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Chapter 1

Review of group theory

1.1 Motivation and definition

A group is an abstract version of the set of symmetries of an object. As an
example, consider the plane motions preserving an equilateral triangle. There are
six such symmetries: rotation 120◦ clockwise or anti-clockwise, reflection in one
of the three altitudes and the identity symmetry that does not move any points
at all. Note that the composition of two symmetries is again a symmetry. For
instance, drawing the triangle as in Figure 1.1 and letting r denote rotation 120◦

clockwise and s reflection in the vertical altitude, the composition s◦r is reflection
in the altitude through the lower right corner.

B C

A

C A

B

A C

Br s

s ◦ r

Figure 1.1: Composition of symmetries

Obviously, composition of symmetries satisfies the associative law (a ◦ b) ◦ c =
a ◦ (b ◦ c). Moreover, each symmetry is invertible and the inverse map is again
a symmetry. That is, for each symmetry a there is a symmetry a−1 such that
a◦a−1 = a−1◦a = id. The formal definition of a group is based on these properties
of symmetries.

Definition 1.1.1. A group G is a set equipped with a map G × G → G (the
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multiplication) that we denote (a, b) 7→ a · b = ab. The multiplication should
satisfy the associative law

a · (b · c) = (a · b) · c, a, b, c ∈ G. (1.1a)

Moreover, there should be an identity element 1 ∈ G such that

a = 1 · a = a · 1, a ∈ G. (1.1b)

Finally, each element should be invertible, that is, each a ∈ G should have an
inverse a−1 ∈ G such that

a · a−1 = a−1 · a = 1. (1.1c)

It is easy to see that the identity element and the inverse of each element are
unique.

Note that we do not require the commutative law a · b = b · a. Indeed, it is
easy to check that, in the example of Figure 1.1, r ◦ s 6= s ◦ r. However, there are
many important examples of groups where the commutative law holds. A group
with that property is called abelian (or commutative). In abelian groups, it is
customary to use additive rather than multiplicative notation. That is, we denote
multiplication by (a, b) 7→ a + b (and call it addition), inversion by a 7→ −a and
the identity element by 0. Using the commutative law in the form

a+ b = b+ a,

the group axioms (1.1) simplify to

a+ (b+ c) = (a+ b) + c, a = a+ 0, a+ (−a) = 0.

In an abelian group we may introduce subtraction as a−b = a+(−b). By contrast,
in non-abelian groups we never write a

b
as it is not clear if this would mean ab−1

or b−1a.
Some examples of groups are:

• The set of all invertible maps from a set X to itself is a group under compo-
sition. We will denote it SX .

• If X is a finite set, an invertible map from X to itself is called a permutation.
We often take X = {1, . . . , n} and write Sn instead of SX . The group Sn is
called the symmetric group on n elements.

• If V is a vector space1, the set of invertible linear maps from V to V is a
group, again under composition. It is called the general linear group and is
denoted GL(V ).

1We will review the definition in §3.1; you may think of Rn or Cn.
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• The set of invertible complex n × n-matrices is a group under matrix mul-
tiplication. It can be identified with GL(Cn); another common notation is
GL(n,C).

• Each of the number systems Z, Q, R and C is an abelian group under addi-
tion.

• None of the number systems Z, Q, R and C is a group under multiplication.
However, Q∗ = Q\{0} is a group and so is R∗ and C∗, but not Z∗. Likewise,
Q>0 and R>0 are groups under multiplication. All these groups are abelian.

• Any vector space is an abelian group under addition of vectors.

• For a fixed positive integer n, the numbers 0, 1, . . . , n − 1 form an abelian
group under addition modulo n. It is known as the cyclic group of order n
and will be denoted Zn.

Thanks to the associative law, one can define positive powers ak of an element
unambiguously (a2 = a ·a, a3 = a ·(a ·a) = (a ·a) ·a, a4 = a ·(a ·(a ·a)) = · · · ). One
also defines a0 = 1 and ak = (a−1)−k for negative k. It is then easy to prove that
ak+l = akal for k, l ∈ Z. Of course, in an abelian group we write ka = a+ · · ·+ a
rather than ak = a · · · a.

Exercise 1.1.1. Write down the 6×6 multiplication table for the symmetry group
of the triangle.

Exercise 1.1.2. Show that if ab = 1 in a group then ba = 1. (That is, any right
inverse is also a left inverse.)

Exercise 1.1.3. Let Z∗n be the subset of Zn consisting of integers relatively prime
to n. Show that Z∗n is a group under multiplication modulo n.

1.2 Subgroups and homomorphisms

Many groups in the list of examples above are sitting inside each other; for instance,
Z ⊆ Q ⊆ R ⊆ C. Another example is the symmetry group of the equilateral
triangle, which sits inside the much larger group of all invertible maps from the
triangle to itself.

Definition 1.2.1. A subgroup2 of a group G is a non-empty subset H ⊆ G such
that if a, b ∈ H then a · b ∈ H and a−1 ∈ H.

2Swedish: undergrupp, delgrupp. A unicorn dies each time you say subgrupp.
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Equivalently, a subgroup is a subset H ⊆ G which is a group with the same
multiplication as G (or, to be hyper-correct, the restriction of the multiplication
on G×G to H ×H).

We also need a notion of “sameness” for groups. For instance, if we know how
a symmetry (still in the sense of planar motions) of the equilateral triangle acts
on the corners, we know how it acts on the whole triangle. Thus, we can identify
the symmetries with permutations of the three corners. Since all six permutations
appear in this way, the symmetry group of the equilateral triangle can be identified
with S3. The technical term for being the same algebraic structure is isomorphic.

Definition 1.2.2. We say that two groups G and H are isomorphic if there exists
an invertible map φ : G→ H (called an isomorphism) such that

φ(a · b) = φ(a) · φ(b), a, b ∈ G. (1.2)

Note that the multiplication dot on the left of (1.2) refers to the multiplication
in G and the one on the right to the multiplication in H. We will use the notation
G ' H for isomorphic groups.

Relaxing the condition that φ is invertible gives another important type of map
between groups.

Definition 1.2.3. If G and H are groups, a map from G to H that satisfies (1.2)
is called a homomorphism.

An endomorphism is a homomorphism from a group G to itself. A bijective
endomorphism is called an automorphism.

Exercise 1.2.1. Show that if φ : G → H is a homomorphism, then φ(1G) = 1H
and φ(a−1) = φ(a)−1 for all a ∈ G.

Exercise 1.2.2. Show that the cyclic group ZN is isomorphic to a subgroup of
C∗.

Exercise 1.2.3. Show that the group R>0 (under multiplication) is isomorphic to
the group R (under addition).

Exercise 1.2.4. Is Q>0 isomorphic to Q?

Exercise 1.2.5. Show that any subgroup of Z is of the form nZ = {nx; x ∈ Z},
where n is a non-negative integer.

Exercise 1.2.6. Let H ⊆ G be a subset such that a, b ∈ H ⇒ ab ∈ H. Show
that if G is finite then H is a subgroup of G. Show that this need not be the case
if G is infinite.
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1.3 Generating sets and cyclic groups

It is easy to see that the intersection of any family of subgroups is itself a subgroup.
Thus, if S ⊆ G is an arbitrary subset, we can take the the intersection of all
subgroups of G containing S, obtaining in this way the smallest such subgroup. It
is called the group generated by S.

A group generated by a single element is called a cyclic group.

Proposition 1.3.1. Any cyclic group is either isomorphic to Z or to Zn for some
positive integer n.

Proof. Suppose G is generated by a ∈ G. With ak as defined in §1.1, let H =
{ak; k ∈ Z} ⊆ G. Since akal = ak+l and (ak)−1 = a−k, H is a subgroup containing
a. Since G is generated by a it follows that H = G. There are now two possibilities.
If the powers ak are all distinct, then k 7→ ak defines an isomorphism from Z to
G. Else, ak = al for some k < l. With n = l − k we then have an = 1. Let n
be the smallest positive integer with this property. Then, G = {1, a, a2, . . . , an−1}
and k 7→ ak is an isomorphism from Zn to G.

The order of a finite group is the number of elements in the group. The order
of a group element a is the smallest positive integer n such that an = 1. By the
proof of Proposition 1.3.1, any element in a finite group has finite order, which is
equal to the order of the subgroup generated by a.

Exercise 1.3.1. Show that the group generated by S ⊆ G consists of all finite
words x1 · · · xn, where xi ∈ S or x−1

i ∈ S. If G is abelian, show that this simplifies
to k1x1 + · · ·+ knxn, where kj ∈ Z and xj ∈ S.3

Exercise 1.3.2. Show that the group S3 is generated by two elements. Describe
all pairs of elements that work.

1.4 Actions and representations

We started our lecture by saying that a group is an abstraction of the set of
symmetries of an object. It is natural to ask how much more general these abstract
groups are compared to concrete symmetry groups. The answer is that they are
not a bit more general; if we define a symmetry group to be a group of invertible
maps on some set X, then any group is isomorphic to a symmetry group. Indeed,
if G is a group we can define φ : G→ SG by φ(a)(b) = ab. It is easy to see that φ is
an injective homomorphism, hence G is isomorphic to the subgroup Im(φ) ⊆ SG.

3Note the similarity to the subspace spanned by a set S in linear algebra. As we will see in
§3, abelian group theory can be viewed as linear algebra over Z.
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In particular, for finite groups we have Cayley’s theorem, saying that any group
with n elements is isomorphic to a subgroup of Sn.

More generally, a homomorphism φ : G→ SX is called a group action4. If it is
injective, so that G is isomorphic to a subgroup of SX , it is called a faithful action.
An example is the action of S3 on the equilateral triangle.

A particular case of group actions are group representations . These are homo-
morphisms G → GL(V ), where V is a vector space. (Since GL(V ) is a subgroup
of SV , a representation is indeed an action.) Group representations are a powerful
tool to investigate symmetries, both from an abstract and an applied viewpoint.
For instance, in quantum mechanics a physical system is described by a Hilbert
space. Symmetries of the system result in a representation of the corresponding
group on the Hilbert space, which may lead to non-trivial physical information.

We will have much to say about group representations in §6–8, but let us note
already that there is a version of “Cayley’s theorem” for representations. Namely,
let G be a group and V the complex vector space of all functions G → C. Then
we can define φ : G → GL(V ) by (φ(a)(f))(b) = f(a−1b), where a, b ∈ G and
f ∈ V . It is easy to check that φ is an injective homomorphism (called the regular
representation), so we have realized G as a group of invertible linear maps on a
vector space. In particular, if G is a finite group with n elements, then dim(V ) = n.
We conclude that any group with n elements can be realized as a group of complex
n× n-matrices.

Exercise 1.4.1. Show that φ(a)(b) = aba−1 defines an action of a group G on
itself. Show that this action is faithful for G = S3, but not for groups in general.

Exercise 1.4.2. Let V be the vector space of all complex-valued functions on a
finite group G. A natural basis for V are the Kronecker delta functions (δa)a∈G
defined by δa(a) = 1 and δa(b) = 0 for b 6= a. Show that, in the regular represen-
tation, φ(a)(δb) = δab. Conclude that any group with n elements can be realized
as a group of n× n permutation matrices, that is, matrices with exactly one 1 in
each row and column, all other elements being 0.

Exercise 1.4.3. Starting from the example with the equilateral triangle, describe
a two-dimensional faithful representation of S3.

1.5 Cosets and quotients

Definition 1.5.1. If H ⊆ G is a subgroup and a ∈ G, then aH = {ah; h ∈ H} is
called a (left) coset5 of H.

4Swedish: gruppverkan.
5Swedish: sidoklass.
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As an example, if nZ is considered as a subgroup of Z, the cosets are the residue
classes {x ∈ Z; x ≡ k mod n}. As another example, if the x-axis {(x, 0); x ∈ R}
is considered as a subgroup of R2, the cosets are the horizontal lines. For a non-
commutative example, let SL(n,C) (the special linear group) denote the subgroup
of GL(n,C) consisting of matrices with determinant 1. Then the cosets consist of
matrices with determinant a, for fixed a ∈ C∗.

It is easy to see that the cosets form a partition of G, that is, each element of G
belongs to exactly one coset. Moreover, the map h 7→ ah is a bijection H → aH,
so all cosets of H have the same cardinality. In particular, if G is finite then
the number of cosets is |G|/|H|. (In general, we use |S| to denote the number of
elements in a finite set S.) The following simple consequence is fundamental for
understanding the structure of finite groups.

Proposition 1.5.2 (Lagrange’s Theorem). If H is a subgroup of a finite group G,
then |H| divides |G|.

To exemplify the usefulness of this result we state two immediate consequences.

Corollary 1.5.3. If G is a group of order n, then the order of each element in G
divides n. In particular, an = 1 for all a ∈ G.

This follows by applying Lagrange’s theorem to the subgroup generated by a.

Corollary 1.5.4. If G is a group with p elements for a prime p, then G ' Zp.

Indeed, by Corollary 1.5.3, all elements have either order 1 or p. Since only
the unit element has order 1, any other element generates a subgroup isomorphic
to Zp, which must be the whole group.

In some situations, the cosets of a subgroup form a group in a natural way. For
instance, adding residue classes modulo n gives the cyclic group Zn. In general,
we would like to multiply cosets by the rule

aH · bH = abH, (1.3)

but this may depend on the choice of a. If we replace a by ah, with h ∈ H, the
left-hand side of (1.3) does not change, so we must have ahbH = abH. Multiplying
with b−1a−1 from the left gives b−1hbH = H, which is equivalent to b−1hb ∈ H.
This motivates the following definition.

Definition 1.5.5. A subgroup H ⊆ G is called normal if a−1ha ∈ H for all a ∈ G
and h ∈ H.

If H is a normal subgroup of G, we write H / G. It is then easy to see that
(1.3) defines a group structure on the cosets of H. The resulting quotient group is
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denoted G/H. In particular, the unit element is 1G/H = H. As we have already
indicated, an example of a quotient group is Z/nZ ' Zn.

If G is abelian, then a−1ha = h always, so any subgroup of an abelian subgroup
is normal. On the other hand, it is easy to check that the permutations of {1, 2, 3}
that fix the element 3 form a non-normal subgroup of S3.

To state the main fact about quotient groups we need the following definition.

Definition 1.5.6. The kernel6 of a group homomorphism φ : G → H is the
inverse image of the identity, that is, Ker(φ) = {a ∈ G; φ(a) = 1}.

The following important result is often called the first isomorphism theorem.
We will leave the proof to the reader. The second and third isomorphism theorem
are given as Exercises 1.7.9–1.7.10.

Theorem 1.5.7. If φ : G → H is a homomorphism then Ker(φ) is a normal
subgroup of G and G/Ker(φ) ' Im(φ). Conversely, if N / G, then φ(a) = aN
defines a homomorphism φ : G→ G/N with kernel N and image G/N .

In particular, the normal subgroups of G are exactly the kernels of all homo-
morphisms from G to other groups. Likewise, the quotient groups of G are exactly
the images of homomorphisms from G to other groups.

One way to think of Theorem 1.5.7 is in terms of information: Ker(φ) describes
the information about G that is forgotten by φ and Im(φ) describes the information
that is retained.

Exercise 1.5.1. Show that R/Z is isomorphic to a subgroup of C∗.

Exercise 1.5.2. Let G be the symmetry group of the square, consisting of four
rotations (including the identity) and four reflections. Let a and b denote the
reflections in the two diagonals. Now let K = {1, a} and H = {1, a, b, ab}. Show
that K / H and H / G but K is not normal in G.

1.6 The symmetric group

We collect some facts about the symmetric group that will be needed in §7.
First of all, we introduce the cycle notation. It should be sufficient to explain

this for an example. Let σ ∈ S6 be defined by the table

x 1 2 3 4 5 6
σ(x) 3 2 6 5 4 1

.

6Swedish: kärna.
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In cycle notation, we write
σ = (1 3 6)(4 5), (1.4)

where the first factor stands for the 3-cycle 1 7→ 3, 3 7→ 6, 6 7→ 1 and the second
factor for the 2-cycle 4 7→ 5, 5 7→ 4. The 1-cycle or fix-point 2 7→ 2 could have
been denoted (2) but one usually omits 1-cycles from the notation. Clearly, the
cycle notation is unique up to permuting the cycles and cyclically permuting the
elements in each cycle. For instance,

(4 5)(1 3 6), (3 6 1)(4 5), (5 4)(6 1 3)

all represent the same permutation as (1.4). In particular, we can define the cycle
structure of a permutation to be (c1, . . . , cn), where ck is the number of k-cycles
appearing in the cycle notation.

It is easy to multiply permutations in the cycle notation. For instance, let σ
be as above and τ = (1 5 2 6)(3 4). To compute (στ)(1), we only need to look at
the underlined symbols in

στ = (1 3 6)(4 5)(1 5 2 6)(3 4). (1.5)

Starting from the right, we see that 1 is mapped to 5, which is then mapped to 4,
so (στ)(1) = 4. To get the cycle notation for στ , we successively compute in the
same way (στ)(4) = 6 and so on. In this case we obtain a single cycle, namely,

στ = (1 4 6 3 5 2 1). (1.6)

To avoid a possible source of misunderstanding, we stress that a permutation
can be written as a product of cycles in many ways. When we speak about the
cycle notation or cycle structure, we always refer to a factorization into disjoint
cycles. For instance, the right-hand sides of (1.5) and (1.6) represent the same
permutation, but only (1.6) reveals the cycle structure.

Next, we consider conjugation of permutations, that is, the map σ 7→ τστ−1

for fixed τ . If σ(i) = j, then (τστ−1)(τ(i)) = τ(j). In cycle notation, this means
that any pair of symbols (· · · i j · · · ) is replaced by (· · · τ(i) τ(j) · · · ), so we simply
need to apply τ to every symbol. For instance, if σ is as in (1.4), then

τστ−1 = (τ(1) τ(3) τ(6))(τ(4) τ(5)), τ ∈ S6. (1.7)

We can think of this as expressing the same permutation as σ after the “change
of coordinates” i 7→ τ(i). It follows that the permutations conjugate to σ are
precisely those that have the same cycle structure as σ.

In general, when a group acts on itself by conjugation, the orbits {τστ−1; τ ∈
G} are known as conjugacy classes. As we just explained, the conjugacy classes
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in Sn consist of permutations with the same cycle structure. Since the sum of the
total length of the cycles (counting 1-cycles) is n, conjugacy classes in Sn can be
labelled by partitions of n, where we define a partition of n to be an expression
for n as a decreasing sum of positive integers. If the number of k-cycles is ck, then
the corresponding partition has ck parts equal to k.

As an example, the seven partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

A typical representative of the corresponding conjugacy class is, respectively,

(1 2 3 4 5), (1 2 3 4), (1 2 3)(4 5), (1 2 3), (1 2)(3 4), (1 2), id .

We encourage the reader to check that the number of elements in each class is

24, 30, 20, 20, 15, 10, 1.

In general, we have the following result that we will need in §7.5.

Lemma 1.6.1. The conjugacy class with cycle structure (c1, . . . , cn) consists of

n!∏n
k=1 k

ckck!

elements.

