertwining, where
π(x1, x2, x3) = x1(13)c+ x2(23)c+ x3c.

Having constructed the irreducible representations of Sn, we want to com-
pute the character table. A conjugacy class of Sn consists of all elements
containing exactly ck k-cycles for each k, where ck are non-negative integers
subject to

c1 + 2c2 + · · ·+ ncn = n.

Equivalently, a conjugacy class is described by the partition containing k
copies of the number ck for each k. (The partition pictured above corre-
sponds to permutations in S7 composed of a 4-cycle, a 2-cycle and a trivial
cycle.) This gives a natural correspondence between irreducible representa-
tions and conjugacy classes, as they are both labelled by partitions. No such
correspondence is known for general groups.

The following result describes the character table of Sn.

Theorem 3. Let χλ be the irreducible charcacter of Sn labelled by the par-
tition λ and C the conjugacy class labelled by the numbers ck. Let lj =
λj +m− j. Then, χλ(C) is the coefficient of xl11 x

l2
2 · · · xlmm in the polynomial

∏

1≤i<j≤m

(xi − xj)
n
∏

j=1

(xj1 + · · ·+ xjm)
cj .
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As an exampe, let us compute χλ(C), when λ = (3, 1) is the standard
representation of S2 and C is the conjugacy class containing (12)(34). We
then have (l1, l2) = (4, 1) and cj = 2δj,2. Thus, we should consider the
polynomial

(x1 − x2)(x
2
1 + x22)

2.

Identifying the coefficient of x41x2, we find that χλ(C) = −1.
As a special case of Theorem 3, dim(Vλ) = χλ(id) is the coefficient of

xl11 · · · xlmm in

(x1 + · · ·+ xm)
n

∏

1≤i<j≤m

(xi − xj).

It is not hard to write down these coefficients explicitly (we leave the details
as an exercise). Namely,

dimVλ =
n!

l1! · · · lm!

∏

1≤i<j≤m

(li − lj),

where lj are as in Theorem 3. There is an attractive way to present this
identity in terms of hook lengths (again we leave the details to the reader).
The hook length of a box in a Young diagram is the number of boxes in the
”hook” consisting of the box itself and all boxes that are straight below it or
straight to the right of it.

Corollary 4. If Vλ is the irreducible representation of Sn corresponding to
the partition λ, then dimVλ = n!/H, where H is the product of the hook
lengths of all the boxes in the Young diagram for λ.

As an example, in the following diagram, each box is labelled by its hook
length. The corresponding representation has dimension 7!/6 · 4 · 3 · 2 = 35.

6 4 2 1
3 1
1

Irreducible representations

In this section, we prove Theorem 2. We first give an intrinsic description
of the set PQ.
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Lemma 5. A permutation g ∈ PQ if and only if there is no pair of labels
(i, j) in the same column in the canonical tableau such that (g(i), g(j)) are
in the same row.

Proof. Suppose g = pq with p ∈ P and q ∈ Q and let i 6= j be in the same
column. Then, q(i) 6= q(j) are still in the same column, hence in distinct
rows. It follows that g(i) = p(q(i)) and g(j) = p(q(j)) are in distinct rows.

For the converse, suppose g has the mentioned property. Let g(T ) be
the tableau obtained from the canonical tableau by replacing each label i by
g(i). Then, there is no pair of labels that are in the same row of T and in the
same column of g(T ). This means that we can reorder the elements within
each row of T such that they end up in the same column as in g(T ), and
then obtain g(T ) by reordering the elements within each column. In terms of
permutations, we go from T to g(T ) by first applying a permutation p ∈ P
and then a permutation pqp−1 for some q ∈ Q. Then, g = pq.

We introduce the notation

aλ =
∑

g∈P

g, bλ =
∑

q∈Q

sgn(q)q,

so that cλ = aλbλ. The following result is the key for showing that Vλ is
irreducible.

Lemma 6. For any x ∈ An, aλxbλ ∈ Ccλ.

Proof. By linearity, we may assume x ∈ Sn. Suppose first that x = pq ∈ PQ.
Since aλp = aλ and qbλ = sgn(q)bλ, we find that aλxbλ = sgn(q)cλ. To
complete the proof, we show that if x /∈ PQ, then aλxbλ = 0. By Lemma 5,
we can find a pair (i, j) in the same column of the standard tableau such
that (x(i), x(j)) are in the same row. Let p = (x(i) x(j)) ∈ P . Then,
q = x−1px = (ij) ∈ Q. This gives

aλxbλ = aλpxbλ = aλxqbλ = sgn(q)aλxbλ = −aλxbλ,

so aλxbλ = 0.

