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Some of the most important theorems in mathematics are about unique
factorization in rings. For instance, the fundamental theorem of arithmetic
states that any positive integer can be written uniquely as a product of
primes. The fundamental theorem of algebra implies that any complex poly-
nomial in one variable can be written as a product of first-degree factors,
uniquely up to multiplication by non-zero constants. We want to put this
type of results in a general framework. In particular, we will show a unique
factorization result in a general principal ideal domain (PID).

Throughout, R will be an integral domain with 1. In particular, R is
commutative. In general, we do not have division but we have cancellation:

ab = ac =⇒ a = 0 or b = c.

By a unit of R we mean an invertible element. (For instance, the units in Z
are ±1.) We will sometimes write a ∼ b if a = eb for some unit e.

By an irreducible element we mean a non-zero non-unit p such that if
p = ab then either a or b is a unit. Equivalently, p is not irreducible if we
can write p = ab with neither a nor b a unit.

By a prime element we mean a non-zero non-unit p such that if p | ab
then p | a or p | b.

For general integral domains, it’s an exercise to check that any prime
element is irreducible.

In Z there is no difference between prime elements and irreducible ele-
ments, both notions mean ±p with p a prime number. Similarly, in C[x],
both notions mean a polynomial of degree 1.

By contrast, in the ring Z[
√
−5], it’s easy to check that the elements 3

and 2±
√
−5 are all irreducible. However, in view of the identity

3 · 3 = (2 +
√
−5) · (2−

√
−5)

none of these elements are prime For instance, 2+
√
−5|3 ·3 but 2+

√
−5 ∤ 3.

In this example, the existence of non-prime irreducible elements is related to
non-unique factorizations of the element 9. By the following result, this is
an instance of a general phenomenon.
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Proposition 1. Let R be an integral domain such that any non-zero non-

unit can be written as a product of irreducible elements. Then, the following

two conditions are equivalent:

(A) Every irreducible element is prime.

(B) Factorization into irreducible elements is unique up to multiplication

by units.

More precisely, condition (B) means that if

x = p1 · · · pk = q1 · · · ql

with all pj and qj irreducible, then k = l and, after reordering the elements,
pj ∼ qj for all j.

A domain such that the conditions in Theorem 1 hold is called a unique

factorization domain (UFD).

Proof of Prop. 1. To prove that (A) implies (B), we use induction on the
minimal number of irreducible factors of x. If x = p1 is itself irreducible, then
the statement in (B) follows from the definition of irreducibility. Suppose now
that (B) holds for all products of k irreducible factors and consider a product
x = p1 · · · pk+1 with all pj irreducible. If we also have x = q1 · · · ql, then since
p1 is prime it divides one of the factors qj. After reordering, we may assume
p1 | q1. Since q1 is irreducible, p1 = eq1 with e a unit. Cancelling p1 we get

p2 · · · pk+1 = eq2 · · · ql.

We may now apply the induction hypothesis to deduce that (B) holds for the
element x.

To prove that (B) implies (A), let p be irreducible and suppose that p | ab,
that is, ab = pc for some c. If none of the elements a, b and c are units, we
factorize them into irreducibles and plug into the equation ab = pc. By (B),
p is equivalent to one of the irreducible factors on the left-hand side. If that
factor comes from a we have p | a and else p | b. The remaining cases are
more trivial: if a is a unit we have b = a−1pc and hence p | b; if c is a unit
we can apply the argument above to the irreducible element pc.

The following is the main result of these notes.

Theorem 2. Every PID is an UFD.
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For the proof we will need the following lemma, which is an important
result in itself.

Lemma 3. Any PID is a Noetherian ring, that is, it does not contain any

infinite strictly increasing chain of ideals

I1 ( I2 ( I3 ( · · · .

Proof. Suppose there is such a chain and let I = ∪kIk. Then, it’s easy to
see that I is an ideal. (For instance, if x ∈ I and y ∈ I, we have x ∈ Ik and
y ∈ Il for some k and l. If l ≥ k, then x ∈ Il so, by the fact that Il is an
ideal, x − y ∈ Il ⊆ I.) By the definition of a PID, I = aR for some a ∈ R.
Since a ∈ I, there exists a k with a ∈ Ik. But then, I = aR ⊆ Ik, so I = Ik.
This contradicts the assumption that Ik ( Ik+1 ⊆ I.

We can now prove that the first requirement for being an UFD holds.

Lemma 4. In a PID, any non-zero non-unit can be factored as a product of

irreducible elements.

Proof. Take a non-zero non-unit element a. If it’s irreducible we are done. If
not, we can write a = bc with b and c non-units. This implies (a) ( (b). For
if (a) = (b), then we could write b = ad for some d ∈ R. Then, a = acd and
after cancelling a we have d = c−1 which contradicts that c is a non-unit.
This argument can be repeated. If b and c are both irreducible we are done;
otherwise one of them, say b, can be factored. The factors of b generate ideals
strictly larger than (b). Continuing in this way we will either end up with a
factorization of a into irreducibles or with an infinite strictly increasing chain
of ideals. However, the second option is impossible in view of Lemma 3.

We complete the proof of Theorem 2 by verifying condition (a) in Prop. 1.

Lemma 5. In a PID, each irreducible element is prime.

Proof. Let p be an irreducible element and assume that p | ab. We assume
that p ∤ a and prove that p | b. Consider the ideal (p, a). By the definition
of a PID, (p, a) = (c) for some c. In particular, p ∈ (c), so p = cd for some
element d. Since p is irreducible either c or d is a unit. If d is a unit then
(p) = (c). But then a ∈ (c) = (p) which contradicts p ∤ a. Thus, c is a unit
which means that 1 ∈ (c) = (p, a). Then we can write

1 = px+ ay
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for some elements x and y. This gives b = pbx+ aby and since p | ab we may
conclude that p | b.

Finally, we mention without proof the following fact.

Theorem 6. If R is an UFD then the polynomial ring R[x] is an UFD.

By iteration, R[x1, . . . , xn] is an UFD. This shows that the class of UFDs
is much larger than the class of PIDs; for instance, Z[x] and R[x, y] are UFDs
but not PIDs.
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