To see this, start with a representative of the conjugacy class written in the
cycle notation, with 1-cycles included. For instance, if n = 5 and (c1, . . . , c5) =
(1, 2, 0, 0, 0) we may take

(1 2)(3 4)(5).

We can create the whole conjugacy class by conjugating with a general τ ∈ Sn,
which gives

(τ(1) τ(2))(τ(3) τ(4))(τ(5)).

We claim that, for each of the n! choices for τ , there are always
∏n

k=1 k
ckck! choices

that lead to distinct cycle notations for the same element. Namely, for each k-cycle
we may pick any element that we write first, which gives kck choices. Having made
these choices we can still write the k-cycles in any order, which accounts for the
factor ck!.

We will need the sign of a permutation, which is a homomorphism sgn : Sn →
{±1}. You may have encountered this in linear algebra in the definition of the
determinant, which can be written7

det
1≤i,j≤n

(aij) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i). (1.8)

7Actually, most authors of linear algebra textbooks make a complete mess of their chapter on
determinants, precisely because they try very hard to avoid writing down this simple definition.
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An elegant definition of the sign is by the identity

sgn(σ) =
∏

1≤i<j≤n

xσ(j) − xσ(i)

xj − xi
, (1.9)

where x1, . . . , xn can be thought of as real or formal variables. Since each factor
in the numerator is plus or minus a factor in the denominator, sgn(σ) takes values
in {±1}. It follows immediately that

sgn(στ) =
∏

1≤i<j≤n

xσ(τ(j)) − xσ(τ(i))

xτ(j) − xτ(i)

∏
1≤i<j≤n

xτ(j) − xτ(i)

xj − xi
= sgn(σ) sgn(τ),

where in the first factor we used (1.9) with xj replaced by xτ(j).

Exercise 1.6.1. Pick two elements σ and τ in the group S5. Define them by a
table of values and then give their cycle notation. Compute στ and τστ−1 both
using the tables and using cycle notation.

Exercise 1.6.2. Given σ ∈ Sn, an inversion is a pair (i, j) with 1 ≤ i < j ≤ n
and σ(j) > σ(i). Show that sgn(σ) equals 1 if σ has an even number of inversions
and −1 else.

Exercise 1.6.3. Show that any permutation can be written as a product of trans-
positions (2-cycles). Show that sgn(σ) equals 1 if σ is the product of an even
number of transpositions and −1 else.

1.7 Additional exercises

Exercise 1.7.1. Show that GL(2,Z2), the group of invertible matrices with ele-
ments in Z2, is isomorphic to S3. (The definition of matrix multiplication should
be obvious, but formally it is based on the fact that Z2 is a ring; see Chapter 2.)

Exercise 1.7.2. A proper subgroup H of G is a subgroup which is neither equal
to {1} nor to G. Show that if G has no proper subgroups, then G ' Zp, where p
is a prime or p = 1.

Exercise 1.7.3. Show that the matrices

I =

[
i 0
0 −i

]
, J =

[
0 i
i 0

]
.

generate a subgroup of GL(2,C) with eight elements. Find a nice way to express
the relations between these elements and carve them into a bridge.8

8The first person to do so was William Rowan Hamilton on 16 October 1843. The group is
called the quaternion group and generates the famous quaternion algebra.
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Exercise 1.7.4. If H, K and L are subgroups of a group G with H ⊆ K ∪ L,
show that either H ⊆ K or H ⊆ L. In particular, K ∪L is a subgroup if and only
if K ⊆ L or L ⊆ K.

Exercise 1.7.5. The direct product G×H of two groups is a group wih multipli-
cation (a, b) · (c, d) = (ac, bd). Show that ZM × ZN ' ZMN if and only if M and
N are relatively prime.

Exercise 1.7.6. Show that any automorphism of Q is given by φ(x) = ax for
some fixed a ∈ Q∗. Can you prove that this is true also for R? (Hint: No, you
can’t.)

Exercise 1.7.7. Show that Q 6' Q × Q as groups. (It may surprise you to learn
that R ' R × R as groups and, more generally, Rm ' Rn as groups for any m
and n. However, it is impossible to give an isomorphism explicitly (unless m = n),
since their existence depends on the axiom of choice.)

Exercise 1.7.8. Let G be a group, and let G′ be the subgroup generated by all
commutators aba−1b−1, a, b ∈ G. (It is called the derived group or the commutator
subgroup.) Show that G′ is a normal subgroup of G and that G/G′ is abelian. More
generally, show that a quotient G/N is abelian if and only if G′ ⊆ N .

Exercise 1.7.9. IfA andB are subsets of a groupG, letAB = {ab; a ∈ A, b ∈ B}.
Show that ifH is a subgroup andN is a normal subgroup, thenHN is a subgroup of
G and H∩N a normal subgroup of H. Moreover, show that HN/N ' H/(H∩N).

Exercise 1.7.10. If M and N are normal subgroups in G with M ⊆ N , show
that G/N ' (G/M)/(N/M).

Exercise 1.7.11. Show that, for any a ∈ G, φa(b) = aba−1 defines an isomorphism
from G to itself. Show that these maps, which are called inner automorphisms,
form a group under composition.

Exercise 1.7.12. The center Z(G) of a group G is the set of elements a ∈ G such
that ab = ba for all b ∈ G. Show that Z(G) is a normal subgroup and that G/Z(G)
is isomorphic to the group of inner automorphisms of G.

Exercise 1.7.13. Show that if G/Z(G) is cyclic, then G is abelian and hence
Z(G) = G.

Exercise 1.7.14. If G acts on a set X and x ∈ X, show that Gx = {g ∈ G; gx =
x} is a subgroup of G. It is called the stabilizer or isotropy group of x. Let
Gx = {gx; g ∈ G} be the orbit of x. Show that there is a bijection between the
orbit of x and the cosets of Gx. In particular, if G is a finite group,

|G| = |Gx| · |Gx|, x ∈ G. (1.10)
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Exercise 1.7.15. Suppose φ : G→ SX is a group action, and let V be the vector
space of functions X → C. Show that ψ(a)(f) = f ◦ (φ(a−1)), a ∈ G, f ∈ V ,
defines a representation ψ : G→ GL(V ).

Exercise 1.7.16. If a permutation σ has cycle structure (c1, . . . , cn), what is the
order of σ?

Exercise 1.7.17. Show that sgn is constant on each conjugacy class of Sn. Find
an expression for sgn(σ) on permutations σ with cycle structure (c1, . . . , cn).

Exercise 1.7.18. Show that the group of rotations preserving a cube is isomorphic
to S4. (Hint: any rotation permutes the four long diagonals.) Geometrically,
there are five types of rotations: the identity, rotations by 120◦ around a long
diagonal, rotations by 90◦ around a line connecting the midpoints of two opposite
faces, rotations by 180◦ around such lines and, finally, rotations by 180◦ around
a line connecting the midpoint of two opposite edges. Show that these five types
correspond to the five conjugacy classes in S4. Give the correspondence explicitly.

Exercise 1.7.19. Show that there are only two groups of order 4, namely, Z4 and
Z2

2 = Z2 × Z2 (see Exercise 1.7.5 for the definition of direct product).

Exercise 1.7.20. Show that if G has even order, then there is always an odd
number of elements of order 2.

Exercise 1.7.21. Show that if all elements in a group G have order 1 or 2, then
G is abelian and |G| = 2k for some k.9

Exercise 1.7.22. Classify all groups of order 6 by the following method. First
use Exercises 1.7.20 and 1.7.21 to show that G has an element a of order 2 and an
element b of order 3.10 Then show that G = {1, b, b2, a, ab, ab2}. Show that either
ba = ab or ba = ab2. Finally, show that G = Z6 or G = S3.

9It follows from Theorem 5.1.1 below that G ' Zk
2 .

10This also follows from a famous theorem of Cauchy: if p is a prime that divides |G|, then G
has an element of order p.



Chapter 2

Review of ring theory

2.1 Definition

Structures equipped with both addition and multiplication are ubiquitous in math-
ematics. Familiar examples include numbers, square matrices and polynomials.
The notion of a ring is an abstract version of such structures.

Definition 2.1.1. A ring R is a set equipped with two maps R × R → R, called
addition and multiplication and denoted (a, b) 7→ a + b and (a, b) 7→ a · b = ab. It
should be an abelian group under addition, that is,

a+ (b+ c) = (a+ b) + c, a+ b = b+ a, a, b, c ∈ R

and there exists an element 0 ∈ R and a map R→ R denoted a 7→ −a such that

a+ 0 = a, a+ (−a) = 0, a ∈ R.

Moreover, the multiplication should be associative,

a · (b · c) = (a · b) · c, a, b, c ∈ R,

and satisfy the distributive laws

a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c, a, b, c ∈ R.

We will also assume that multiplication has a unit element, that is, there is an
element 1 ∈ R such that

a · 1 = 1 · a = a, a ∈ R.

The reader should be aware that the precise definition of a ring varies; in
particular, many authors do not assume the existence of a multiplicative unit.

Some examples:

• The number systems Z, Q, R and C are rings.

18
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• The even integers 2Z satisfy all axioms except that it does not have a mul-
tiplicative unit. With our conventions, it is not a ring.

• Sets of polynomials such as Z[x], R[x, y] and, more generally, R[x1, . . . , xn]
when R is a ring, are all rings.

• If G is an abelian group, then the endomorphisms of G, that is, the group
homomorphisms from G to itself, forms a ring with the operations (φ·ψ)(a) =
φ(ψ(a)) and (φ+ ψ)(a) = φ(a) + ψ(a). We will denote it End(G).

• The n× n-matrices with entries in a ring R form a ring.

• Addition and multiplication modulo n give a ring structure to Zn.

• The ring Z1 containing only one element is known as the zero ring or the
trivial ring. It is the only ring such that 0 = 1.

• The space R3 with vector addition and vector multiplication (“cross prod-
uct”) satisfies most axioms but the product is not associative and does not
have a unit. It is not a ring.

Additional axioms give special classes of rings.

• If the commutative law ab = ba holds, then R is called a commutative ring.

• A non-zero ring where all non-zero elements are invertible, that is, if for each
a 6= 0 there exists an element a−1 with aa−1 = a−1a = 1, is called a division
ring or a skew field.

• A commutative division ring is called a field1.

• A non-zero ring without zero divisors, that is, ab = 0 implies a = 0 or b = 0,
is called a domain. It is often useful to replace b by b− c and formulate this
as the cancellation property: ab = ac implies a = 0 or b = c. All division
rings are domains.

• A commutative domain is called an integral domain2. All fields are integral
domains.

As examples, Q, R and C are fields, whereas Z is only an integral domain. The
ring Zn is a field when n is prime, but otherwise it is not even a domain.

Exercise 2.1.1. Show that in a ring with more than one element, 0 6= 1.

1Swedish: kropp. Fields are often denoted K or k, after the German counterpart Körper.
2Swedish: integritetsomr̊ade.
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Exercise 2.1.2. Show that, in a ring R, the left cancellation property ab = ac ⇒
a = 0 or b = c and the right cancellation property ac = bc ⇒ a = b or c = 0 are
both equivalent to R being a domain.

Exercise 2.1.3. Prove that the ring of 2 × 2-matrices over a ring R is never a
domain. Prove that it is commutative only if R is the zero ring.

Exercise 2.1.4. Give an example of a ring with two elements a and b such that
ab = 1 but ba 6= 1. Prove that this can never happen in a division ring.

Exercise 2.1.5. Let R be the power set (set of all subsets) of a set S. Show that
R is a ring with the operations

a+ b = (a ∪ b) \ (a ∩ b), ab = a ∩ b.

2.2 Ideals and homomorphisms

As for groups, we need a notion of homomorphisms.

Definition 2.2.1. A ring homomorphism is a map φ : R→ S between two rings,
such that

φ(x+ y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y), φ(1) = 1, x, y ∈ R.

A bijective homomorphism is called an isomorphism.

Note that φ(0) = 0 follows by taking y = 0 in φ(x + y) = φ(x) + φ(y) and
adding −φ(x) to both sides. We must add φ(1) = 1 as a separate axiom as we
cannot always cancel φ(x) from the identity φ(x)φ(1) = φ(x).

In groups, kernels of homomorphisms are the same as normal subgroups. In
rings, the corresponding notion is ideal.

Definition 2.2.2. An ideal is a non-empty subset I of a ring R such that

a, b ∈ I ⇒ a− b ∈ I,

a ∈ I, r ∈ R ⇒ ar, ra ∈ I.

It follows that 0 ∈ I, −a ∈ I and a + b ∈ I, for a, b ∈ I. Note that if 1 ∈ I
then the second property gives I = R. Thus, non-trivial ideals do not contain 1
and are, in particular, not subrings.

Later in the course, the following weaker concept will be important. Clearly,
the two notions are equivalent for commutative rings.
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Definition 2.2.3. A left ideal is a non-empty subset I of a ring R such that

a, b ∈ I ⇒ a− b ∈ I,

a ∈ I, r ∈ R ⇒ ra ∈ I.

Lemma 2.2.4. The ideals in Z are precisely the subsets of the form nZ, with
n ∈ Z.

Proof. Let I be an ideal in Z. Either I = {0} = 0Z or I contains a smallest positive
integer n. Suppose m ∈ I and apply the division algorithm to write m = nq + r,
where 0 ≤ r ≤ n − 1. By the definition of an ideal, r ∈ I and, by our choice of
n, we must have r = 0 . Hence I ⊆ nZ. The reverse inclusion follows from n ∈ I
and the definition of an ideal.

The intersection of any family of ideals is an ideal, and we can therefore define
the ideal generated by a set S ⊆ R as the smallest ideal containing S. The ideal
generated by a finite set {a1, . . . , an} will be denoted (a1, . . . , an). An ideal (a)
generated by a single element is called a principal ideal. In a commutative ring,
we can write

(a1, . . . , an) = {a1x1 + · · ·+ anxn; x1, . . . , xn ∈ R} (2.1)

and, in particular, (a) = aR = {ar; r ∈ R} (see Exercise 2.2.2 for the case of
non-commutative rings).

Lemma 2.2.4 shows that all ideals in Z are principal, so they correspond more or
less to numbers (except for the fact that n and −n generate the same ideal). Some
rings also contain non-principal ideals. An example is the ideal {a + ib

√
3; a, b ∈

2Z} in the ring Z[
√
−3] = {a+ib

√
3; a, b ∈ Z}. In work that predated ring theory,

Kummer developed a theory of “ideal numbers” to deal with problems caused by
such non-principal ideals. This is the historical origin of the term “ideal”.

Definition 2.2.5. A principal ideal domain3 or PID is an integral domain where
all ideals are principal.

Examples of PIDs are Z and (with almost the same proof as Lemma 2.2.4) the
polynomial ring k[x] for any field k. Examples of integral domains that are not
PIDs are Z[x] and R[x, y].

If I is an ideal, then the cosets r + I = {r + x; x ∈ I} form a ring with the
obvious operations r+ I + s+ I = r+ s+ I, (r+ I)(s+ I) = rs+ I. This quotient
ring is denoted R/I. An example is Z/nZ, which is isomorphic to Zn not only as
an additive group but also as a ring.

3Swedish: huvudidealomr̊ade.
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Just as for groups, we have the following first isomorphism theorem for rings.
(For the second and third isomorphism theorems, see Exercise 2.4.2–2.4.3.) Again,
we leave the proof to the reader.

Theorem 2.2.6. If φ : R→ S is a ring homomorphism, then the kernel Ker(φ) =
{x ∈ R; φ(x) = 0} is an ideal in R and R/Ker(φ) ' Im(φ) as rings. Conversely,
if I ⊆ R is an ideal, then φ(x) = x + I defines a surjective ring homomorphism
R→ R/I with Ker(φ) = I.

In a nutshell: ideals are precisely kernels of homomorphisms and quotients are
precisely images of homomorphisms.

To give a familiar example, consider the principal ideal I = (x2+1) in R = R[x].
The ring R/I formally consists of polynomials in x where x2+1 is identified with 0.
After this identification, any such polynomial can be written a+ bx with a, b ∈ R,
where the multiplication is determined by the rule x2 = −1. This is precisely the
complex numbers, though one usually writes i rather than x. To relate this to
Theorem 2.2.6, consider the ring homomorphism φ : R→ C given by φ(p) = p(i).
It is surjective with kernel I, so we can indeed deduce from Theorem 2.2.6 that
R/I ' C.

Exercise 2.2.1. Show that, for any ring R, there is a unique ring homomorphism
Z→ R.

Exercise 2.2.2. Let R be a ring and S ⊆ R an arbitrary subset. Show that the
smallest left ideal containing S is

{x1s1 + · · ·+ xmsm; m ∈ Z>0, xj ∈ R, sj ∈ S, sj 6= sk for j 6= k}.

In particular, when S is finite with n elements, we can take m = n and recover
(2.1) for ideals in commutative rings. Show that the smallest ideal containing S is

{x1s1y1 + · · ·+ xmsmym; m ∈ Z>0, xj, yj ∈ R, sj ∈ S},

where the sj are not assumed to be distinct. In particular, a principal ideal in a
non-commutative ring has the form

(a) = {x1ay1 + · · ·+ xmaym; m ∈ Z>0, xj, yj ∈ R}.

Exercise 2.2.3. Let R be the ring of 2 × 2-matrices over some ring S and let
I ⊆ R be the matrices whose second column is zero. Show that I is a left ideal in
R. Show that it is an ideal only if S is the zero ring.

Exercise 2.2.4. Show that all ideals in Zn are principal. For which n is Zn a
principal ideal domain?

Exercise 2.2.5. Show that (x, y) is a non-principal ideal in R[x, y].
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2.3 Unique factorization

Some of the most important theorems in mathematics are about unique factoriza-
tion in rings. For instance, the fundamental theorem of arithmetic states that any
positive integer can be written uniquely as a product of primes (up to reordering
the factors). The fundamental theorem of algebra implies that any complex poly-
nomial in one variable has a unique factorization of the form C(x−a1) · · · (x−an),
again up to reordering. We want to put such results in a general framework. In
particular, we will show a unique factorization result in a general principal ideal
domain (PID).

Let R be an integral domain. We recall that this means that R is a non-zero
commutative ring with the cancellation law

ab = ac =⇒ a = 0 or b = c.

By a unit in R we mean an invertible element. (For instance, the units in Z are
±1 and the units in C[x] are non-zero constants.) We will sometimes write a ∼ b
if a = eb for some unit e.

Lemma 2.3.1. If a and b are elements in an integral domain R, then (a) = (b) if
and only if a ∼ b.

Proof. If (a) = (b), then a = bc and b = ad for some c, d ∈ R. It follows that
a = acd. Applying the cancellation law gives a = 0 or cd = 1. In the first case,
we must have b = 0 and in the second case c = d−1 is a unit. In any case we may
conclude that a ∼ b. The converse is easy.

By an irreducible element we mean a non-zero non-unit p such that if p = ab
then either a or b is a unit. Equivalently, p is not irreducible if we can write p = ab
with neither a nor b a unit.

We write a | b if b = ac for some c ∈ R. By a prime element we mean a
non-zero non-unit p such that if p | ab then p | a or p | b. It is easy to see that any
prime element is irreducible.

