
Advanced linear and multilinear algebra (MMA200)

Time: 2017-10-26, 14:00-18:00.

Tools: No calculator or handbook is allowed.

Questions: Jakob Hultgren, 031-7725325

Grades: Each problem gives 6 points. At most 6 bonus points from the exercise sessions will be added to

the result. Grades are G (15-24 points) and VG (25-30).

1 Define what it means for a module to be free. Prove or disprove that Q is a free
module over Z.

2 Find all abelian groups of order 360 that contain a subgroup isomorphic to Z36.

3 Let A be a complex 3× 3 matrix such that A3 +A = 2A2. Determine all possibilities
for the Jordan canonical form of A.

4 Formulate and prove Schur’s lemma. Also give a brief explanation of how it implies
orthogonality relations for irreducible characters.

5 If λ is a Young diagram, the content of a box in row i and column j is defined as
j − i. The content c(λ) of a diagram λ is the sum of the content of all its boxes. As
an example, c(4, 2, 1) = 3, since

0 + 1 + 2 + 3
+ (−1) + 0
+ (−2) = 3.

Let x =
∑

1≤i<j≤n(ij) ∈ C[Sn] be the sum of all transpositions and V be the irre-
ducible representation labelled by a Young diagram λ. Show that πV (x) = c(λ) IdV
(here, πV is viewed as a linear map C[Sn]→ End(V )).
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1 Define what it means for a module over a ring to be free. Prove or disprove that Q is a free module
over Z.

See the course literature for the definition. Consider any two elements k/l and m/n
in Q. Then

lm
k

l
− knm

n
= 0,

so the two elements are linearly dependent over Z. Thus, a basis can contain just one
element k/l. But that would give Q = Zk/l, which is absurd. Thus, Q is not free.

2 Find all abelian groups of order 360 that contain a subgroup isomorphic to Z36.

We have 360 = 23 · 32 · 5. Thus we can split such a group G as G ' G1 × G2 × G3,
where G1 ∈ {Z8,Z4 × Z2,Z3

2}, G2 ∈ {Z9,Z2
3} and G3 = Z5. To contain a subgroup

isomorphic to Z36 ' Z4 × Z9, we cannot choose G1 = Z3
2 or G2 = Z2

3, since there
are then no elements of order 4 or 9. However, the other choices are allowed (in
particular, G1 = Z8 is allowed since 2Z8 ' Z4). We conclude that there are only two
such groups, G = Z8 × Z9 and G = Z4 × Z2 × Z9.

3 Let A be a complex 3×3 matrix such that A3 +A = 2A2. Determine all possibilities for the Jordan
canonical form of A.

The given equation can be written A(A− I)2 = 0. Thus, the minimal polynomial of
A divides x(x − 1)2. This means that the only possible Jordan blocks of A are [0],

[1] and

[
1 1
0 1

]
. Up to reordering these blocks, we have six possibilities:

0 0 0
0 0 0
0 0 0

 ,
1 0 0

0 0 0
0 0 0

 ,
1 0 0

0 1 0
0 0 0

 ,
1 0 0

0 1 0
0 0 1

 ,
1 1 0

0 1 0
0 0 0

 ,
1 1 0

0 1 0
0 0 1

 .
4 Formulate and prove Schur’s lemma. Also give a brief explanation of how it implies orthogonality

relations for irreducible characters.

See the course literature.

5 If λ is a Young diagram, the content of a box in row i and column j is defined as j− i. The content
c(λ) of a diagram λ is the sum of the content of all its boxes. As an example, c(4, 2, 1) = 3, since

0 + 1 + 2 + 3
+ (−1) + 0
+ (−2) = 3.

Let x =
∑

1≤i<j≤n(ij) ∈ C[Sn] be the sum of all transpositions and V be the irreducible represen-
tation labelled by a Young diagram λ. Show that πV (x) = c(λ) IdV (here, πV is viewed as a linear
map C[Sn]→ End(V )).

As we discuss in §5.9 of the lecture notes, the element
∑

g∈C g is central in the group
algebra for any conjugacy class C of a finite group. In particular, x is central. Thus,
with aλ =

∑
p∈P p and bλ =

∑
q∈Q sgn(q)q as defined in the lecture notes, we can

write
πV (x)gaλbλ = g

∑
1≤i<j≤n

aλ(ij)bλ,



where the elements gaλbλ generate V . Note that if (ij) ∈ P then aλ(ij) = aλ, and
if (ij) ∈ Q then (ij)bλ = −bλ. We claim that if neither of these conditions hold,
then aλ(ij)bλ = 0. In this case, i and j are neither in the same row nor in the same
column. Possibly after interchanging the names of i and j, we can then find k in the
row of i and the column of j, so that (ik) ∈ P and (jk) ∈ Q. Moreover, (ik)(ij) =
(ij)(jk) = (ijk), so aλ(ij)bλ = aλ(ik)(ij)bλ = aλ(ij)(jk)bλ = −aλ(ij)bλ, which gives
aλ(ij)bλ = 0. (This is a special case of the proof of Lemma 6.2.5 in the lecture notes).
We conclude that πV (x) = c IdV , where c is the number of transpositions in P minus
the number of transpositions in Q. To count the transpositions in P , note that a box
in column j is the right-most member of j−1 such transpositions, so the total number
is
∑

i,j(j − 1), where the sum runs over all boxes. Similarly, there are
∑

i,j(i − 1)
transpositions in Q. Combining these expressions give c =

∑
i,j(j − i) = c(λ).