Choosing x = bλaλ gives the following important fact.

Corollary 7. The element cλ is proportional to an idempotent.
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We define the lexicographic ordering of partitions by λ > µ if there exists
j such that λi = µi for 1 ≤ i < j and λj > µj. This is a total ordering; that
is, if λ 6= µ then either λ > µ or µ > λ. We will need the following simple
combinatorial fact.

Lemma 8. Let Tλ and Tµ be two tableaux (not necessarily canonical) on two
Young diagrams λ and µ with λ > µ. Then, we can find a pair (i, j) such
that i and j appear in the same row of Tλ and the same column of Tµ.

Proof. Suppose for a contradiction that there is no such pair (i, j). Then,
all the λ1 symbols in the first row of Tλ must be in different columns in Tµ.
Since there are µ1 such columns, we have λ1 ≤ µ1 and consequently λ1 = µ1.
We may then reorder the symbols within each column of Tµ so that the first
row of Tλ and Tµ agree. This does not affect our assumption that there is no
pair (i, j) with the stated property. Repeating the same argument for each
row we eventually find that λ = µ.

The following result is the key for showing that the representations Vλ
are mutually non-equivalent.

Lemma 9. If λ > µ then aλAnbµ = 0.

Proof. This can be proved in the same way as the case g /∈ PQ in Lemma 6.
It suffices to show that aλgbµ = 0 for g ∈ Sn. We choose Tλ as the canonical
tableau on λ and Tµ as the tableau obtained from the canonical tableau on
µ by replacing each i by g(i). Picking a pair (i, j) as in Lemma 8, we have
p = (ij) ∈ Pλ, q = g−1pg = (g−1(i)g−1(j)) ∈ Qµ, where we indicate the
dependence of the groups P and Q on the underlying partition. Then,

aλgbµ = aλpqbµ = aλgqbµ = −aλgbµ,

so aλbgµ = 0.

We are finally ready for our main result.

Proof of Theorem 2. We first prove that Vλ 6= {0}. To this end, note that
any element in PQ can be written uniquely as pq, with p ∈ P and q ∈ Q.
Indeed, if p1q1 = p2q2, then p

−1
2 p1 = q2q

−1
1 ∈ P ∩Q = {id}. Thus, the terms

in (2) are linearly independent, so 0 6= cλ ∈ Vλ.
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By Corollary 7, Vλ = Aneλ for some idempotent eλ proportional to cλ.
Let φ ∈ HomSn

(Vλ, Vµ). Then, φ(eλ) = xeµ for some x ∈ An. It follows that

φ(yeλ) = φ(ye2λ) = yeλφ(eλ) = yeλxeµ, y ∈ An. (3)

If λ = µ, it follows from Lemma 6 that eλxeµ is proportional to eλ. Thus,
EndSn

(Vλ) = C Id. It follows that Vλ is irreducible (if we can split a repre-
sentation as V = V1⊕V2, then the projections to Vj are linearly independent
intertwining maps). Here we are using that Vλ 6= 0.

If λ > µ it follows from Lemma 9 that eλxeµ = 0. Thus, HomSn
(Vλ, Vµ) =

0, which implies Vλ 6≃ Vµ. We have now found as many non-equivalent
irreducible representations as there are conjugacy classes in Sn, so there can
be no others.

Characters

In this section, we prove Theorem 3. To compute the character of Vλ =
Anaλbλ, we will first consider the representation Uλ = Anaλ, which is much
easier to understand. We first note that the argument used in the proof of
Theorem 2 gives the following result.

Lemma 10. Let Uλ = C[G]aλ. Then, the decomposition of Uλ into irre-
ducibles has the form Uλ = Vλ ⊕

⊕

µ>λKµλVµ.

The numbers Kµλ are called Kostka numbers ; they can be defined com-
binatorially as the number of a certain kind of generalized tableaux.

Proof. It suffices to prove that dimHomSn
(Uλ, Vµ) is 1 for µ = λ and 0 for

µ < λ. We first note that Uλ = Aneλ, where eλ = aλ/|P | is an idempotent.
If φ ∈ HomSn

(Uλ, Vµ), then φ(eλ) = xcλ for some x ∈ An. Just as in (3), it
follows that φ(yeλ) = yeλxcλ for y ∈ A. The conclusion now follows from
Lemma 6 and Lemma 9.