In Z there is no difference between prime elements and irreducible elements;
both notions mean ±p with p a prime number. Likewise, in C[x] both notions
mean a polynomial of degree 1 (to prove this one needs the fundamental theorem
of algebra).

By contrast, in the ring Z[
√
−5], it is easy to check that the elements 3 and

2±
√
−5 are all irreducible. However, in view of the identity

3 · 3 = (2 +
√
−5) · (2−

√
−5),

none of these elements are prime. For instance, 2 +
√
−5 | 3 · 3 but 2 +

√
−5 - 3.

It would seem from this example that non-prime irreducible elements are related
to non-unique factorizations. Indeed, we have the following result.
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Proposition 2.3.2. Let R be an integral domain such that any non-zero non-
unit can be written as a product of irreducible elements. Then, the following two
conditions are equivalent:

(A) Every irreducible element is prime.

(B) Factorization into irreducible elements is unique up to reordering and multi-
plication by units.

More precisely, condition (B) means that if

x = p1 · · · pk = q1 · · · ql

with all pj and qj irreducible, then k = l and, after reordering the elements, pj ∼ qj
for all j.

A domain such that the conditions in Theorem 2.3.2 hold (including the state-
ment in the first sentence) is called a unique factorization domain (UFD).

Proof of Prop. 2.3.2. To prove that (A) implies (B), we use induction on the min-
imal number of irreducible factors of x. If x = p1 is itself irreducible, then the
statement in (B) follows from the definition of irreducibility. Suppose now that (B)
holds for all products of k irreducible factors and consider a product x = p1 · · · pk+1

with all pj irreducible. If we also have x = q1 · · · ql, then since p1 is prime it di-
vides one of the factors qj. After reordering, we may assume p1 | q1. Since q1 is
irreducible, p1 = eq1 with e a unit. Cancelling p1 we get

p2 · · · pk+1 = eq2 · · · ql.

We may now apply the induction hypothesis to deduce that (B) holds for the
element x.

To prove that (B) implies (A), let p be irreducible and suppose that p | ab, that
is, ab = pc for some c. We factor each of the elements a, b and c into irreducibles
and plug into the equation ab = pc (if the element is a unit, we leave it as it is).
By (B), p is equivalent to one of the irreducible factors on the left-hand side. If
that factor comes from a we have p | a and else p | b.

The following result will be important in §5.

Theorem 2.3.3. Every PID is a UFD.

To prove Theorem 2.3.3 we need the following lemma.

Lemma 2.3.4. Any PID is a Noetherian ring, that is, it does not contain any
infinite strictly increasing chain of ideals

I1 ( I2 ( I3 ( · · · .
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Proof. Suppose there is such a chain and let I = ∪kIk. It is easy to see that I is
an ideal. (For instance, if x ∈ I and y ∈ I, then x ∈ Ik and y ∈ Il for some k and
l. If l ≥ k, then x ∈ Il so, by the fact that Il is an ideal, x− y ∈ Il ⊆ I.) By the
definition of a PID, I = aR for some a ∈ R. Since a ∈ I, there exists a k with
a ∈ Ik. But then, I = aR ⊆ Ik, so I = Ik. This contradicts the assumption that
Ik ( Ik+1 ⊆ I.

We can now prove that a PID satisfies the first requirement for being an UFD.

Lemma 2.3.5. In a PID, any non-zero non-unit can be factored as a product of
irreducible elements.

Proof. Take a non-zero non-unit element a. If it is irreducible we are done. If
not, we can write a = bc with b and c non-units. This implies (a) ( (b). For if
(a) = (b), then Lemma 2.3.1 gives a = be for some unit e. Then, ac = ae implies
c = e, which contradicts c being a non-unit. This argument can be repeated.
If b and c are both irreducible we are done; otherwise one of them, say b, can
be factored. The factors of b generate ideals strictly larger than (b). Continuing
in this way we will either end up with a factorization of a into irreducibles or
with an infinite strictly increasing chain of ideals. However, the second scenario is
impossible in view of Lemma 2.3.4.

Next, we will verify condition (A) in Proposition 2.3.2. It will be useful to
know some facts about greatest common divisors. Let a and b be elements of a
PID. Then (a, b) = (c) for some element c, which is uniquely determined up to
multiplication by a unit. It is clear that c | a, c | b and that if d divides both a and
b then d | c. Thus, it make sense to call c the greatest common divisor of a and b,
and write c = gcd(a, b). Since c ∈ (a, b) = aR + bR we can write c = as + bt for
some s, t ∈ R. In particular, if gcd(a, b) = 1 we have Bezout’s identity as+ bt = 1.

Lemma 2.3.6. In a PID, every irreducible element is prime.

Proof. Let p be an irreducible element and assume that p | ab. Let c = gcd(p, a).
Then, p = cd for some element d. Since p is irreducible either c or d is a unit. If
d is a unit then p ∼ gcd(p, a) and hence p | a. If c is a unit then Bezout’s identity
gives 1 = ps + at for some elements s and t. Then b = pbs + abt and since p | ab
we may conclude that p | b.

This completes the proof of Theorem 2.3.3.
Finally, we mention without proof the following fact.

Theorem 2.3.7. If R is a UFD then so is the polynomial ring R[x].
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By iteration, R[x1, . . . , xn] is a UFD. This shows that the class of UFDs is
much larger than the class of PIDs; for instance, Z[x] and R[x, y] are UFDs but
not PIDs.

To summarize some relations between various classes of rings, we have

fields ⊆ PIDs ⊆ UFDs ⊆ integral domains ⊆ commutative rings ⊆ rings. (2.2)

Exercise 2.3.1. Where do the rings Z3, Z6, Z, Z[x], Z[x, y], R[x] and R[x, y] fit
in the chain of inclusions (2.2)?

Exercise 2.3.2. The real numbers R is a PID. What is the prime factorization of
a real number?

Exercise 2.3.3. Let R = R + x2R[x] ⊆ R[x]. Show that R is not a UFD.

Exercise 2.3.4. Let R = R[x1, x2, . . . ] (the elements in this ring are normal
polynomials like 7 + 5x1x5 + 13x2

6x1000, but there is no bound on the number of
variables). Show that R is not Noetherian.

2.4 Additional exercises

Exercise 2.4.1. A ring is called Boolean if a2 = a for all a. Show that any Boolean
ring is commutative and that −a = a for all a. (One can prove that any Boolean
ring is isomorphic to a subring of a ring of sets defined as in Exercise 2.1.5.)

Exercise 2.4.2. Let I be an ideal and S a subring of a ring R. Show that
S + I = {s+ i; s ∈ S, i ∈ I} is a subring of R and S ∩ I an ideal in S. Moreover,
show that (S + I)/I ' S/(S ∩ I).

Exercise 2.4.3. If I and J are ideals in a ring R with I ⊆ J , show that R/J '
(R/I)/(J/I).

Exercise 2.4.4. A prime ideal is an ideal I in a commutative ring R such that
I 6= R and

ab ∈ I ⇒ a ∈ I or b ∈ I.

Show that I is a prime ideal if and only if R/I is an integral domain.

Exercise 2.4.5. A maximal ideal in a commutative ring R is an ideal I such that
I 6= R and there is no ideal J with I ( J ( R. Show that I is a maximal ideal if
and only if R/I is a field.
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Exercise 2.4.6. A primary ideal in a commutative ring R is an ideal I such that
I 6= R and

ab ∈ I ⇒ a ∈ I or bn ∈ I for some n > 0.

Show that an ideal is primary if and only if every zero-divisor x in R/I is nilpotent,
that is, xn = 0 for some n ≥ 0.

Exercise 2.4.7. Show that, in the ring Z, maximal ideals and prime ideals are
both precisely the ideals pZ for p prime. Also show that primary ideals are precisely
the ideals pkZ for p prime and k a positive integer.

Exercise 2.4.8. Let I be the set of polynomials p in Z[x] such that p(0) is even.
Show that I is a maximal ideal but not a principal ideal.

Exercise 2.4.9. Show that (x2 − 2) is a prime ideal in Z[x], but not a maximal
ideal.

Exercise 2.4.10. Show that (x, x2 + y2 − 1) is not a prime ideal in R[x, y].

Exercise 2.4.11. Show that, in a principal ideal domain, every non-zero prime
ideal is maximal.

Exercise 2.4.12. Let K be a field and consider the unique homomorphism φ :
Z → K (see Exercise 2.2.1). Show that Ker(φ) = pZ, where p is either zero or a
prime p. The number p is called the characteristic of K. (Slightly illogically, the
case p 6= 0 is often called finite characteristic.)

Exercise 2.4.13. In a PID, one may define the least common multiple as lcm(a, b) =
ab/ gcd(a, b) (it is defined up to multiplication by a unity). Prove that aR ∩ bR =
lcm(a, b)R.

Exercise 2.4.14. Let R be a PID and a, b ∈ R with gcd(a, b) = 1. Show that
R/abR ' R/aR×R/bR.

Exercise 2.4.15. By Exercise 2.4.14, Z12 ' Z4×Z3 both as groups and as rings.
How many group isomorphisms are there between them? How many ring isomor-
phisms are there?

Exercise 2.4.16. Show that if R is an integral domain but not a field, then R[x]
is not a PID.



Chapter 3

Modules

3.1 Definition

We will give two equivalent definitions of modules. In the first, we view modules as
a generalization of vector spaces, where the field of scalars is replaced by a general
ring.

Definition 3.1.1. If R is a ring, an R-module M (or a module M over R) is an
abelian group equipped with a map R×M →M , denoted (r,m) 7→ rm, such that

r(m1 +m2) = rm1 + rm2, (r1 + r2)m = r1m+ r2m, (3.1a)

(r1r2)m = r1(r2m), 1m = m (3.1b)

for all r, r1, r2 ∈ R and m, m1, m2 ∈M .

We will often view the dependence of R as understood and write “module”
rather than “R-module”.

As we have indicated, a module over a field is called a vector space. Just as
in linear algebra, we sometimes refer to the elements of R as scalars and to the
product (r,m) 7→ rm as scalar multiplication.

In our second definition, we think of modules as representations of rings. Re-
call that a group representation is a homomorphism G → GL(V ) for a vector
space V . In other words, the abstract group G is realized concretely by invertible
linear maps on a vector space. For rings, we will instead consider realizations by
endomorphisms of an abelian group.

Definition 3.1.2. If R is a ring, an R-module M is an abelian group equipped
with a ring homomorphism φ : R→ End(M).

It is straight-forward to check that the two definitions of a module are equiva-
lent, via the correspondence φ(r)(m) = rm.

We will now give some examples of modules.

28
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• If M is a Z-module, then it is easy to see that

kx =


x+ · · ·+ x︸ ︷︷ ︸

k

, k > 0,

0, k = 0,

−(x+ x+ · · ·+ x︸ ︷︷ ︸
k

), k < 0.

Conversely, these relations define a Z-module structure on any abelian group.
Thus, Z-modules are essentially the same as abelian groups (if you insist on
a more precise statement, they are equivalent as categories). This might
seem uninteresting, but in §5 we will derive quite non-trivial facts on abelian
groups as special cases of results for modules.

• If I ⊆ R is a left ideal, then I is an R-module, with the module structure
given by the ring multiplication. In particular, any ring is a module over
itself.

• The direct product Rn = R × · · · × R is an R-module with component-
wise addition (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) and scalar
multiplication r(x1, . . . , xn) = (rx1, . . . , rxn).

• Let X be any set and RX be the set of all functions from X to a ring R.
Then, RX is an R-module with addition (f + g)(x) = f(x) + g(x) and scalar
multiplication (rf)(x) = r f(x). When X = {1, . . . , n} is finite we can
identify RX with Rn, simply by identifying f with (f(1), . . . , f(n)) ∈ Rn.

Exercise 3.1.1. Prove that, in an R-module, 0m = 0 and (−1)m = −m (on the
left, 0 is the zero element in R and −1 the additive inverse of 1 in R; on the right,
0 is the zero element in M and −m the additive inverse of m in M).

Exercise 3.1.2. Let I be a left ideal in a ring R. Show that R/I is an R-module
in a natural way.

Exercise 3.1.3. Let φ : R→ S be a homomorphism of rings. Show that S is an
R-module with scalar multiplication rs = φ(r)s.

3.2 Submodules, homomorphisms and quotients

In analogy to the cases of groups and rings, we will use the following terminology.

Definition 3.2.1. An R-module homomorphism is a map φ : M → N between
R-modules such that φ(x+ y) = φ(x) + φ(y) and φ(rx) = rφ(x) for all r ∈ R and
x, y ∈ M . If φ is also bijective it is called an R-module isomorphism. We then
call M and N isomorphic and write M ' N .
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When R is a field, an R-module homomorphism is called a linear map. We will
sometimes write R-linear map instead of R-module homomorphism.

The set of all R-module homomorphisms fromM toN is denoted HomR(M,N).
Note that it is itself an R-module with the obvious operations (φ+ψ)(x) = φ(x)+
ψ(x), (rφ)(x) = rφ(x). In particular, M∗ = HomR(M,R) is called the dual module
of M .

Definition 3.2.2. A subset N ⊆ M of an R-module is called an R-submodule if
it is a subgroup and rn ∈ N for all r ∈ R and n ∈ N .

When R is a field, a submodule is called a linear subspace.
If N ⊆M is a submodule, we can define the quotient module M/N as the set of

all cosets m+N = {m+n; n ∈ N}, where m ∈M . We know from §1.5 that M/N
is an abelian group. More generally, it is an R-module with scalar multiplication
r(m + N) = rm + N . To see that this is well-defined, we must check that if
m + N = m′ + N then rm + N = rm′ + N . Equivalently, if m − m′ ∈ N then
r(m−m′) ∈ N . This follows from N being a submodule. It is straight-forward to
check that the axioms (3.1) hold in M/N .

It is easy to check that, if φ : M → N is an R-module homomorphism, then
the kernel Ker(φ) = {x ∈ M ; φ(x) = 0} and image Im(φ) = {φ(x) ∈ N ; x ∈ M}
are submodules. We then have the following fundamental isomorphism theorem.
(This is often called the first isomorphism theorem for modules; the second and
third are given as Exercise 3.6.1–3.6.2.) Again, we leave the proof as an exercise.

Theorem 3.2.3. If φ : M → N is an R-module homomorphism, then M/Ker(φ) '
Im(φ) as R-modules. Conversely, if N is an R-submodule of M , then the map
m 7→ m+N from M to M/N is an R-module homomorphism with kernel N and
image M/N .

This means that the R-submodules of M are exactly the kernels of R-module
homomorphisms defined on M , and the quotients of M are precisely the images
of such homomorphisms.

For vector spaces, Theorem 3.2.3 is closely related to the dimension theorem of
linear algebra. Namely, let A be a real (n×m)-matrix. Then A can be identified
with a linear map Rm → Rn. The kernel, or nullspace, of A is a subspace of some
dimension k and can thus be identified with Rk. Similarly, the image, or range, of
A can be identified with Rl, where l is known as the rank of A. Theorem 3.2.3 then
gives an isomorphism Rm/Rk ' Rl. Using basic facts on dimension of vector spaces
one may conclude that m − k = l, which is indeed the content of the dimension
theorem.

Note that any ring is an R-module over itself. To avoid a common source
of confusion, one must understand that the R-module structure is quite different
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from the ring structure. For instance, a ring homomorphism is required to satisfy
φ(xy) = φ(x)φ(y) and a module homomorphism φ(xy) = xφ(y). As an example,
the map φ(x) = 2x from Z to Z is a Z-module homomorphism but not a ring
homomorphism. Also note that an R-submodule of a ring is precisely a left ideal.

Exercise 3.2.1. Show that, for any ring R, R[x] ' R[x, y] as R-modules.

Exercise 3.2.2. Describe HomZ(Z,Z), HomZ(Q,Z) and HomZ(Z,Q).

Exercise 3.2.3. Let I be an ideal in R, M be an R-module and let IM denote the
set of finite sums a1x1 + · · ·+ anxn, where aj ∈ I and xj ∈M . Prove that M/IM
is a module over R/I with the natural scalar product (r+I)(m+IM) = rm+IM .

3.3 Generators and cyclic modules

It is easy to see that the intersection of any family of submodules is a submodule.
Thus, if S ⊆M is any subset, the intersection of all submodules of M containing S
is the smallest submodule with that property. We call it the submodule generated
by S. More explicitly, it is given by {r1x1 + · · · + rmxm; m ∈ N, ri ∈ R, xi ∈ S},
where we can take the xi as distinct. In particular, if S = {x1, . . . , xn} is finite,
then the module generated by S is Rx1 + · · ·+Rxn = {r1x1 + · · ·+ rnxn; ri ∈ R}.
A module generated by a finite set is called finitely generated. A module Rx
generated by a single element is called cyclic.

Proposition 1.3.1 can be reformulated as saying that a cyclic module over Z is
isomorphic to a quotient of Z. We will generalize this to modules over any ring.
It will be useful to define the annihilator of an element x in an R-module M to
be the left ideal

Ann(x) = {r ∈ R, rx = 0}.

Lemma 3.3.1. Let M be a module over a ring R. Then, the following are equiv-
alent:

(A) M is cyclic, that is, M = Rx for some x ∈M ,

(B) M ' R/I for some left ideal I ⊆ R.

More precisely, a module Rx generated by x is isomorphic to R/Ann(x).

Proof. If M = Rx, then φ(r) = rx gives a surjective homomorphism R→M with
kernel I = Ann(x), so Rx ' R/I. Conversely, if we let x = 1 + I ∈ R/I, then x
generates R/I and Ann(x) = I.

Exercise 3.3.1. Show that an R-module M is finitely generated if and only if
M ' Rn/I for some n and some left ideal I ⊆ Rn.
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3.4 Direct sums

When K and L are modules, K × L is a module with (k1, l1) + (k2, l2) = (k1 +
k2, l1 + l2) and r(k, l) = (rk, rl). Often, we have a module M and ask whether it
is isomorphic to K × L. Since K ' K × {0} ⊆ K × L and L ' {0} × L, one may
assume that K and L are submodules of M . The following criteria are then useful.

Lemma 3.4.1. Let K, L be submodules of some module M . Then, the following
are equivalent:

(A) The map (k, l) 7→ k + l is a module isomorphism K × L→M .

(B) Any element x ∈M can be written uniquely as x = k + l, k ∈ K, l ∈ L.

(C) K + L = M and K ∩ L = {0}.

(D) There exists a module homomorphism P : M → M such that P 2 = P ,
Im(P ) = K and Ker(P ) = L.

The proof is straight-forward and left to the reader. If these conditions hold,
we write M = K⊕L and call M the direct sum of K and L. We will use the same
notation K ⊕ L for the module K × L, when K and L are not a priori defined as
submodules of some module.

If K is a submodule of M , it is natural to ask whether there is a submodule L
of M such that M = K ⊕ L. If that is the case, we call K a direct summand of
M and L a complement of K.

Not all submodules are direct summands; for instance, you may check that
the Z-module Z4 contains a submodule isomorphic to Z2, which is not a direct
summand.

We will now give criteria for determining whether a submodule is a direct
summand. We need some terminology. An exact sequence is a finite or infinite
sequence of modules and homomorphisms

· · · → L
f−→M

g−→ N → · · ·

such that Im(f) = Ker(g) at each step. A short exact sequence has the form

0→ L
f−→M

g−→ N → 0, (3.2)

where 0 = {0} is the trivial R-module. This means that f is injective, Im(f) =
Ker(g) and g is surjective. Thus, by Theorem 3.2.3, up to isomorphism any short
exact sequence has the form

0→ L→M →M/L→ 0, (3.3)

where L is a submodule of M .
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Lemma 3.4.2. Given a short exact sequence (3.2), the following are equivalent:

(A) There is a homomorphism φ : M → L with φ ◦ f = id.

(B) There is a homomorphism ψ : N →M with g ◦ ψ = id.

(C) The submodule Im(f) = Ker(g) in M is a direct summand.

If these conditions hold, we say that (3.2) is a split exact sequence and that φ
or ψ splits the sequence.

Proof. We prove the equivalence of (B) and (C). The equivalence of (A) and (C)
is similar and left as an exercise.

Assuming (B), we show that M = Ker(g) ⊕ Im(ψ). By Lemma 3.4.1, it is
enough to check that M = Ker(g) + Im(ψ) and Ker(g) ∩ Im(ψ) = {0}. For the
first part, we write x = x1 + x2, where x1 = x − ψ(g(x)) and x2 = ψ(g(x)). It
is then clear that x1 ∈ Ker(g) and, obviously, x2 ∈ Im(ψ). For the second part,
suppose y ∈ Ker(g) ∩ Im(ψ), so y = ψ(b). Then 0 = g(y) = g(ψ(b)) = b so
y = ψ(0) = 0.

To show that (C) implies (B), letM1 = Ker(g) and suppose there existsM2 with
M = M1⊕M2. Let h be the restriction of g toM2. We claim that h : M2 → N is an
isomorphism. Indeed, it is injective since Ker(h) = Ker(g)∩M2 = M1∩M2 = {0}.
To see that h is surjective, take y ∈ N arbitrary and choose x ∈M with g(x) = y.
Decomposing x = x1 + x2, xi ∈ Mi, we have y = g(x1) + g(x2) = 0 + h(x2)
so y ∈ Im(h). Since h is an isomorphism, so is ψ = h−1, and it is clear that
g ◦ ψ = id.

Exercise 3.4.1. What can you say about a “very short” exact sequence 0→ L→
M → 0?

Exercise 3.4.2. Let M be an R-module. Suppose P1, . . . , Pn ∈ EndR(M) satisfy
P1 + · · ·+ Pn = IdM and PjPk = δjkPj. Show that

M = Im(P1)⊕ · · · ⊕ Im(Pn).

Conversely, if M = M1 ⊕ · · · ⊕Mn, show that there exist Pj as above with Mj =
Im(Pj).

3.5 Free modules

Two fundamental notions of linear algebra that we have not yet extended to mod-
ules are basis and dimension.
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Definition 3.5.1. A basis for an R-module M is a set (ei)i∈Λ ⊆M such that any
x ∈ M can be written uniquely as x =

∑
i∈Λ xiei, where xi ∈ R and only finitely

many xi are non-zero. A module is called free if it has a basis.

We give some examples.

• The module Rn is a free R-module with basis e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1).

• Conversely, if M has a finite basis, then M ' Rn for some n. Indeed, if
e1, . . . , en is a basis, then (x1, . . . , xn) 7→ x1e1 + · · · + xnen gives an isomor-
phism Rn →M . More generally, if two R-modules have bases with the same
cardinality, then they are isomorphic.

• If X is any set, we define the free R-module generated by X to be the module
of finite sums

∑
x∈X rxx, where rx ∈ R and all but finitely many rx are non-

zero. Such sums can be added and multiplied by scalars in an obvious way.
This is a free module with basis X. An equivalent definition is obtained by
considering x 7→ rx as a function on X. In this language, the free module
generated by X is the space of all functions f : X → R such that f(x) = 0
for all but finitely many x.

• The cyclic group Zn is not free as a Z-module. Indeed, if e is an element in
a basis then 0 = ne = 0e are two distinct expressions for the element 0 ∈ Zn
as a Z-linear combination of basis elements.

• Any vector space has a basis. This statement is equivalent to the axiom
of choice, which means that it may be impossible to give a basis explicitly.
Nobody can write down a basis for, say, the real vector space of continuous
functions on [0, 1], or for R considered as a vector space over Q.

An important difference between vector spaces and general R-modules is that
a module can have two bases with different cardinalities. We will give an example
of this phenomenon.

Let V be the vector space of real sequences (x1, x2, . . . ) with finitely many
non-zero entries, and let R = EndR(V ). Explicitly, R is the ring of real matrices
(ajk)

∞
j,k=1 such that only finitely many elements in each column are non-zero. Con-

sider R as an R-module. As for any non-zero ring, the identity element forms a
basis of R with one element. Now consider the two matrices

f1 =


1 0 0 0 0 · · ·
0 0 1 0 0
0 0 0 0 1
...

. . .

 , f2 =


0 1 0 0 0 0 · · ·
0 0 0 1 0 0
0 0 0 0 0 1
...

. . .

 .
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It is easy to see that any A ∈ R can be written uniquely as A = A1f1 +A2f2, where
A1 and A2 are obtained from A by deleting all even and odd columns, respectively.
Thus, f1 and f2 form a basis for R with two elements. For this ring, R ' R2 as
R-modules, an explicit isomorphism being A 7→ (A1, A2). By a variation of the
same argument, R ' Rn for any n.

For modules over non-zero1 commutative rings, one cannot construct such ex-
amples. Any two bases for a free module over a non-zero commutative ring have
the same cardinality. We will be content with proving this for finitely generated
modules.

Proposition 3.5.2. Any two bases for a finitely generated free module M over a
non-zero commutative ring R have the same number of elements. This number is
called the rank (in the case of vector spaces, dimension) of the module.

Proof. First note that any basis of a finitely generated free module is finite. To
see this, let x1, . . . , xn be generators and (ej)j∈Λ a basis. Expressing each xj in
terms of the basis elements, all coefficients outside a finite subset of Λ vanish.
Consequently, taking x ∈ M arbitrary, x can be expressed as a combination of
basis elements indexed by a finite set. By the definition of basis, this set must be
all of Λ.

Assume now that we have two bases (ej)
m
j=1 and (fk)

n
k=1 for M . We can write

ej =
n∑
k=1

ajkfk, fj =
m∑
k=1

bjkek, ajk, bjk ∈ R.

If we plug one of these expressions into the other one, we find that the matrices
A = (ajk) and B = (bjk) necessarily satisfy AB = Im and BA = In, where Ik is
the identity matrix of order k. We want to prove that m = n. For a contradiction,
assume m > n. We then create (m × m)-matrices A′ and B′ by filling out the
matrices A and B by zeroes, that is,

A′ =
[
A 0

]
, B′ =

[
B
0

]
.

It is now easy to compute

A′B′ = Im, B′A′ =

[
In 0
0 0

]
.

Taking determinants we get

det(A′) det(B′) = 1, det(B′) det(A′) = 0,

which is a contradiction as 1 6= 0 in a non-zero ring.

1Any module over the zero ring is isomorphic to the zero module, which has two bases with
different cardinalities, namely, ∅ and {0}.
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In the proof we used that

det(AB) = det(A) det(B) (3.4)

for matrices over commutative rings. Indeed, looking at the proof for real matrices
found in any linear algebra textbook, it should be clear that it only uses general
properties of commutative rings. It is also possible to deduce the identity from the
fact that it holds for, say, real numbers. As this is a very general and useful tech-
nique, we sketch the argument. The same method can be applied to any polynomial
identity. We first consider det(AB)− det(A) det(B) = p(a11, . . . , ann, b11, . . . , bnn)
as a polynomial in all the matrix elements of A and B. We know that p is iden-
tically zero as a function on R2n2

. As it is a polynomial function, it follows that
it is the zero polynomial. That is, p = 0 as an element of Z[x1, . . . , x2n2 ]. But
if a1, . . . , aN are any elements of a commutative ring, then p 7→ p(a1, . . . , aN) de-
fines a ring homomorphism Z[x1, . . . , xN ] → R. In particular, if p is the zero
polynomial then p(a1, . . . , aN) = 0. (Note that the last statement is not true for
non-commutative rings; xy − yx is the zero polynomial in Z[x, y] but ab− ba = 0
does not hold as a general identity in rings.)

The following result is used in the proof of Lemma 5.2.5 below.

Lemma 3.5.3. If M is a module over a ring R and L ⊆ M is a submodule such
that M/L is free, then L is a direct summand of M .

Proof. Consider the exact sequence (3.3). We will apply criterion (B) in Lemma 3.4.2.
Take a basis (ej)j∈Λ for M/L and pick for each j a representative fj ∈ M of the
coset ej. Define ψ : M/L→M by

ψ

(∑
j

xjej

)
=
∑
j

xjfj, xj ∈ R.

It is then easy to check that ψ satisfies the appropriate condition.

Exercise 3.5.1. Show that Z[x] is a free module over Z[x3]. Calculate its rank.

Exercise 3.5.2. Show that Q is not a free module over Z.

Exercise 3.5.3. If V is a free module with a finite basis (ei)
n
i=1, show that the dual

module V ∗ is free with basis vectors (e∗i )
n
i=1 determined by e∗i (ej) = δij. Morover,

show that if V is a free module with an infinite basis (ei)i∈Λ, then the dual basis
vectors (e∗i )i∈Λ do not form a basis for V ∗, unless the ring of scalars is the zero
ring.
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Exercise 3.5.4. The elements e1, . . . , en in an R-module V are called R-linearly
independent if

x1e1 + · · ·+ xnen = 0 ⇒ x1 = · · · = xn = 0,

where xi ∈ R. Show that e1, . . . , en are a basis for V if and only if they generate
V and are R-linearly independent.

Exercise 3.5.5. Give an explicit counterexample to the following false statement:
“If V is a free R-module of rank n and e1, . . . , en are R-linearly independent, then
e1, . . . , en form a basis for V ”.

Exercise 3.5.6. If M and N are finitely generated free modules of rank m and n,
respectively, show that M ⊕N is again free with rank m+ n.

Exercise 3.5.7. Let R be the ring of infinite matrices defined in the text. Con-
sidering R as a module over itself, give a basis with infinitely many elements.

3.6 Additional exercises

Exercise 3.6.1. Show that, if M and N are submodules of the same module, then
M +N = {m+ n; m ∈M, n ∈ N} and M ∩N are modules, and (M +N)/M '
N/(M ∩N).

Exercise 3.6.2. Let L ⊆ M ⊆ N be three modules. Show that M/L is a sub-
module of N/L and that (N/L)/(M/L) ' N/M .

Exercise 3.6.3. If A is a submodule of M and B a submodule of N , show that
(M ×N)/(A×B) ' (M/A)× (N/B).

Exercise 3.6.4. A module P is called projective if, given a homomorphism f :
P → N and a surjective homomorphism g : M → N , there exists a homomorphism
h : P → M with f = g ◦ h. (It is understood that all modules are over the same
ring R and homomorphism means R-module homomorphism.) Show that a free
module is projective.

Exercise 3.6.5. Let R be a commutative ring and I ⊆ R a non-principal ideal.
Show that when considered as R-modules, R is free but the submodule I is not
free.

Exercise 3.6.6. Let R be a commutative ring containing a zero-divisor a. Show
that the ideal aR is not free as an R-module.2

2This and the previous exercise show that if a non-zero commutative ring R is such that
the submodule of any free module is free, then R is a PID. The converse is also true, see
Proposition 5.2.2 below for the case of finitiley generated modules. For general modules one
needs the axiom of choice.
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Exercise 3.6.7. Let R = R[x1, x2, . . . ] be as in Exercise 2.3.4 and let I be the
ideal consisting of polynomials with zero constant term. Show that R is finitely
generated as an R-module, but the submodule I is not finitely generated.



Chapter 4

Tensor products

4.1 Tensor products: three definitions

Tensor product is a fundamental operation on vector spaces and, more generally,
modules over commutative rings. The idea behind tensor products is to put multi-
linear and linear maps on equal footing. Let us start with the simplest non-trivial
case: bilinear forms on R2. Let f : R2×R2 → R be such a map. Bilinearity means
that

f(au+bv, w) = af(u,w)+bf(v, w), f(u, av+bw) = af(u, v)+bf(u,w), (4.1)

where a, b ∈ R and u, v, w ∈ R2. Let e1 = (1, 0), e2 = (0, 1) be standard basis
vectors. It follows from (4.1) that

f(a1e1 + a2e2, b1e1 + b2e2)

= a1b1f(e1, e1) + a1b2f(e1, e2) + a2b1f(e2, e1) + a2b2f(e2, e2). (4.2)

Thus, f is uniquely determined by the four values f(ei, ej). This is reminiscent of
linear forms on a four-dimensional space. Let us introduce such a space R2 ⊗ R2

with basis vectors denoted

e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2.

(At this point, the symbol “⊗” has no independent meaning; we could as well have
denoted the vectors e11, e12 and so on.) There is then a bijection between bilinear
forms f : R2 × R2 → R and linear forms g : R2 ⊗ R2 → R, given by

f(ei, ej) = g(ei ⊗ ej), i, j = 1, 2. (4.3)

This example suggests the following definition: If U is a vector space with basis
(ej)j∈Λ and V a vector space with basis (fj)j∈Γ, then U ⊗ V is the vector space
with basis vectors denoted (ei ⊗ fj)i∈Λ, j∈Γ. This definition is perfectly fine, and is
actually used in some textbooks. However, it has three problems:
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• It is not so elegant to have the definition depend on a choice of basis for the
vector spaces. This is no big problem, as it is easy to describe the effects of
a change of basis.

• For general vector spaces, the existence of a basis depends on the axiom of
choice. Most mathematicians allow themselves to use this axiom, but prefer
a constructive definition when possible.

• The definition extends to free modules, but not to modules in general. This
is too restrictive for many purposes.

To obtain a better definition, we try to make sense of (4.3) when ej are not
assumed to be elements of a fixed basis. That is, we want to write

f(u, v) = g(u⊗ v) (4.4)

for general vectors, or elements of a module. In general, let U , V and W be
modules over a commutative ring R.1 We want to define an R-module U ⊗ V so
that (4.4) gives a bijection between R-bilinear maps f : U ×V → W and R-linear
maps (that is, R-module homomoprphisms) g : U ⊗ V → W . Here, R-bilinear
means that

f(a1u1 + a2u2, v) = a1f(u1, v) + a2f(u2, v), (4.5a)

f(u, a1v1 + a2v2) = a1f(u, v1) + a2f(u, v2), (4.5b)

where aj ∈ R, u, uj ∈ U and v, vj ∈ V . We get an important hint on how to do
this by choosing W = U ⊗ V and g = Id. In this case, f(u, v) = u ⊗ v, so (4.5)
reads

(a1u1 + a2u2)⊗ v = a1(u1 ⊗ v) + a2(u2 ⊗ v), (4.6a)

u⊗ (a1v1 + a2v2) = a1(u⊗ v1) + a2(u⊗ v2). (4.6b)

Apparently, these relations must be valid in our module U ⊗ V .

It turns out that the relations (4.6) are all that we need. We define the tensor
product U ⊗ V to be the R-module spanned by all expressions u ⊗ v, u ∈ U ,
v ∈ V , subject to the relations (4.6). For the reader who prefers a more formal
explanation, let F be the free module generated by U × V , that is, the module

1We will not actually use commutativity, but as indicated in Exercises 4.6.5–4.6.6 the defini-
tion that will follow is adapted to the commutative case. To obtain useful tensor products over
non-commutative rings one should consider bi-modules with scalar multiplicattion from both the
left and the right.
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consisting of finite sums
∑

i ai(ui, vi), ai ∈ R, ui ∈ U , vi ∈ V . Let S be the
submodule of F spanned by all elements of the form

(a1u1 + a2u2, v)− a1(u1, v)− a2(u2, v), (4.7a)

(u, a1v1 + a2v2)− a1(u, v1)− a2(u2, v2), (4.7b)

where again aj ∈ R, u, uj ∈ U and v, vj ∈ V . Then we define U ⊗ V = F/S and
write the coset (u, v) +S as u⊗v.2 To stress the dependence on the ring of scalars
one often writes U ⊗R V .

A word of warning: The tensor product U⊗V does not consist only of elements
u ⊗ v, where u ∈ U and v ∈ V . In general, it consists of finite sums of such pure
tensors.

Another word of warning: Do not confuse tensor product with direct product.
The vector space Rm × Rn = Rm ⊕ Rn has dimension m + n; the vector space
Rm ⊗ Rn has dimension mn.

Let us now show that our tensor product does the intended job, namely, that R-
bilinear maps f : U × V → W can be identified with R-linear maps g : U ⊗ V →
W . The identification should have the form (4.4), that is, f = g ◦ π, where
π : U × V → U ⊗ V is the bilinear map π(u, v) = u ⊗ v. We need to show that
for any f there is a unique g with this property. By construction, any element
x ∈ U ⊗ V can be written as a finite sum x =

∑
i ui ⊗ vi. Since we require g to

be R-linear, (4.4) gives g(x) =
∑

i f(ui, vi). This show that g is unique. To show
that it is well-defined on U ⊗V we must show that it preserves the relations (4.6).
That follows from f being bilinear.

The correspondence between bilinear maps on U×V and linear maps on U⊗V
is referred to as the universal property of the tensor product.

Definition 4.1.1. Let U , V and T be R-modules and let π : U × V → T be a
bilinear map. We say that π has the universal property for tensor products if, for
any R-module W and R-bilinear map f : U × V → W , there is a unique R-linear
map g : T → W such that f = g ◦ π.

It is standard abuse of terminology to say that T has the universal property.
As we have seen, U ⊗ V has the universal property. By the following result, any
module with the universal property can be identified U ⊗ V .

Proposition 4.1.2. If π1 : U × V → T1 and π2 : U × V → T2 both have the
universal property, then there is a unique isomorphism of R-modules φ : T1 → T2

such that φ ◦ π1 = π2.

2My apologies to those readers whose reaction is “Why didn’t you just say this from the
start?”.
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Proof. By Definition 4.1.1 with (π, f) replaced by (π1, π2), there is a unique R-
linear map φ : T1 → T2 with π2 = φ◦π1. It remains to prove that φ is bijective. To
this end, we reverse the role of π1 and π2, finding a homomorphism ψ : T2 → T1

with π1 = ψ ◦π2. We then have two R-linear maps id and ψ ◦φ from T1 to T1 such
that π1 = id ◦π1 = (ψ ◦ φ) ◦ π1. Applying the uniqueness part of Definition 4.1.1
to f = π1, we find that ψ ◦ φ = id. Again reversing the role of π1 and π2, we have
φ ◦ ψ = id. Thus, φ is an isomorphism with inverse ψ.