We will now compute the character of Uλ. We find it instructive to first
work in a more general setting, with P ⊆ Sn replaced by arbitrary groups
H ⊆ G. We define C[G/H] as the vector space with basis elements being
the cosets gH, g ∈ G (we do not assume that H is normal). Then, there is
a natural representation π of G on C[G/H] defined by π(g1)g2H = g1g2H.
(The technical term for π is the representation of G induced from the trivial
representation of H.)
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Lemma 11. If a =
∑

h∈H h ∈ C[G], then C[G]a ≃ C[G/H] as representa-
tions of G.

Proof. Note that ha = a for h ∈ H. Thus, gH 7→ ga is a well-defined map
G/H → C[G]a. We extend it linearly to Φ : C[G/H] → C[G]a. Then, Φ is
clearly surjective and intertwining, so it remains to show that it’s injective.
To this end, let gj ∈ G be representatives for the cosets, so that any x ∈
C[G/H] can be written x =

∑

j cjgjH, cj ∈ C. Then Φ(x) =
∑

j

∑

h∈H cjgjh.
Since the elements gjh in this sum are mutually distinct, it follows that
Ker(Φ) = 0.

By the following lemma, computing the character of C[G/H] can be re-
duced to a counting problem.

Lemma 12. The character χ of C[G/H] is given by

χ(C) =
|G| |C ∩H|

|H| |C|
,

where C is any conjugacy class of G.

Proof. SinceG acts by permuting the basis elements gH, the character counts
the number of basis elements fixed by the group action. Thus, for x ∈ C,

χ(x) = |{gH ∈ G/H; xgH = gH}| = |{gH ∈ G/H; g−1xg ∈ H}|

=
1

|H|
|{g ∈ G; g−1xg ∈ H}|.

Consider for fixed y the equation g−1xg = y. Clearly, it has a solution g
only if y ∈ C. Apart from that restriction, the number of solutions does not
depend on y. This is because if y ∈ C then y = g̃−1xg̃ for some g̃ ∈ G. It
follows that g−1xg = y if and only if (g̃g−1)−1x(g̃g−1) = x. Thus, for any
y ∈ C, the equation has |G|/|C| solutions. Consequently,

|{g ∈ G; g−1xg ∈ H}| =
|H ∩ C||G|

|C|
.

It follows from the proof that if x ∈ C and Gx = {g ∈ G; gxg−1 = x},
then

|G| = |Gx| |C|. (4)
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This is a special case of the orbit-stabilizer theorem for general group actions.
We will now use it to compute the number of elements in each conjugacy class
of Sn. Recall that such a class consists of all elements containing exactly ck
k-cycles for each k, where ck are non-negative integers subject to

c1 + 2c2 + · · ·+ ncn = n.

Recall also that conjugation of permutations corresponds to permuting the
names of the symbols that the permutations act on. For instance, if

x = (123)(45)(678)

and g = (135), then

gxg−1 = (g(1)g(2)g(3))(g(4)g(5))(g(6)g(7)g(8)) = (325)(41)(678)

= (14)(253)(678).

Suppose that gxg−1 = x for some x ∈ C. Then, G must move the symbols
occuring in each cycle to the symbols in another (or the same) cycle of the
same length. The number of such permutations of the cycles is c1!c2! · · · cn!.
Having fixed how the cycles are permuted, we may cyclically reorder the
symbols within each cycle without changing x. For each k-cycle there are k
ways of doing this, so the total number of reorderings is 1c12c2 · · ·ncn . Thus,
we obtain from (4) the enumeration

|C| =
n!

∏n

k=1 k
ckck!

. (5)

To give an example, if x = (123)(45)(678) as above and gxg−1 = x, then
g must fix the 2-cycle (45) and either fix or interchange the 3-cycles (123)
and (678). For instance, we can interchange them using g = (16)(27)(38).
Another g that will work is g = (132), since it maps the cycle (123) to
(312) = (123) and fixes the other cycles.

Let us now consider the subgroup H = Sλ1
× · · · × Sλm

of G = Sn, where
∑

j λj = n. (If λ1 ≥ · · · ≥ λm, this is the subgroup previously denoted P .)
The conjugacy classes in H are direct products of conjugacy classes in Sλi

.
Suppose that the i-th component contains cij cycles of length j. Then,











c11 + 2c12 + · · ·+ nc1n = λ1,
...

cm1 + 2cm2 + · · ·+ ncmn = λm.