Proposition 4.1.2 might seem rather abstract, but it is actually quite useful.
For instance, it implies the following important fact, which shows that our first
attempt at a definition leads to the same result when it makes sense.

Proposition 4.1.3. Let U and V be free modules with bases (ei)i∈Λ and (fi)i∈Γ,
respectively. Then, U ⊗ V is free with basis (ei ⊗ fj)i∈Λ, j∈Γ.

Proof. Let T be the free module with basis ei ⊗ fj, which is now just a notation
for some elements labelled by Λ × Γ. If u ∈ U and v ∈ V are arbitrary, then we
can write u =

∑
i riei and v =

∑
j sjfj for unique ri, sj ∈ R (all but finitely many

being zero). Thus, we can define π : U ×V → T by π(u, v) =
∑

i,j risj(ei⊗ fj). It
is easy to check that π is bilinear. We will show that it has the universal property.
Let h : U × V → W be bilinear. That h = g ◦ π implies that g(ei ⊗ fj) =
h(ei, fj). If g is an R-module homomorphism, it is then uniquely determined on
T by g(

∑
i,j rijei ⊗ fj) =

∑
i,j rijh(ei, fj), rij ∈ R. We must show that h = g ◦ π

holds on the whole space U ×V . Indeed, with u and v as above we have h(u, v) =∑
i,j risjh(ei, fj) =

∑
i,j risjg(ei ⊗ fj) = (g ◦ π)(u, v).

To summarize, we have indicated three definitions of the tensor product U⊗V .
The first one, given in terms of basis elements, only works for free modules (and, in
particular, for vector spaces). The second one, as a quotient of the free vector space
spanned by U × V , works for any modules (but is of interest mainly for modules
over commutative rings). Third, we could very abstractly define “tensor product”
as “an object that has the universal property for tensor products”. This still calls
for a proof that an object with the universal property exists, for which one has to
go back to one of the first two definitions (or perhaps some other construction).

Exercise 4.1.1. Let x = (2, 1, 0)⊗ (0, 1, 3)+(0, 2, 0)⊗ (1, 2, 0) ∈ R3⊗R3. Express
x in the standard basis (ei ⊗ ej)3

i,j=1 (where e1 = (1, 0, 0) and so on).

Exercise 4.1.2. If f : U1 → V1 and g : U2 → V2 are R-module homomorphisms,
show that there is a naturally defined R-module homomorphism f⊗g : U1⊗U2 →
V1 ⊗ V2.
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4.2 Properties of tensor products

The tensor product satisfies properties such as

U ⊗ V ' V ⊗ U, (4.8a)

(U ⊗ V )⊗W ' U ⊗ (V ⊗W ), (4.8b)

U ⊗ (V ⊕W ) ' (U ⊗ V )⊕ (U ⊗W ), (4.8c)

where in each case the isomorphism is the obvious one, e.g. u⊗v 7→ v⊗u in the first
case. Each of these statements can be proved either from our definition or using
Proposition 4.1.2. For instance, to prove that φ(u⊗ v) = v⊗ u is an isomorphism
U ⊗ V → V ⊗ U , the first method amounts to observing that applying φ to
the relations (4.6) gives the same relations with U and V interchanged. For an
“abstract nonsense” proof, consider the map f : U × V → V ⊗ U defined by
f(u, v) = v ⊗ u. Then, f is bilinear, so by the universal property there exists an
R-linear map g : U ⊗ V → V ⊗ U such that g(u⊗ v) = v ⊗ u. Interchanging the
roles of U and V we find a homomorphism in the other direction, which gives the
inverse of g.

Having understood the two-fold tensor product U ⊗ V , it is no great step to
consider multiple tensor products V1 ⊗ · · · ⊗ Vn of R-modules. The appropriate
modifications of (4.6) and (4.7) should be obvious. Propositions 4.1.2 and 4.1.3
hold with straight-forward modifications of the statements and proofs. One can
show that

U ⊗ V ⊗W ' (U ⊗ V )⊗W ' U ⊗ (V ⊗W )

and so on, so one could alternatively define multiple tensor products as iterates of
the two-fold tensor products. We will sometimes use the notation

V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

.

For the reader who is mostly used to tensor products of vector spaces, some
aspects of tensor products over rings may seem surprising. As an example, let m
and n be relatively prime positive integers. We claim that

Zm ⊗Z Zn = 0. (4.9)

Indeed, if p and q are integers with mp+ nq = 1, then

x⊗ y = (mp+ nq)(x⊗ y) = mpx⊗ y + x⊗ nqy = 0

for all x and y. The identity (4.9) simply reflects the fact that any Z-bilinear map
on Zm × Zn is identically zero.
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Tensor products can often be thought of as change of scalars for modules. In
general, let M be an R-module and φ : R → S a ring homomorphism. Then, S
can be viewed as an R-module with scalar multiplication rs = φ(r)s, r ∈ R, s ∈ S
(see Exercise 3.1.3). In particular, S ⊗R M is an R-module. More interestingly,
S ⊗R M can be considered as an S-module through s(t ⊗ x) = st ⊗ x. We can
think of this S-module as obtained from M by changing the scalars from R to S.
The most familiar example is probably when V is a real vector space; then C⊗R V
is the complexification of V . Another example is (4.9), where we start with Zn as
a Z-module and restrict the scalars to the quotient Zm; this can only be done in a
trivial way when gcd(m,n) = 1.

Exercise 4.2.1. If M is a module over a ring R, show that R ⊗ M ' M as
R-modules.

Exercise 4.2.2. Show that if M is a free R-module with basis (ei)i∈Λ and R is
a subring of S, then the S-module S ⊗R M is also free with the same basis. In
particular, show that the complexification of Rn can be identified with Cn.

Exercise 4.2.3. Compute the tensor product (4.9) when m and n are not assumed
to be relatively prime.

Exercise 4.2.4. Let U and V be finitely generated and free modules over a ring
R. Show that HomR(U, V ) ' U∗ ⊗ V , where φ ⊗ v ∈ U∗ ⊗ V corresponds to the
homomorphism u 7→ φ(u)v.

Exercise 4.2.5. Let V be a module over a commutative ring R. Using the uni-
versal property, show that V ⊗R Rn ' V n.

4.3 Symmetric and anti-symmetric tensors

We will need some basic facts on symmetric and anti-symmetric tensors. For our
purposes, and also for the main application which is certainly to differential forms
on real and complex manifolds, it is enough to take the underlying ring to be R
or C. It is not hard to develop a theory for general commutative rings, but some
technical problems appear if some elements of the form 1 + · · · + 1 do not have
multiplicative inverses. For simplicitly, we will assume that these problems do
not appear. Thus, throughout this section we assume that R is a commutative
ring such that Q ⊆ R. For instance, R could be a field of characteristic zero (see
Exercise 2.4.12) or a polynomial ring over such a field.

Let V and W be R-modules and f : V n → W a multilinear map. We say that
f is symmetric if

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn), σ ∈ Sn, x1, . . . , xn ∈ V.
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We call f antisymmetric if

f(xσ(1), . . . , xσ(n)) = sgn(σ)f(x1, . . . , xn), σ ∈ Sn, x1, . . . , xn ∈ V. (4.10)

Here σ denotes the sign of a permutation, see §1.6. By Exercise 1.6.3, an equivalent
condition is that f changes sign when two variables are interchanged.

Two familiar examples from linear algebra are the standard scalar product
(u, v) 7→ u · v, which is a symmetric bilinear form Rn × Rn → R, and the cross
product (u, v) 7→ u× v, which is an anti-symmetric bilinear map R3 × R3 → R3.

As we will consider the two cases in parallel, let ε ∈ {id, sgn} and call a form
ε-symmetric if

f(xσ(1), . . . , xσ(n)) = ε(σ)f(x1, . . . , xn), σ ∈ Sn, x1, . . . , xn ∈ V.

By similar arguments that led us from bilinear forms to the definition of the tensor
product U ⊗ V , but starting from ε-symmetric multilinear forms, one is led to
supplement the relations in V ⊗n with

x1 ⊗ · · · ⊗ xn = ε(σ)xσ(1) ⊗ · · · ⊗ xσ(n), σ ∈ Sn. (4.11)

It suffices to postulate this for some generating subset of Sn, such as the transposi-
tions. Let us introduce the notation V ⊗nε = V ⊗n/Mε, where Mε is the submodule
spanned by the elements

x1 ⊗ · · · ⊗ xn − ε(σ)xσ(1) ⊗ · · · ⊗ xσ(n), σ ∈ Sn, x1, . . . , xn ∈ V.

This is non-standard notation that we only introduce in order to discuss the two
cases in parallel. The case ε = id is called the symmetric power and will be denoted
V �n (another common notation is Sn(V )). The case ε = sgn is the exterior power
V ∧n. The coset containing x1⊗ · · · ⊗ xn is denoted x1� · · · � xn and x1 ∧ · · · ∧ xn,
respectively. To compute with these products one only needs to know that they
are both linear in each argument xi and that the symmetric product is invariant
under reordering the xi, whereas the exterior product changes sign when two of
the variables xi are interchanged. It is also good to know that x1 ∧ · · · ∧ xn = 0
if xi = xj for some i 6= j. Indeed, applying the relation (4.11) with ε = sgn and
σ = (i j) gives x1 ∧ · · · ∧ xn = −x1 ∧ · · · ∧ xn. Using our assumption that 1 + 1 is
invertible, it follows that x1 ∧ · · · ∧ xn = 0.

It is straight-forward to prove that there is a bijection between ε-symmetric
multilinear maps V n → W and R-linear maps V ⊗nε → W . One can also prove that
V ⊗nε is characterized by a corresponding universal property.

It is often useful to consider V ⊗nε as a submodule of V ⊗n rather than a quotient.
To this end, let π : Sn → EndR(V ⊗n) be defined on a spanning set by

π(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (4.12)
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It is easy to check that
π(στ) = π(σ)π(τ).

In the case when V is a vector space, this means that π is a representation of Sn.
Let

Nε = {x ∈ V ⊗n; π(σ)(x) = ε(σ)x, σ ∈ Sn}.

This may be called the space of ε-symmetric (that is, symmetric or antisymmetric)
tensors. Note that Mε can be defined as the span of all elements of the form

x− ε(σ)π(σ)(x), x ∈ V ⊗n, σ ∈ Sn. (4.13)

Proposition 4.3.1. We have V ⊗n = Mε ⊕ Nε. In particular, the space of ε-
symmetric tensors Nε is isomorphic to the ε-symmetric tensor power V ⊗nε =
V ⊗n/Mε.

Proof. We prove this by giving the projection from V ⊗n to the second term ex-
plicitly (cf. condition (D) in Lemma 3.4.1). This is a special case of a construction
that will be central later in the course, namely, averaging over group actions. In
the case at hand, we define

P =
1

n!

∑
σ∈Sn

ε(σ)π(σ) ∈ EndR(V ⊗n). (4.14)

Note that we are using that n! has a multiplicative inverse in the ring.
We first prove that

π(σ) ◦ P = P ◦ π(σ) = ε(σ)P, σ ∈ Sn. (4.15)

To see this, we write

π(σ) ◦ P =
1

n!

∑
τ∈Sn

ε(τ)π(στ) =
1

n!

∑
τ∈Sn

ε(σ−1τ)π(τ) = ε(σ)P,

where we replaced τ by σ−1τ in the sum and used that ε(σ−1τ) = ε(σ)−1ε(τ) =
ε(σ)ε(τ). The second equality is proved in the same way.

We now prove that Im(id−P ) ⊆ Mε ⊆ Ker(P ) (as the inclusion Ker(P ) ⊆
Im(id−P ) is trivial, it follows that all three spaces are equal). The first inclusion
is easy since

x− P (x) =
1

n!

∑
σ∈Sn

(x− ε(σ)π(σ)x),

where each term is of the form (4.13). For the second inclusion, it suffices to show
that P (y) = 0 when y is given by (4.13). This follows from (4.15).
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Next, we prove that Im(P ) ⊆ Nε ⊆ Ker(id−P ) (again, all three spaces are
in fact equal). The first inclusion follows immediately from (4.15). The second
inclusion is very easy: if x ∈ Nε, then x is fixed by all terms in (4.14) so x = Px.

The conclusion now follows from generalities on projections. Indeed, any x ∈
V ⊗n can be written x = (x − P (x)) + P (x) ∈ Im(id−P ) + Im(P ) ⊆ Mε + Nε.
Moreover, if x ∈ Mε ∩ Nε ⊆ Ker(P ) ∩ Ker(id−P ) then Px = x − Px = 0, which
gives x = 0.

We now give the following analogue of Proposition 4.1.3. Although it is proba-
bly possible to give an “abstract nonsense” proof, we choose to base our proof on
Proposition 4.3.1.

Proposition 4.3.2. Suppose that V is a free module with basis (ei)i∈Λ. Let ≤ be a
total ordering of the index set Λ. Then, V �n has a basis consisting of the elements

ei1 � · · · � ein , i1 ≤ · · · ≤ in (4.16a)

and V ∧n a basis consisting of the elements

ei1 ∧ · · · ∧ ein , i1 < · · · < in. (4.16b)

Proof. It follows from Proposition 4.1.3 that the elements ei1⊗· · ·⊗ ein span V ⊗n.
Using the relations (4.11), each of these elements is ±1 times a similar element
with i1 ≤ · · · ≤ in. If we are in the alternating case and have equality between two
indices, the corresponding element is 0. This proves that the elements (4.16) form
a spanning set. To show that they are independent, suppose there is a relation
between them, that is, ∑

i1≺···≺in

a(i1, . . . , in)ei1 ⊗ · · · ⊗ ein ∈Mε (4.17)

for some a(i1, . . . , in) ∈ R. Here, ≺ means ≤ and <, respectively. We need to show
that a vanishes identically. By the proof of Proposition 4.3.1, (4.17) is equivalent
to the relation

0 = n!
∑

i1≺···≺in

a(i1, . . . , in)P (ei1 ⊗ · · · ⊗ ein)

=
∑

i1≺···≺in

∑
σ∈Sn

ε(σ)a(i1, . . . , in)(eiσ−1(1)
⊗ · · · ⊗ eiσ−1(n)

)

=
∑
j1,...,jn

∑
σ∈Sn

ε(σ)a(jσ(1), . . . , jσ(n))(ej1 ⊗ · · · ⊗ ejn).
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Since this is an expansion in a basis for V ⊗n, it follows that∑
σ∈Sn

ε(σ)a(jσ(1), . . . , jσ(n)) = 0

for all indices jk. In the alternating case, only σ with jσ(1) < · · · < jσ(n) give a non-
zero contribution. Since there is at most one such permutation σ, we conclude that
a vanishes identically. In the symmetric case, there may be several terms. (For
instance, if n = 3 and j1 = j2 < j3 then both σ = id and σ = (1 2) contribute.)
However, they all lead to the same value for ε(σ)a(jσ(1), . . . , jσ(n)), so a must vanish
identically.

In the finite rank case, it is a standard exercise in combinatorics to count the
elements in (4.16).

Corollary 4.3.3. If V is a free module with rank d, then V �n has rank
(
d+n−1
n

)
.

If 0 ≤ n ≤ d, then V ∧n has rank
(
d
n

)
. If n > d, then V ∧n = {0}.

It seems interesting that if V has rank n, then V ∧n has rank 1. Let us have
a closer look at this case. Let e1, . . . , en be a basis for V and consider a general
exterior product u1 ∧ · · · ∧ un, where ui =

∑
j aijej, aij ∈ R. If we use the

multilinearity to expand

u1 ∧ · · · ∧ un = (a11e1 + · · ·+ a1nen) ∧ · · · ∧ (an1e1 + · · ·+ annen)

we get nn terms, but they vanish if the same basis vector ej appears twice. Thus,
we only get a non-zero result if in the j-th factor we choose the term aj,σ(j)eσ(j),
where σ ∈ Sn. That is,

u1 ∧ · · · ∧ un =
∑
σ∈Sn

n∏
j=1

aj,σ(j) eσ(1) ∧ · · · ∧ eσ(n) =
∑
σ∈Sn

sgn(σ)
n∏
j=1

aj,σ(j) e1 ∧ · · · ∧ en

= det(A)e1 ∧ · · · ∧ en, (4.18)

where A = (aij)1≤i,j≤n. We have rediscovered the determinant! Up to multiplica-
tion by a constant, the determinant is the only n-linear antisymmetric form on an
n-dimensional space.

Let us conclude with a remark that will be followed up in the last part of the
course. The module V ⊗n contains the two submodules Nid and Nsgn, isomorphic
to V �n and V ∧n, respectively. If V is free with rank d, then V ⊗n has rank dn,
whereas the rank of the two submodules add up to

(
d+n−1
n

)
+
(
d
n

)
. If n = 2, we

have
(
d+1

2

)
+
(
d
2

)
= d2, which corresponds to the fact that any bilinear form f can

be written uniquely

f(x, y) =
f(x, y) + f(y, x)

2
+
f(x, y)− f(y, x)

2
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as the sum of a symmetric and an antisymmetric form. If n = 3, we have
(
d+2

3

)
+(

d
3

)
= d(d2 + 2)/3 ≈ d3/3 for large d. Thus, the symmetric and antisymmetric

forms only account for about one third of all trilinear forms. As we will see later
in the course, the remaining forms correspond to a two-dimensional representation
of S3 (id and sgn are one-dimensional representations). Understanding general
n-linear forms requires a good understanding of the representation theory of Sn.

Exercise 4.3.1. Show that f is antisymmetric as defined in the text if and only
if f(x1, . . . , xn) = 0 whenever xi = xj for some indices with i 6= j.3

Exercise 4.3.2. Express u ∧ v ∧ w in the standard basis for R4, where u =
(1, 0, 0, 1), v = (1, 1, 1, 0) and w = (0, 1, 1,−1).

Exercise 4.3.3. Find a general expression for the exterior product (x1, x2, x3) ∧
(y1, y2, y3) on R3. What is the relation to the “cross product” in linear algebra?

Exercise 4.3.4. Prove directly that P 2 = P , where P is given by (4.14).

Exercise 4.3.5. Clearly, the associative law for (V ∧ V )∧ V is meaningless, since
we can only consider the exterior product of a vector space with itself. Does the
generalized associative law

(V ∧ V ) ∧ (V ∧ V ) = V ∧ V ∧ V ∧ V

hold in general?

Exercise 4.3.6. Let V be a free module of rank d. Give a natural module isomor-
phism between V �n and the submodule of R[x1, . . . , xd] consisting of homogeneous
polynomials of degree n.

Exercise 4.3.7. Let P1 and P2 be the two projections obtained by choosing ε =
id and ε = sgn in (4.14). Show that P1P2 = P2P1 = 0. Deduce that with
U = Im(id−P1 − P2), one has the decomposition

V ⊗n ' V �n ⊕ V ∧n ⊕ U.

Exercise 4.3.8. Let (ei)
n
i=1 be a basis for a module V and let ui =

∑n
j=1 aijej be

arbitrary elements of V . Show that

u1 ∧ · · · ∧ um =
∑

1≤s1<···<sm≤n

det
1≤i,j≤m

(ai,sj) es1 ∧ · · · ∧ esn .

3You need to use that 2 = 1 + 1 is not a zero-divisor in R. If that would be the case, then
one normally uses the definition suggested by this exercise.
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4.4 Associative algebras and tensor algebras

Associative algebras play a relatively minor role in this text, but it will be useful
to know the basic definitions.

If R is a commutative ring, an associative algebra A over R is a ring that is
also an R-module, such that the multiplication A × A → A is R-bilinear. Since
the multiplication is automatically additive (the distributive laws) it is enough to
postulate

r(ab) = (ra)b = a(rb), r ∈ R, a, b ∈ A.

For the remainder of this section, we will understand “algebra” to mean associative
algebra over a commutative ring R.

By our definition of a ring, algebras have a multiplicative unit. We stress that
not all authors make this assumption. We also mention that to define algebras
over non-commutative rings is more complicated as one needs to distinguish scalar
multiplication from the left and right.

Note that we are considering three multiplications at once: the algebra mul-
tiplication A × A → A, the ring multiplication R × R → R and the scalar mul-
tiplication R × A → A. They are all denoted by concatenation of symbols or,
occasionally, by a dot. Fortunately, if an expression is ambiguous it is independent
of the interpretation. For instance, it does not matter if

rsab, r, s ∈ R, a, b ∈ A (4.19)

is interpreted as ((rs)(ab)), as ((rs)a)b or in any other way, as the axioms guarantee
that the result is the same.

Algebras may seem complicated but you have already seen many examples.

• The polynomial ring R[x] is an algebra with scalar multiplication

b(a0 + · · ·+ anx
n) = ba0 + · · ·+ banx

n, b, aj ∈ R.

More generally, R[x1, . . . , xn] is an algebra.

• If V is an R-module, then EndR(V ) = HomR(V, V ) is an algebra, with the
operations

(f + g)(x) = f(x) + g(x), (fg)(x) = f(g(x)), (rf)(x) = r · f(x),

where x ∈ V , r ∈ R and f ∈ EndR(V ).

• The ring of (n × n)-matrices with coefficients in R is an algebra with usual
addition, matrix multiplication and multiplication of a matrix by a scalar.
It can be identified with EndR(Rn).
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Homomorphisms and isomorphisms of algebras are defined in an obvious way.
If A is an algebra and I ⊆ A is an ideal (in the usual sense of ring theory), then I
is automatically an R-submodule since rx = (r1A)x ∈ I for all r ∈ R and x ∈ I.
Then, the quotient A/I is an algebra in a natural way. It is also straight-forward
to define direct sums of algebras.

Let V be an R-module. It is sometimes useful to consider

R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

as a single object. We will write it as

T(V ) =
∞⊕
k=0

V ⊗k.

By definition, V ⊗0 = R and the elements in T(V ) can be written uniquely as
finite sums v =

∑
k vk, vk ∈ V ⊗k. Clearly, T(V ) is an R-module. In fact, it is an

associative algebra, called the tensor algebra of V . To define the product of two
elements v, w ∈ T(V ), we first write v =

∑
k vk, w =

∑
k wk with vk, wk ∈ V ⊗k.

By bilinearity, we must have vw =
∑

kl vkwl. Next, we write vk and wl as a sum of
pure tensors x1 ⊗ · · · ⊗ xk and y1 ⊗ · · · ⊗ yl, respectively. Again using bilinearity,
it is enough to define the product of pure tensors. Assuming for the moment that
k, l ≥ 1, it is given by the concatenation

(v1 ⊗ · · · ⊗ vk) · (w1 ⊗ · · · ⊗ wl) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wl. (4.20)

Note, however, that the expression of vk (and wl) as a sum of pure tensors is not
unique, so we must check that this definition is meaningful. This follows from the
universal property of the tensor product. Namely, the map V k × V l → V ⊗(k+l)

given by
(v1, . . . , vk, w1, . . . , wl) 7→ v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wl

is multilinear and can thus be lifted to a bilinear map V ⊗k×V ⊗l → V ⊗(k+l). In the
cases k = 0 and l = 0, we define the product as r · v = v · r = rv, r ∈ V ⊗0 = R and
v ∈ T(V ). It is clear from the construction that the product on T(V ) is associative
and has a unit.

In the tensor algebra, it is customary to denote the product by ⊗. Thus,
instead of (4.20) we write

(v1 ⊗ · · · ⊗ vk)⊗ (w1 ⊗ · · · ⊗ wl) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wl.

Formally, we are using the same symbol ⊗ to mean two different things, but
once the tensor algebra is defined there is no need to distinguish between the two
meanings.
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Let us briefly consider the symmetric algebra. In much the same way, we define
S(V ) =

⊕∞
k=0 V

�k. The product

(v1 � · · · � vk)� (w1 � · · · � wl) = v1 � · · · � vk � w1 � · · · � wl

extends to a bilinear map on S(V ), which makes it an algebra over R. Clearly,
S(V ) is a commutative algebra. It is easy to see that if V is a free module with
basis e1, . . . , en, then S(V ) ' R[x1, . . . , xn] as algebras, where the isomorphism is
defined by ei 7→ xi.

Finally, and most importantly, we define the exterior algebra, or Grassmann
algebra. It is given by

∧
(V ) =

⊕∞
k=0 V

∧k. If V is free with rank n, this simplifies
to
∧

(V ) =
⊕n

k=0 V
∧k. The product

(v1 ∧ · · · ∧ vk) ∧ (w1 ∧ · · · ∧ wl) = v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wl (4.21)

makes
∧

(V ) an associative algebra. It is important to note that the product is not
anti-symmetric, that is, v ∧w = −w ∧ v is not true for general v, w ∈

∧
(V ). The

reason is that, if the two factors on the left-hand side of (4.21) are interchanged,
we need to move all the vj across the wj to get the correct result on the right.
This can be achieved with kl transpositions. It follows that

v ∧ w = (−1)klw ∧ v, v ∈ V ∧k, w ∈ V ∧l. (4.22)

Note also that the identity v∧ v = 0 does not hold in general. By (4.22), it is true
if v ∈ V ∧k with k odd. When k is even, v ∧ v = 0 if v = v1 ∧ · · · ∧ vk is a pure
tensor but not in general. For instance, in

∧
(R4) we have

(e1∧e2+e3∧e4)∧(e1∧e2+e3∧e4) = e1∧e2∧e3∧e4+e3∧e4∧e1∧e2 = 2(e1∧e2∧e3∧e4).

In the next section, the following notation will be useful. Suppose V is a vector
space with basis (ej)

n
j=1. Let [n] = {1, . . . , n}. When S ⊆ [n] is a set of cardinality

m, we can order the elements as S = {s1 < s2 < · · · < sm}. We then write

eS = es1 ∧ · · · ∧ esm .

By Proposition 4.3.2, (eS)S form a basis for V ∧m as S runs over sets of cardinality
m. Consider the product of two such basis elements in the Grassmann algebra. If
T = {t1 < · · · < tl} then

eS ∧ eT = es1 ∧ · · · ∧ esm ∧ et1 ∧ · · · ∧ etl .

This vanishes if S∩T 6= ∅ and is otherwise proportional to eS∪T . To get to eS∪T we
must order the factors on the right-hand side. This can be done by first commuting
et1 across all esj with sj > t1 and then repeating the same process for t2, . . . , tl.
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When we are done, we have performed one flip for each pair (s, t) ∈ S × T such
that s > t. Thus, if we introduce the notation

ε(S;T ) =

{
0, S ∩ T 6= ∅,
(−1)|{(s,t)∈S×T ; s>t}|, S ∩ T = ∅,

then we can write
eSeT = ε(S;T )eS∪T . (4.23)

Exercise 4.4.1. Show that R[x]⊗R R[y] ' R[x, y] as algebras.

4.5 Grassmannian and Plücker relations

In this section, V is an n-dimensional vector space over a field K with characteristic
zero. (These conditions could be relaxed.)

As a motivating example, consider the element

u = e1 ∧ e2 + e1 ∧ e3 + 2e1 ∧ e4 + e2 ∧ e3 + e2 ∧ e4 − e3 ∧ e4 ∈ R4 ∧ R4.

Suppose that we want to know whether u is a pure tensor, that is, if u = v ∧w for
some v, w ∈ R4. It turns out that the answer is yes; you may check that

u = (2e1 + e2 − e3) ∧ (e1 + e2 + e4).

It would be nice to have a systematic way to answer this question. We will prove
that pure tensors in V ∧m can be characterized by certain quadratic relations in
the coefficients. In the special case n = dim(V ) = 4 and m = 2, an element∑

1≤j<k≤4 ajkej ∧ ek is a pure tensor if and only if

a12a34 − a13a24 + a14a23 = 0. (4.24)

You can check directly that this holds for the element u.
To characterize pure tensors is interesting for several reasons. One is that, in a

sense that we will make precise, pure tensors in V ∧m correspond to m-dimensional
subspaces in V . The set of all such subspaces is known as a Grassmannian. If
we can characterize pure tensors algebraically, we can describe the Grassmannian
as an algebraic variety. Another reason is that the algebraic relations describing
pure tensors can be formulated as quadratic relations between minors of general
determinants. These so called Plücker relations are useful in a variety of contexts.

Lemma 4.5.1. The vectors v1, . . . , vm ∈ V are linearly dependent if and only if
v1 ∧ · · · ∧ vm = 0.
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Proof. If the vectors are linearly dependent, then one of them is a linear combina-
tion of the others. If, say, vj =

∑
k 6=j akvk, then

v1 ∧ · · · ∧ vm =
∑
k 6=j

akv1 ∧ . . . vj−1 ∧ vk ∧ vj+1 ∧ · · · ∧ vn = 0.

On the other hand, if the vectors are linearly independent, then they form a basis
for their span U ⊆ V . It then follows Prop. 4.3.2 that v1 ∧ · · · ∧ vm is a basis for
the one-dimensional space U∧m.

Let us call two non-zero elements u, v ∈ V ∧m equivalent if u = av for some
a ∈ K. The equivalence classes form the projective space P(V ∧m).

Lemma 4.5.2. The correspondence v1 ∧ · · · ∧ vm ↔ span{v1, . . . , vm} defines a
bijection between the subset of P(V ∧m) corresponding to non-zero pure tensors and
the Grassmannian consisting of all m-dimensional subspaces of V .

Proof. If v1, . . . , vm and w1, . . . , wm are two bases for the same m-dimensional
subspace, then we can expand each wj in terms of the vj. After using linearity
and antisymmetry we get a relation of the form

w1 ∧ · · · ∧ wm = c v1 ∧ · · · ∧ vm, c ∈ K,

where c 6= 0 by Lemma 4.5.1 (explicitly, c is the determinant of the change of basis
matrix; cf. (4.18)). Thus, the map span{v1, . . . , vm} 7→ v1∧ · · ·∧vm is well-defined
up to the above equivalence relation. Conversely, if v1 ∧ · · · ∧ vm 6= 0 it follows
from Lemma 4.5.1 that the vectors vj span an m-dimensional space. Thus, the
map from subspaces to pure tensors can be inverted.

We will use the standard notation 〈x, y〉 instead of y(x) when x ∈ V and
y ∈ V ∗. When A ∈ Hom(V,W ) we write A∗ ∈ Hom(W ∗, V ∗) for the dual map
defined by

〈Ax, y〉 = 〈x,A∗y〉.
Suppose we have chosen a basis (ej)

n
j=1 for V . We then have a natural basis

(eS)S for V ∧m, indexed by S ⊆ [n] = {1, . . . , n} of cardinality m. There are dual
basis elements (eS)∗ of (V ∧m)∗ and also basis elements (e∗)S = e∗s1 ∧ · · · ∧ e

∗
sm of

(V ∗)∧m. By the following result, these can be identified. From now on, we will
make this identification and write the dual basis elements as e∗S.

Lemma 4.5.3. There is a vector space isomorphism Φ : (V ∗)∧m → (V ∧m)∗, such
that

〈v1 ∧ · · · ∧ vm,Φ(ξ1 ∧ · · · ∧ ξm)〉 = det
1≤i,j≤m

(〈vi, ξj〉) , vj ∈ V, ξj ∈ V ∗.

In the notation above, Φ((e∗)S) = (eS)∗ for any choice of basis of V .
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Proof. Given a basis (ej)
n
j=1 for V , we have

〈eS,Φ((e∗)T )〉 = det
1≤i,j≤m

(δsi,tj),

where S = {s1 < · · · < sm}, T = {t1 < · · · < tm}. The first row in the matrix
vanishes unless s1 = tk for some k. If that is the case, the first column vanishes
unless k = 1. Repeating this argument, we find that the determinant vanishes
unless sj = tj for all j, that is, it is equal to δST . This shows that Φ maps (e∗)S to
(eS)∗. Since it maps a basis to a basis, it extends to an isomorphism on the whole
space.

Note that the existence of an isomorphism (V ∗)∧m ' (V ∧m)∗ is obvious as the
two spaces have the same dimension. Lemma 4.5.3 shows that the isomorphism
can be defined without reference to a choice of basis. That is, the spaces are
naturally isomorphic.

Assume now that we have chosen a basis e for the one-dimensional space V ∧n.
Then, if x ∈ V ∧m and y ∈ V ∧(n−m), we have x ∧ y = ce for some c ∈ K. For
fixed x, the scalar c depends linearly on y. Thus, we can define a map ∗ : V ∧m →
(V ∧(n−m))∗ by

x ∧ y = 〈y, ∗x〉e, x ∈ V ∧m, y ∈ V ∧(n−m).

The map x 7→ ∗x is called the Hodge star.
Let us see how the Hodge star looks in a basis. Let (ej)

n
j=1 be a basis for V

and take e = e1 ∧ · · · ∧ en. Then, the Hodge star is determined by

eS ∧ eT = 〈eT , ∗eS〉e. (4.25)

By (4.23), this can be writtem

δSc,T ε(S;Sc) e = 〈eT , ∗eS〉e,

where Sc denotes the complement of S. It follows that

∗eS = ε(S;Sc) e∗Sc . (4.26)

As an example, if m = 1 and n = 3, the Hodge star is determined by

∗e1 = e∗2 ∧ e∗3, ∗e2 = −e∗1 ∧ e∗3, ∗e3 = e∗1 ∧ e∗2.

As the Hodge star maps a basis to a basis, it is an isomorphism of vector spaces.
We stress that it does not depend on a choice of basis for V , but only on a choice
of basis for the one-dimensional space V ∧n. Geometrically, this corresponds to a
volume form on V . If K = R, V is equipped with an orientation and a rule for



56

computing n-dimensional volumes. Namely, if v1, . . . , vn are linearly independent
vectors and v1 ∧ · · · ∧ vn = ae, then we can define the volume of the parallelepiped
spanned by v1, . . . , vn to be |a| and call the vectors positively oriented if a > 0.

When u ∈ V ∧m, we write λu : V → V ∧(m+1) for the map λu(v) = u∧v. We then
have a map λ∗u : V ∗ → (V ∗)∧(n−m+1), whose dual map is λ∗∗u : V ∧(n−m+1) → V .
Thus, we can introduce the map

µu = λu ◦ λ∗∗u : V ∧(n−m+1) → V ∧(m+1).

Since µu is a quadratic function of u (that is, µtu = t2µu for t ∈ K) the following
result describes the Grassmannian algebraically by quadratic relations.

Theorem 4.5.4. The element u is a pure tensor if and only if µu = 0.

Proof. Assume first that u = v1∧· · ·∧vm. If the vectors vj are linearly dependent,
then u = 0 and hence µu = 0. Else, complete the vectors to a basis (vj)

n
j=1 for V .

Choosing e = v1 ∧ · · · ∧ vn, (4.26) gives

∗u = v∗m+1 ∧ · · · ∧ v∗n.

We then have, for any v ∈ V ∧(n−m+1),

〈λ∗∗uv, v∗j 〉 = 〈v, ∗u ∧ v∗j 〉 = 0, m+ 1 ≤ j ≤ n.

It follows that λ∗∗uv ∈ span{v1, . . . , vm}, which gives µu(v) = u ∧ λ∗∗uv = 0.
For the converse, assume that u ∈ V ∧m satisfies µu = 0. Let (vj)

k
j=1 be a

basis for Im(λ∗∗u). As before, we complete it to a basis (vj)
n
j=1 for V and let

e = v1∧· · ·∧vn. That µu = 0 means that u∧vj = 0 for 1 ≤ j ≤ k. By Lemma 4.5.5
below, m ≥ k and u = v1 ∧ · · · ∧ vk ∧ w for some w ∈ V ∧(m−k). By (4.26),
∗u ∈ span{v∗k+1, . . . , v

∗
n}∧(n−m). Suppose first that ∗u ∧ v∗j 6= 0 for some j ≥ k + 1.

Then, we can pick x ∈ V ∧(n−m+1) with 0 6= 〈x, ∗u ∧ v∗j 〉 = 〈λ∗∗ux, v∗j 〉. But this
contradicts the fact that Im(λ∗∗u) = span{v1, . . . , vk}. It follows that ∗u ∧ v∗j = 0
for all j ≥ k + 1. Then, Lemma 4.5.5 gives m = k, ∗u = c v∗k+1 ∧ · · · ∧ v∗n and
consequently u = d v1∧· · ·∧vk is a pure tensor (here, c and d are some scalars).

In the proof, we used the following result.

Lemma 4.5.5. If v1, . . . , vk are linearly independent elements of V and u ∈ V ∧m
is such that u ∧ vj = 0 for each j, then m ≥ k and u = v1 ∧ · · · ∧ vk ∧ w for some
w ∈ V ∧(m−k).

Proof. Complete the vectors to a basis (vj)
n
j=1 for V , and expand u =

∑
S a(S)vS

in the corresponding basis for V ∧m. If j ≤ k, then

0 = u ∧ vj =
∑
S; j /∈S

ε(S; {j})a(S) vS∪{j}.
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By linear independence, a(S) = 0 unless j ∈ S. Thus, u is a linear combination of
basis vectors vS with [k] ⊆ S. Since any such basis vector equals ±v[k] ∧ vS\[k], the
desired conclusion follows.

The statement of Theorem 4.5.4 is short and elegant, but to understand its
real content we work out what it means in a basis.

Theorem 4.5.6 (Reformulation of Theorem 4.5.4). Given a basis (ej)
n
j=1 for V ,

let u =
∑

S a(S)eS ∈ V ∧m. Then, u is a pure tensor if and only if∑
j∈X∩Y

ε(j)a(Xc ∪ {j})a(Y \ {j}) = 0 (4.27)

for all X, Y ⊆ [n] with |X| = n−m+ 1, |Y | = m+ 1. Here, ε(j) ∈ {±1} can be
defined as

ε(j) = ε({j}; (X ∩ Y ) \ {j}) ε(Xc ∩ Y c; {j}). (4.28)

Before we explain how Theorem 4.5.6 is equivalent to Theorem 4.5.4, we give
some examples. Since |X|+|Y | = n+2, the sum (4.27) has at least two terms. If it
has exactly two terms, suppose X ∩Y = {i < j} and let X0 = X \Y , Y0 = Y \X.
Then, [n] is a disjoint union X0 ∪ Y0 ∪ {i, j}. Since ε(i) = 1 and ε(j) = −1, (4.27)
is the trivial condition

a(Y0 ∪ {i})a(Y0 ∪ {j})− a(Y0 ∪ {j})a(Y0 ∪ {i}) = 0.