(6a)
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Using (5) for each component, we find that this conjugacy class has size

m
∏

j=1

λj!
∏n

k=1 k
cjkcjk!

.

Let us now take a conjugacy class C in G. Then, C ∩H splits as a union
of conjugacy classes in H. Explicitly, if the elements in C contain exactly ck
cycles of length k, then C ∩H is a union of conjugacy classes corresponding
to (6a), where











c11 + c21 + · · ·+ cm1 = c1,
...

c1n + c2n + · · ·+ cmn = cn.

(6b)

It follows that

|C ∩H| =
∑

(c)

m
∏

j=1

λj!
∏n

k=1 k
cjkcjk!

=

∏m

j=1 λj!
∏n

k=1 k
ck

∑

(c)

1
∏m

j=1

∏n

k=1 cjk!
, (7)

where the sum is over all non-negative integer solutions to (6). We can now
compute χ(C) from Lemma 12. Using |G| = n!, |H| =

∏m

j=1 λj!, (5) and (7),
we find after simplification that

χ(C) =
∑

(c)

n
∏

k=1

ck!
∏m

j=1 cjk!
.

By the multinomial theorem, this is equivalent to the following result.

Lemma 13. We have the generating function

n
∏

k=1

(xj1 + · · ·+ xjm)
cj =

∑

λ1+···+λm=n

ψλ(C)x
λ1

1 · · · xλm

m

for the characters ψλ of C[G/H], with G = Sn, H = Sλ1
× · · · × Sλm

(if
some λj = 0, the factor Sλj

is deleted) and C the conjugacy class consisting
of permutations with exactly ck k-cycles.

If λ is a partition, that is, λ1 ≥ · · · ≥ λm ≥ 1, then ψλ is the character
of Uλ = Anaλ. In general, since the modules C[G/H] are clearly isomorphic
under permutation of the indices λj, ψλ is the character of Ana[λ], where [λ]
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is the partition obtained by reordering λ and ignoring zeroes (for instance, if
λ = (3, 0, 2, 0, 3), then [λ] = (3, 3, 2)).

Let φλ denote the expression for χλ proposed in Theorem 3 (we want to
prove that χλ = φλ). Comparing with Lemma 13, we can relate φλ to ψλ

if we can expand the product
∏

1≤i<j≤m(xi − xj) into monomials. That is a
well-known result.

Lemma 14 (Vandermonde determinant). We have

∏

1≤i<j≤m

(xi − xj) = det
1≤i,j≤m

(xm−j
i ). (8)

This can be proved by a variety of methods. In the context of the present
course, a very natural approach is as follows. Call a polynomial in several
variables anti-symmetric if it changes sign whenever two variables are inter-
changed. If Vm denotes the polynomials in one variable of degree ≤ m − 1,
then it’s easy to see that

∧k Vm is isomorphic to the space of anti-symmetric
polynomials in k variables that are of degree ≤ m−1 in each variable. Obvi-
ously, both sides of (8) belong to the space

∧m Vm. But since dimVm = m,
that space is one-dimensional, so (8) holds up to a multiplicative constant.
To identify that constant, check that the coefficient of xm−1

1 xm−2
2 · · · xm−1 in

both sides of (8) is 1.
Let us write ρ = (m,m − 1, . . . , 0). In obvious multi-index notation, we

then have

∏

1≤i<j≤m

(xi − xj)
∏

j

(xj1 + · · ·+ xjm)
cj =

∑

λ

θλ(C)x
λ+ρ +R, (9)

where the remainder R collects terms that are not of the form λ+ ρ with λ
a partition. By Lemma 13 and Lemma 14, the left-hand side of (9) can be
written

∑

σ∈Sn

sgn(σ)xσ(ρ)
∑

λ

ψλ(C)x
λ.

It follows that

θλ =
∑

σ∈Sn

sgn(σ)ψλ+ρ−σ(ρ) =
∑

σ∈Sn

sgn(σ)ψ[λ+ρ−σ(ρ)]. (10)

Again, we will need a simple combinatorial fact.
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Lemma 15. If λ is a partition and σ a permutation then, in the notation
explained above, [λ+ ρ− σ(ρ)] ≥ λ, with equality if and only if σ = id.