The first non-trivial condition appears when |X ∩ Y | = 3. Then, we can write
X∩Y = {i < j < k} and we have the disjoint union [n] = X0∪Y0∪{i, j, k}∪{l} for
some l. Assume first that i < j < k < l. In the notation A(x, y) = a(Y0 ∪ {x, y}),
(4.27) then takes the form

A(i, l)A(j, k)− A(j, l)A(i, k) + A(k, l)A(i, j) = 0.

In particular, if n = 4 and m = 2 we may take (i, j, k, l) = (1, 2, 3, 4). Then, Y0 = ∅
and we recover (4.24). It is easy to check that any other choice of l leads to an
equation equivalent to (4.24). For larger m and n one gets a system of quadratic
equations for the coefficients a(S).

Proof of Theorem 4.5.6. We will prove that µueX =
∑

Y c(X, Y )eY , where the
coefficient c(X, Y ) is equal to the left-hand side of (4.27), up to a sign.

We first compute
〈λ∗∗ueX , e∗j〉 = 〈eX , ∗u ∧ e∗j〉. (4.29)

By (4.26),

∗u =
∑
S

ε(S;Sc) a(S) e∗Sc .
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By (4.23),

∗u ∧ e∗j =
∑
S

ε(S;Sc) ε(Sc; {j}) a(S) e∗Sc∪{j}.

Plugging this into (4.29), only the term with S = Xc ∪ {j} will contribute and we
get

〈λ∗∗ueX , e∗j〉 = ε(Xc ∪ {j}; X \ {j}) ε(X \ {j}; {j}) a(Xc ∪ {j}).

Thus,

λ∗∗ueX =
∑
j∈X

ε(Xc ∪ {j}; X \ {j}) ε(X \ {j}; {j}) a(Xc ∪ {j}) ej.

Applying λu gives

λuλ
∗
∗ueX =

∑
S

∑
j∈X

ε(Xc ∪ {j}; X \ {j}) ε(X \ {j}; {j}) a(Xc ∪ {j}) a(S) eS ∧ ej.

The right-hand side vanishes if j ∈ S. With Y = S ∪ {j}, the expression can be
written ∑

Y

( ∑
j∈X∩Y

ε(j)a(Xc ∪ {j})a(Y \ {j})

)
eY ,

where

ε(j) = ε(Xc ∪ {j}; X \ {j}) ε(X \ {j}; {j}) ε(Y \ {j}; {j}). (4.30)

We leave to the reader to verify that (4.30) differs from (4.28) by a factor inde-
pendent of j.

Suppose we start with a pure tensor v1 ∧ · · · ∧ vm. Do the relations (4.27) tell
us anything interesting? The answer is yes: they encode Plücker’s minor relations,
which play an important role in many concrete applications of determinants. To
explain this, let vi =

∑n
j=1 aijej ∈ V . By Exercise 4.3.8,

v1 ∧ · · · ∧ vm =
∑
S

det
1≤i≤m, j∈S

(aij) eS.

Here, the sum runs over S ⊆ [n] of size m. The columns in the determinants
should be ordered correctly, namely, if S = {s1 < · · · < sm}, then ai,sj is inserted
in column j.

Corollary 4.5.7 (Plücker relations). If A = (aij)1≤i≤m, 1≤j≤n is an arbitrary m×n-
matrix, then the minors a(S) = det1≤i≤m, j∈S(aij) satisfy the relations (4.27).



59

As an example, when m = 2 and n = 4, take X = Y = {1, 2, 3}. The
corresponding Plücker relation says that∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ∣∣∣∣a13 a14

a23 a24

∣∣∣∣− ∣∣∣∣a11 a13

a21 a23

∣∣∣∣ ∣∣∣∣a12 a14

a22 a24

∣∣∣∣+

∣∣∣∣a11 a14

a21 a24

∣∣∣∣ ∣∣∣∣a12 a13

a22 a23

∣∣∣∣ = 0,

for all values of aij.

Exercise 4.5.1. Let V ⊆ R4 be the solution space to{
x1 + 2x2 + x3 = 0,

x1 − x2 + x4 = 0.

Write down two different bases u1, u2 and v1, v2 for V (don’t be too clever and
choose the bases as proportional). Express u1 ∧ u2 and v1 ∧ v2 in the standard
basis for R4 ∧ R4. Verify that they are proportional and that (4.24) holds.

Exercise 4.5.2. Suppose X ∩ Y is an interval. Show that (4.27) holds with
ε(j) = (−1)j.

4.6 Additional exercises

Exercise 4.6.1. Let G be the group Z2 × Z3 . What is the real vector space
R⊗Z G? (Hint: Use Exercise 4.2.5.)

Exercise 4.6.2. Let G be an abelian group and let nG = {na; a ∈ G} for n ∈ Z.
Show that Zn ⊗Z G ' G/nG.

Exercise 4.6.3. Let M be an R-module over a commutative ring R and I ⊆ R
an ideal. Then, R/I ⊗R M can be viewed as an R/I-module. Show that it is
equivalent to the module M/IM described in Exercise 3.2.3.

Exercise 4.6.4. Let A be an (m × m)-matrix and B an (n × n)-matrix over a
commutative ring R. We can consider A ⊗ B as an R-module endomorphism
of Rm ⊗ Rn, so it can be identified with an (mn) × (mn)-matrix. Show that
det(A⊗B) = det(A)n det(B)m. (Hint: Do it first for B = Id.)

Exercise 4.6.5. Show that if f is bilinear in the sense of (4.5), with R not nec-
essarily commutative, then rsf(u, v) = srf(u, v) for all r, s ∈ R. Moreover, show
that if we define the tensor product U ⊗ V as in the text, then rsx = srx for all
r, s ∈ R and x ∈ U ⊗ V .

Exercise 4.6.6. Let R be the ring of (2× 2) real matrices considered as a module
over itself. Show that matrix multiplication f(A,B) = AB is not bilinear in the
sense of (4.5). Which properties of f seem analogous to bilinearity?
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Exercise 4.6.7. Is it true or false that

Hom(V ∧ V,W ∧W ) ' Hom(V,W ) ∧ Hom(V,W ),

where V and W are finite-dimensional complex vector spaces?



Chapter 5

Modules over principal ideal
domains

5.1 Statement and overview

We will classify all finitely generated modules over a PID R. One important case
is R = Z, when we obtain a classification of finitely generated abelian groups. We
will show that any such group is isomorphic to

Zs × Z/pk11 Z× · · · × Z/pkmm Z, (5.1)

where pj are primes. This is a good example to keep in mind throughout the
discussion. Another important case gives the “Jordan normal form” of a complex
matrix, which generalizes diagonalization to non-diagonalizable matrices. This is
useful for many applications of linear algebra, for instance, to differential equations.

To formulate the main theorem, consider the equivalence relation on prime
elements of R, defined by p ∼ q if p = eq with e a unit. Let P be a set of repre-
sentatives for these equivalence classes. (For instance, in Z the equivalence classes
are {±p} with p a prime number. Choosing always the positive representative, we
can identify P with the set of prime numbers.)

Theorem 5.1.1. Any finitely generated module over a PID R is isomorphic to

Rs ×R/pk11 R× · · · ×R/pkmm R, pj ∈ P. (5.2)

Moreover, this decomposition is unique up to reordering the factors.

The decomposition (5.2) is called the primary decomposition of M (an ideal of
the form pkR with p prime is called a primary ideal; see Exercise 2.4.6). Note that
some of the primes pj in Theorem 5.1.1 may be equal. As an example, if G is a
finite abelian group of order 24, then G is a product as in (5.1), where the factor
Zs is absent (s = 0) and where pk11 · · · pkmm = 24 = 23 · 3. Up to reordering the
factors, the only possibilities are

Z8 × Z3, Z2 × Z4 × Z3, Z2 × Z2 × Z2 × Z3. (5.3)

61
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By the uniqueness part of the statement, these groups are mutually non-isomorphic.
The proof of Theorem 5.1.1 is rather long. The proof of existence of the de-

composition (5.2) will be divided into three steps. To illustrate these steps we
consider the example

M = Z2 × Z2 × Z4 × Z3.

In the first step, we split M as

M = Z2 × (Z2 × Z4 × Z3),

where the first factor is a free module and the second one a so called torsion
module. In the next step, the torsion part is split into factors corresponding to
distinct primes. In the example,

M = Z2 × (Z2 × Z4)× Z3.

In the final step, the factor related to each prime p is split into modules of the
form R/pkR; in the example, we arrive at

M = Z2 × Z2 × Z4 × Z3.

Exercise 5.1.1. Write down all abelian groups of order 360.

5.2 Proof of Theorem 5.1.1

A torsion element in an R-module M is an element x such that ax = 0 for some
non-zero a ∈ R. If R is commutative, the torsion elements form a submodule,
which we denote Mtor. A module with Mtor = {0} is called torsion free and a
module with Mtor = M is called a torsion module. It is easy to see that M/Mtor

is torsion free.

Lemma 5.2.1. A free module M over an integral domain R is torsion-free.

Proof. Let (ej)j=∈Λ be a basis for M . Suppose that ax = 0, where x =
∑

j xjej.
Then

∑
j axjej = 0 so, by the definition of a basis, axj = 0 for each j. Since R is

a domain we have either a = 0 or xj = 0 for all j, that is, x = 0.

In the context of (5.2), Lemma 5.2.1 shows that the factor Rs is torsion
free. The remaining factors form a torsion module, since they are annihilated
by pk11 · · · pkmm .

The condition that R is a PID has two important consequences, which makes
the classification of modules tractable. Namely, any submodule of a free module
is free and any submodule of a finitely generated module is finitely generated. In
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fact, for non-zero commutative rings, the first of these properties is equivalent to
R being a PID, whereas the second property is equivalent to R being Noetherian
(see also Exercises 3.6.5–3.6.7). We will only need the first statement for finitely
generated modules.

Proposition 5.2.2. If F is a finitely generated free module over a PID R and M
is a submodule, then M is again finitely generated and free. Moreover, rank(M) ≤
rank(F ).

Proof of Proposition 5.2.2. Let e1, . . . , en be a basis for F . Let

Mk = M ∩ (Re1 + · · ·+Rek).

We will prove by induction on k that Mk is free and rankMk ≤ k. Our starting
point is the trivial case M0 = {0} and the endpoint case k = n is the statement of
the theorem.

Consider the map π : Mk → R defined by

π(x1e1 + · · ·+ xkek) = xk.

Then π is an R-module homomorphism so Im(π) is an ideal. By the PID property,
Im(π) = aR for some a ∈ R. If a = 0, clearly Mk = Mk−1 and we are done.

Assuming from now on that a 6= 0, pick x ∈Mk with π(x) = a. We claim that
Mk = Mk−1 ⊕ Rx or, equivalently, Mk = Mk−1 + Rx and Mk−1 ∩ Rx = {0}. For
the first identity, pick any y ∈ Mk. We have π(y) = ab for some b ∈ R. Then,
π(y − bx) = 0, so y − bx ∈ Mk−1, which gives y ∈ Mk−1 + Rx. For the second
identity, if rx ∈ Mk−1 then 0 = π(rx) = rπ(x) = ra. Since a 6= 0 we get r = 0 (R
is a domain) and thus rx = 0. Finally, we note that Rx is a free module with basis
x. Otherwise, we would have rx = 0 for some r 6= 0. By Lemma 5.2.1, that would
contradict F being free. Thus, it follows from the induction hypothesis that Mk is
free with rank(Mk) = rank(Mk−1) + 1 ≤ k.

Corollary 5.2.3. Let M be a finitely generated module over a PID. Then any
submodule of M is finitely generated.

Proof. Suppose M is generated by v1, . . . , vn. Define f : Rn →M by

f(x1, . . . , xn) = x1v1 + · · ·+ xnvn.

Then, f is a homomorphism. If N is a submodule of M then f−1(N) = {x ∈
Rn; f(x) ∈ N} is a submodule of Rn. By Prop. 5.2.2, f−1(N) is finitely generated.
Acting by f on a set of generators we obtain a finite set of generators for N .

By Lemma 5.2.1, a free module over an integral domain is torsion free. The
converse holds for finitely generated modules over a PID.
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Lemma 5.2.4. If M is a finitely generated module over a PID and M is torsion
free then M is free.

Proof. Let v1, . . . , vn be generators for M and let e1, . . . , ek be a maximal set of R-
linearly independent elements among these generators. Then, e1, . . . , ek generate
a free module F ⊆ M . We claim that we can find non-zero elements aj ∈ R such
that ajvj ∈ F . If vj is one of the generators ek this is true with aj = 1. Else,
{vj, e1, . . . , ek} are linearly dependent, so we can write

ajvj + x1e1 + · · ·+ xkek = 0, aj, x1, . . . , xk ∈ R,

where not all the coefficients are zero. Since e1, . . . , ek are linearly independent,
aj 6= 0. We now let a = a1 · · · an. Since ajvj ∈ F we have that avj ∈ F for
each j. It follows that f(x) = ax is a homomorphism from M to F . Since M
is torsion-free, f is injective. Thus, M is isomorphic to a submodule of a finitely
generated free module. The conclusion now follows from Proposition 5.2.2.

We can now complete the first step in the proof of Theorem 5.1.1.

Lemma 5.2.5. If M is a finitely generated module over a PID, then M ' Rs×Mtor

for some s.

Proof. As we remarked above, M/Mtor is torsion free. Thus, by Lemma 5.2.4, it is
free. By Lemma 3.5.3, Mtor is a direct summand of M , so M = F ⊕Mtor for some
submodule F . It follows that F 'M/Mtor, so F is free. Finally, by Cor. 5.2.3, F
is finitely generated, so F ' Rs for some s.

We now turn to the second step in the proof, where we split the torsion module
into terms corresponding to distinct prime elements.

Lemma 5.2.6. If M is a finitely generated torsion module over a commutative
ring R, then there exists a non-zero element a ∈ R so that ax = 0 for all x ∈M .

Proof. Let v1, . . . , vn be generators for M . Since M is a torsion module, ajvj = 0
for some non-zero aj ∈ R. We can then take a = a1 · · · an.

In general, when M is a module and a ∈ R, we write Ma = {x ∈ M ; ax = 0}.
Clearly, Ma is a submodule. By Lemma 5.2.6, any finitely generated torsion module
has the form M = Ma for some a 6= 0. We claim that if the prime factorization of
a is pk11 · · · pkmm , then we can split M as

Ma = M
p
k1
1
⊕ · · · ⊕Mpkmm

. (5.4)

This follows by repeated use of the following result.
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Lemma 5.2.7. If M is a module over a PID R and a, b ∈ R with gcd(a, b) = 1,
then

Mab = Ma ⊕Mb.

Proof. By Bezout’s identity, 1 = as+ bt for some s, t ∈ R. We need to show that
Mab = Ma + Mb and that Ma ∩Mb = {0}. Both statements follow from writing
x = asx + tbx. Indeed, if x ∈ Mab, then asx ∈ Mb and tbx ∈ Ma. Moreover, if
x ∈Mb ∩Mc then acx = tbx = 0.

As explained above, combining Lemma 5.2.6 and Lemma 5.2.7 gives the fol-
lowing conclusion.

Corollary 5.2.8. If M is a finitely generated torsion module over a PID, then

M = M
p
k1
1
⊕ · · · ⊕Mpkmm

(5.5)

for certain distinct primes pj ∈ P and positive integers kj.

We should think of each summand in (5.5) as gathering all factors in (5.2) that
involve a fixed prime. Let us stress that, although our proof of Corollary 5.2.8 is
short, it depends crucially on Theorem 2.3.3 (every PID is a UFD).

In the third step of the proof, we decompose the individual terms in (5.5).
When S is a subset of an R-module, its annihilator is defined by

Ann(S) = {r ∈ R; rs = 0 for all s ∈ S}.

When R is commutative, Ann(S) is an ideal (in general, it is a left ideal).

Lemma 5.2.9. If M is a module over a PID R and p is a prime, then Ann(Mpk) =
plR for some l ≤ k.

Indeed, by the principal ideal property, Ann(Mpk) = aR for some a ∈ R. Since
pk ∈ Ann(Mpk), a must be a divisor of pk.

We may then use the following result to decompose the summands in (5.5).

Lemma 5.2.10. Let M be a finitely generated module over a PID R, such that
Ann(M) = pkR, where p ∈ P and k ≥ 0. Then, M is isomorphic to a product

R/(pl1R)× · · · ×R/(plmR) (5.6)

for some positive integers lj.
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We will prove Lemma 5.2.10 by induction on the “size” of M . It is not immedi-
ately obvious how the size should be measured, but it turns out that the following
idea works. It is easy to see that, for any module M , M/pM is a module over
R/pR (cf. Exercise 3.2.3 and Exercise 4.6.3). Note that R/pR is a field, so M/pM
is in fact a vector space. Moreover, if M is finitely generated, then the cosets
containing the generators generate M/pM . Thus, |M |p = dimR/pR(M/pM) is a
non-negative integer. We will prove Lemma 5.2.10 by induction on |M |p. It is easy
to check that if M is given by (5.6), then |M |p = m (cf. Lemma 5.2.11 below).
Thus, we are actually performing induction over the number of factors in (5.6),
but of course that does not make sense until we have proved the lemma.

Proof of Lemma 5.2.10. If M is the zero module, we interpret (5.6) as an empty
product. Otherwise, k ≥ 1 and there is an element x ∈ M such that pk−1x 6= 0.
Note that x /∈ pM since x = py would give pky 6= 0. This means in particular that
pM ( M so that |M |p ≥ 1. Thus, |M |p = 0 only for the zero module, which we
can use as the starting case for the induction.

Assume that the statement of the lemma holds for all modules N with |N |p <
|M |p. Choose x as above and let N = M/Rx. We claim that |N |p < |M |p. To
see this, note that the natural projection M → N/pN maps pM to 0, so there is
a surjective homomorphism φ : M/pM → N/pN . As we have observed above,
x /∈ pM , so x is a non-trivial element in Ker(φ). By the dimension theorem, it
follows that |M |p = |N |p + dimR/pR(Ker(φ)) > |N |p.