Proof. Let P+ denote all positive linear combination of the vectors ei − ej,
with i < j. We claim that [λ + ρ − σ(ρ)] ∈ λ + P+, which clearly implies
[λ+ ρ− σ(ρ)] ≥ λ. To see this, first write

ρ− σ(ρ) = (ρ1 − σ(ρ)1)(e1 − e2) + (ρ1 + ρ2 − σ(ρ)1 − σ(ρ)2)(e2 − e3)

+ · · ·+ (ρ1 + · · ·+ ρm − σ(ρ)1 − · · · − σ(ρ)m)em.

Since ρ1 ≥ ρ2 ≥ · · · ≥ ρm, the coefficients in this expansion are non-negative,
and the coefficient of em is 0. Thus, λ+ ρ− σ(ρ) ∈ λ+P+. Next, if µ ∈ Z

m
≥0

is arbitrary, then [µ] is obtained from µ by successively interchanging pairs
(µi, µj), where i < j and µi < µj. This is achieved by adding the vector
(µj − µi)(ei − ej) ∈ P+. Thus, we always have [µ] ∈ µ+P+. This completes
the proof, as it also follows from the above discussion that we have equality
only if ρ = σ(ρ), that is, σ = id.

Consequently, we can write (10) as

θλ = ψλ +
∑

µ>λ

Lµλψµ,

for some integers Lλµ. Moreover, by Lemma 10,

ψλ = χλ +
∑

µ>λ

Kµλχµ,

so
θλ = χλ +

∑

µ>λ

Mµλχµ.

Since the characters are orthonormal in L2(Sn),

〈θλ, θλ〉 = 1 +
∑

µ>λ

M2
µλ.

Thus, to complete the proof that θλ = χλ, we only have to prove that
〈θλ, θλ〉 = 1. This is an entertaining computation.

By (5),

〈θλ, θλ〉 =
1

n!

∑

C

|C| θλ(C)
2 =

∑

c1+2c2+···+ncn=n

θλ(C)
2

∏n

k=1 k
ckck!

.
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In view of the definition of θλ, we introduce the generating function

S(x, y) =
∑

c1,c2,c3,...

∞
∏

k=1

(xk1 + · · ·+ xkm)
ck(yk1 + · · ·+ ykm)

ck

kckck!
.

(We consider this as a formal power series; in particular, convergence aspects
are irrelevant.) Then, 〈θλ, θλ〉 is the coefficient of xλ+ρyλ+ρ in

∏

1≤i<j≤m

(xi − xj)(yi − yj)S(x, y).

Recall that if we write exp(x) =
∑∞

k=0 x
k/k! and − log(1− x) =

∑∞

k=1 x
k/k,

then exp(x + y) = exp(x) exp(y) and exp(− log(1 − x)) = 1/(1 − x) in the
ring of formal power series. It follows that

S(x, y) =
∞
∏

k=1

exp

(

(xk1 + · · ·+ xkm)(y
k
1 + · · ·+ ykm)

k

)

=
m
∏

i,j=1

exp

(

∞
∑

k=1

xki y
k
j

k

)

=
m
∏

i,j=1

1

1− xiyj
.

We know apply the Cauchy determinant evaluation. (Replace yj by −y−1
j to

get the form that appeared in a previous exercise.)

Lemma 16 (Cauchy determinant). We have

det
1≤j,k≤m

(

1

1− xjyk

)

=

∏

1≤j<k≤m(xj − xk)(yj − yk)
∏m

j,k=1(1− xjyk)
.

One can obtain a short proof similarly to Lemma 14; simply note that
if we multiply by the denominator both sides are polynomials in the same
one-dimensional space; the multiplicative constant is most easily computed
inductively by looking at the limit of both sides when x1y1 → 1.

We now know that 〈θλ, θλ〉 is the coefficient of xλ+ρyλ+ρ in the formal
power series expansion of

det
1≤j,k≤m

(

1

1− xjyk

)

=
∑

σ∈Sm

sgn(σ)
m
∏

j=1

1

1− xjyσ(j)

=
∑

σ∈Sm

∑

k1,...,km≥0

sgn(σ)xk11 · · · xkmm yk1
σ(1) · · · y

km
σ(m).
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It is important to note that the indices (λ+ ρ)i are mutually distinct. Thus,
only the permutation σ contributes to the coefficient of xλ+ρyλ+ρ, and we
find that this coefficient is 1. This completes the proof of Theorem 3.
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