It now follows from our induction hypothesis that N is isomorphic to a product
like (5.6). We will apply condition (B) in Lemma 3.4.2 to the sequence

0→ Rx→M → N → 0. (5.7)

If this condition holds, then M ' N ×Rx. Since, by Lemma 3.3.1, Rx ' R/pkR,
this would complete the proof. Using again Lemma 3.3.1, if N has the form (5.6)
then we can write

N = Rx̄1 ⊕ · · · ⊕Rx̄n, (5.8)

where x̄j ∈M/Rx are such that Ann(x̄j) = pljR (we write x̄j for cosets). To split
the sequence, we need to find representatives yj for the coset x̄j so that

ψ(a1x̄1 + · · ·+ amx̄m) = a1y1 + · · · amym (5.9)

is a well-defined homomorphism from N to M . The only potential problem with
this definition is that the coefficients aj ∈ R are not uniquely determined by∑
ajx̄j. If

∑
ajx̄j =

∑
j bjx̄j then, since the sum (5.8) is direct, bj − aj ∈

Ann(x̄j) = pljR for each j and thus bj = aj+p
ljrj for some rj ∈ R. The right-hand

side of (5.9) is invariant under aj 7→ bj provided that pljyj = 0. If we can find such
representatives yj for x̄j, then ψ splits the sequence and the proof is complete.
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Let xj be arbitrary representatives of x̄j. We need to find yj ∈ x̄j = xj + Rx
with pljyj = 0. Since we know that pljxj ∈ Rx, we can write pljxj = pscx, where
gcd(c, p) = 1. If s ≥ lj, we have plj(xj − ps−ljcx) = 0, so yj = xj − ps−ljcx works.
Since pkx = 0, we can assume that s ≤ k. If s = k, then yj = xj works. The
only case that remains is when s < lj and s < k. If this is so, then we can write
pk−1cx = pk−1−spscx = pkplj−s−1xj = 0 since pk ∈ Ann(M). By Bezout’s identity,
we have tc + up = 1 for some t, u ∈ R. This gives 0 = pk−1tcx = pk−1x− upkx =
pk−1x, which contradicts our choice of x. This completes the proof.

Together, Lemma 5.2.5, Corollary 5.2.8, Lemma 5.2.9 and Lemma 5.2.10 prove
the existence part of Theorem 5.1.1. For the uniqueness part, the following result
is useful.

Lemma 5.2.11. If R is a PID, p and q are prime elements and M = R/qkR,
then

plM/pl+1M '

{
R/pR, p ∼ q and l ≤ k − 1,

0, else

as R-modules (and hence also as R/pR-vector spaces).

Proof. By Lemma 3.3.1, we can write M = Rx with Ann(x) = qkR. Then, plM is
generated by plx and N = plM/pl+1M is generated by the coset y = plx+ pl+1M .
Clearly py = 0 so, again by Lemma 3.3.1, we have either N ' R/pR (when
plx /∈ pl+1M so that y 6= 0) or N = {0} (when plx ∈ pl+1M). If p = q and l ≥ k,
then plx = 0 so we are in the second case. If p = q and l ≤ k− 1, then plx = pl+1z
would give pk−1x = pkz = 0, which contradicts Ann(x) = pkR. Then we are in
the first case. Finally, if p 6∼ q then 1 = tqk + upl+1 for some t and u. Then,
z = upl+1z ∈ pl+1M for any z ∈M , so we are in the second case.

We can now prove the uniqueness part of Theorem 5.1.1. We need to show
that if M denotes the module (5.2), then s, pj and kj can be constructed uniquely
from M (up to reordering). It is clear that s = rankR(M/Mtor) so it is enough to
consider the torsion part. If M is a torsion module (that is, there is no factor Rs

in (5.2)) let us compute the numbers

dl(p) = dimR/pR(plM/pl+1M) (5.10)

for p ∈ P and l ≥ 0. We can compute dl(p) by adding up the contribution from
each factor (cf. Exercise 3.5.6). Thus, by Lemma 5.2.11, dl(p) is the number of
indices j such that pj = p and l ≤ kj − 1. Consequently,

dl−1(p)− dl(p) (5.11)

is the number of indices j such that pj = p and kj = l. This shows that pj and kj
are uniquely determined by M . The proof of Theorem 5.1.1 is finally complete.
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Exercise 5.2.1. Give an example of a torsion module over Z with trivial annihi-
lator.

Exercise 5.2.2. Give the primary decomposition of the multiplicative group Z∗21.

Exercise 5.2.3. In Exercise 5.1.1 you were asked to list all abelian groups of
order 360. Compute dimZ2(2

lG/2l+1G) for each such group and each non-negative
integer l.

5.3 The invariant factor decomposition

It is often useful to rewrite the decomposition (5.2) in the following alternative
form.

Theorem 5.3.1. Any finitely generated module M over a PID R is isomorphic to

Rs ×R/q1R×R/q2R× · · · ×R/qmR, (5.12)

where qj are non-zero non-units of R and q1|q2| · · · |qm. Moreover, this decomposi-
tion is unique up to multiplying qj by units.

The elements qj are called invariant factors and (5.12) the invariant factor
decomposition. In particular, a finitely generated torsion module is isomorphic to
(5.12), where the factor Rs is absent (s = 0). In this case, Ann(M) = qmR.

To prove Theorem 5.3.1 we need the following fact.

Lemma 5.3.2. If R is a PID and a, b ∈ R with gcd(a, b) = 1, then we have the
isomorphism of R-modules

R/abR ' R/aR×R/bR.

This looks very similar to Exercise 2.4.14, but neither result is a logical conse-
quence of the other. If you have solved that exercise, you probably showed that the
map φ(x+abR) = (x+aR, x+bR) is a ring isomorphism. Lemma 5.3.2 then follows
from the observation that φ is also an R-module homomorphism. Alternatively, it
can be obtained as the special case M = R/abR of Lemma 5.2.7.

By iteration, it follows from Lemma 5.3.2 that if a has prime factorization
pk11 · · · pkmm , then

R/aR ' R/pk11 R× · · · ×R/pkmm R (5.13)

as R-modules.
To prove the existence part of Theorem 5.3.1, we write M as in (5.2). We may

assume that s = 0. We then rearrange the product in a rectangular array so that
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all factors involving a fixed prime are placed in the same row, with the entries in
each row ordered by increasing exponent of p. Moreover, the rows are aligned to
the right so that the right-most entry of each row ends up in the same column.
We then define qk as the product of all prime powers in the k-th column.

An example should clarify the definition of qk. If

R = Z2 × Z2 × Z16 × Z3 × Z5 × Z25,

then we write

R = Z2 × Z2 × Z16

× Z3

× Z5 × Z25.

In this case q1 = 2, q2 = 2 · 5 = 10 and q3 = 16 · 3 · 25 = 1200. Thus, the invariant
factor decomposition of the same group is

R = Z2 × Z10 × Z1200.

Returning to the general situation, it is obvious from the construction that
qk | qk+1. Moreover, by (5.13), each R/qkR is isomorphic to the direct product of
those factors in (5.2) that were put in the k-th column. This shows the existence
part.

To prove uniqueness, we reverse the argument. Given a factorization (5.12)
with qj | qj+1, we can factorize qj into primes and construct a rectangular array of
modules R/pkR as above. This leads to a decomposition of M as in (5.2). Since
that factorization is unique, so is the factorization (5.12).

Exercise 5.3.1. In Exercise 5.1.1 you were asked to give the primary decomposi-
tion of all abelian groups of order 360. Give the invariant factor decomposition of
these groups.

5.4 Canonical forms

We now come to an important application of the theory described above: canonical
forms of matrices. Any linear operator on a finite-dimensional vector space can be
represented by a matrix, which expresses how it acts on a basis. However, changing
the basis leads to a different matrix. We would like to find a basis such that the
matrix has an especially simple form. Moreover, the form should be canonical in
the sense that this matrix is unique (possibly up to reordering the corresponding
basis vectors). As a consequence, if we want to know whether two matrices are



70

similar in the sense that they express the same linear map in different bases, we
can check whether their canonical forms agree or not. One familiar example is
diagonalization, but not any matrix can be diagonalized. The Jordan canonical
form explained below can be viewed as an analogue of diagonalization for arbitrary
complex matrices.

Let K be a field, V an n-dimensional vector space over K and A ∈ EndK(V ),
that is, A is a linear map from V to itself. The main idea is to study A by viewing
V as a module over R = K[x]. The module structure is obtained from the ring
homomorphism Φ : K[x]→ EndK(V ) given by Φ(p) = p(A). More explicitly,

(k0 + k1x+ · · ·+ kmx
m)v = k0v+ k1Av+ k2A

2v+ · · ·+ kmA
mv, ki ∈ K, v ∈ V.

It is natural to ask what properties of A are reflected by the module structure of
V . The following simple lemma answers that question.

Lemma 5.4.1. If VA denotes the K[x]-module associated to A ∈ EndK(V ), then
VA ' VB if and only if A and B are similar over K, that is, A = T−1BT for some
invertible element T ∈ EndK(V ).

The proof is trivial: a K[x]-module isomorphism T : VA → VB is an invertible
element of EndK(V ) such that p(A) = T−1p(B)T for all polynomials p. With
p(x) = x, this gives A = T−1BT . Conversely, if A = T−1BT , then Ak = T−1BkT
and consequently p(A) = T−1p(B)T for all polynomials p.

Let us now start investigating V as a K[x]-module. We know that R is a PID
and V is finitely generated. Note also that, as vector spaces over K, K[x] is infinite-
dimensional and EndK(V ) is n2-dimensional. It follows that Ker(Φ) = Ann(V ) is
non-zero. In particular, V is a torsion module.

We can now apply Theorem 5.1.1 and Theorem 5.3.1. We have

V ' R/q1R× · · · ×R/qmR (5.14)

for some polynomials qj. We may either choose qj = p
kj
j with pj irreducible

polynomials or qj as non-constant polynomials with q1|q2| · · · |qm. The units in R
are the non-zero constant polynomials, so if we normalize qj to be monic (leading
coefficient 1) then they are unique (in the first case up to reordering).

If φ is an R-module isomorphism from V to the right-hand side of (5.14), then
φ(Av) = xφ(v). That is, to understand how A acts on the left we must understand
how multiplication by x acts on the right. Consider first the action on R/qR, where
q(x) = a0 +a1x+ · · ·+ak−1x

k−1 +xk is a monic polynomial of degree k. We choose
1, x, x2, . . . , xk−1 as a basis for R/qR. Then, multiplication by x maps each basis
element to the next, except that xk−1 is mapped to xk = −a0−a1x−· · ·−ak−1x

k−1.
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Thus, the matrix for multiplication by x on R/qR is given by

Mq =


0 0 · · · 0 −a0

1 0 0 −a1

0 1 0 −a2
...

...
0 0 · · · 1 −ak−1

 , (5.15)

the so called companion matrix to q. We can then interpret (5.14) as saying that
there is a basis for V where A is expressed by the block matrix

Mq1 0 · · · 0
0 Mq2 0
...

...
0 0 · · · Mqm

 . (5.16)

In the first case (qj = p
kj
j ), we call (5.16) the primary canonical form and in the

second case the rational canonical form. The primary canonical form is unique
up to reordering the blocks whereas the rational canonical form is unique. We
remark that, by expanding (5.15) along the right column, it is easy to see that
det(xI −Mq) = q(x). Thus, the characteristic polynomial for A is in both cases
given by det(xI − A) = q1 · · · qm.

One important difference between these two forms is that the primary canonical
form depends heavily on the base field. Given, say, a matrix with integer entries,
the primary canonical form will typically look different if we work over Q, R or
C. This is because these fields have different irreducible polyomials: x2 + 1 is
irreducible over R but not over C and x2 − 2 is irreducible over Q but not over
R. By contrast, the rational canonical form does not change if we extend the
field. This follows from uniqueness; if K ⊆ K ′ the canonical form over K is also a
canonical form over K ′. One interesting consequence is that the notion of similarity
does not depend on the field. For instance, if A and B are integer matrices such
that A = TBT−1 for a complex matrix T , then there is such a matrix T with
rational entries.

Let us look more closely at the primary decomposition in the case when K is
algebraically closed. (In fact, it is enough to assume that K contains all eigenvalues
of A.) For instance, we can take K = C. Then, any monic irreducible polynomial
has the form x−λ for some λ ∈ K. Consider the matrix for multiplication by x in
the module R/qR, with q = (x − λ)k. Instead of choosing the basis vectors xj as
above, it is nicer to work with (x− λ)j. Then, x(x− λ)j = λ(x− λ)j + (x− λ)j+1,
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so we obtain instead of Mq the matrix

Jq =


λ 0 0 · · · 0 0
1 λ 0 0 0
0 1 λ 0 0
...

...
0 0 0 · · · 1 λ

 . (5.17)

In the corresponding basis, A takes the form
Jq1 0 · · · 0
0 Jq2 0
...

...
0 0 · · · Jqm

 . (5.18)

This is called the Jordan canonical form. It is unique up to reordering the blocks.
In all but the very simplest cases, it makes little sense to compute canonical

forms by hand. Therefore, we will not focus on how that can be done, except for a
brief discussion on the case K = C. Note that C[x]/(x−λ) ' C, so with p = x−λ
the numbers (5.10) are given by

dl = rank((A− λI)l)− rank((A− λI)l+1)

= dim Ker((A− λI)l+1)− dim Ker((A− λI)l).

It is easy to understand directly why the primary canonical form is determined by
the solutions to (A− λI)lv = 0. If J is the block (5.17), then we have e.g.

(J − λI)2 =



0 0 0 · · · 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
...

...
0 0 0 · · · 0


. (5.19)

If this matrix has size k ≥ 2, it is visibly of rank k − 2 and thus the nullspace
Ker((J − λI)2) has dimension 2. If k = 1, then (J − λI)2 = 0 and the nullspace
has dimension 1. In general, (J −λI)k has only zeroes except for a diagonal of 1:s,
which is pushed to the southwest as k increases. We find that dim Ker((J−λI)k) =
min(k,m), where m is the size of the block J . We obtain dim Ker((A − λI)k) by
adding these numbers for all Jordan blocks corresponding to the eigenvalue λ.
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As an example, suppose we are given a complex 6× 6-matrix A. We compute
the characteristic polynomial det(xI − A) = (x − 1)4(x − 2)2. We start with
the eigenvalue x = 1 and look for eigenvectors. Suppose that the equation (A −
I)v = 0 has a two-dimensional space of solutions. This means that there are
exactly two Jordan blocks with diagonal entries 1. The sum of their dimension
must be equal to 4, so the blocks have size (3, 1) or (2, 2). Next, we look at the
equation (A−I)2v = 0. In the first case, the solution space would be 3-dimensional
(min(2, 3) + min(2, 1) = 2 + 1 = 3) and in the second case 4-dimensional. Let us
say that we are in the first case. We then turn to the eigenvalue 2 and find that the
space of eigenvectors is two-dimensional. There are then two blocks with diagonal
entries 2, which necessarily have size 1. We conclude that the Jordan canonical
form for A is 

1
1 1

1 1
1

2
2

 ,

where all missing entries are zero. The prime powers corresponding to the Jordan
blocks are (x−1)3 = x3−3x2 + 3x−1, (x−1), (x−2) and (x−2), so the primary
canonical form is 

1
1 −3

1 3
1

2
2

 .

To get the rational canonical form we arrange the prime powers in an array as
explained in §5.3. We get

(x− 1) (x− 1)3

(x− 2) (x− 2)

and can read of the invariant factors along the columns:

c1 = (x− 1)(x− 2) = x2 − 3x+ 2,

c2 = (x− 1)3(x− 2) = x4 − 5x3 + 9x2 − 7x+ 2.

Note that c1c2 is indeed the characteristic polynomial. This gives the rational
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canonical form 
−2

1 3
−2

1 7
1 −9

1 5

 .

As a final remark, note that since Ann(M) is a non-zero ideal in R, it is
equal to qR for a unique monic polynomial q, called the minimal polynomial of A.
Equivalently, q is the smallest degree monic polynomial such that q(A) = 0. In
terms of the rational canonical form, it is clear that q = qm, the largest invariant
factor of M . As was remarked above, the characteristic polynomial for A is p =
q1 · · · qm. This implies the following useful result.

Theorem 5.4.2 (Cayley–Hamilton Theorem). If p is the characteristic polynomial
of a square matrix A, then p(A) = 0.

Exercise 5.4.1. Let A = [ 1 1
1 −1 ]. Find the primary and rational canonical forms

for A, over the fields Q and R.

Exercise 5.4.2. A complex matrix A has characteristic polynomial (x− 1)3(x+
1)2. Write down all possible Jordan canonical forms for A and give the minimal
polynomial in each case.

Exercise 5.4.3. Verify Cayley–Hamilton’s theorem by hand for 2× 2-matrices.

5.5 Systems of differential equations

As an application of the Jordan canonical form, let us have a brief look at systems
of first order ordinary differential equations

x′1 = a11x1 + · · ·+ a1nxn,

x′2 = a21x1 + · · ·+ a2nxn,

. . .

x′n = an1x1 + · · ·+ annxn,

(5.20)

where aij are real (or complex) numbers. Any higher order system can be reduced
to this form by a standard trick. For instance, the equation

y′′ + ay′ + by = 0
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can be written as a first order system in the variables (x1, x2) = (y, y′), namely,{
x′1 = x2,

x′2 = −bx1 − ax2.

We can write (5.20) in the matrix form x′ = Ax, where A = (aij) is the
coefficient matrix and x = (x1, . . . , xn) is viewed as a column vector with derivative
x′ = (x′1, . . . , x

′
n). Suppose A has Jordan canonical form J = TAT−1. Then,

y = Tx satisfies the simpler equation y′ = Jy. Clearly, this system splits into one
independent system for each Jordan block. Thus, the general system (5.20) can
be reduced to the case when the coefficent matrix is a Jordan block.

The 1 × 1 Jordan blocks correspond to the equation y′ = λy, with solutions
y(t) = Ceλt. For diagonalizable matrices, no other solutions appear; each xj
solving (5.20) is a linear combination of the solutions yj(t) = Cje

λjt to the corre-
sponding diagonal system.

The 2× 2 Jordan blocks correspond to{
y′1 = λy1,

y′2 = y1 + λy2.

Here, the first equation has solutions y1(t) = Ceλt. Plugging this into the second
equation, one finds that y2(t) = (Ct+D)eλt. More generally, k× k Jordan blocks
lead to solutions of the form p(t)eλt, where p is a polynomial of degree at most
k − 1.

To be more precise, one can show that the system (5.20) has the general solution
x(t) = etAx(0), where

etA =
∞∑
m=0

tm

m!
Am.

(This series converges for any complex square matrix A.) For a k×k Jordan block
J with eigenvalue λ, we see as in (5.19) that (J − λI)k = 0. It follows that

etJ = eλte(J−λI)t = eλt
k−1∑
m=1

tm

m!
(J − λI)m

= eλt


1 0 0 · · · 0
t 1 0 0

t2/2 t 1 0
...

...
tk−1

(k−1)!
· · · 1

 .
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The general solution of the system y′ = Jy is obtained by multiplying this matrix
with an arbitrary vector of initial values. Of course, this can be verified by a direct
computation.

Note that the eigenvalues λ may be complex even when A is a real matrix.
To get solutions in real form, exponentials coming from the eigenvalues λ and λ̄
should be rewritten in terms of trigonometric functions. It is then clear that non-
diagonalizability of A corresponds to resonance phenomena. Namely, oscillating
solutions like cos(λt) are replaced with unbounded solutions like t cos(λt).

5.6 Additional exercises

Exercise 5.6.1. Suppose the matrix A has minimal polynomial p(x) = (x− 1)2.
Find an explicit expression for the integer powers Ak as linear combinations of A
and I. If you put k = 1/2 in this identity, do you get a solution to B2 = A?

Exercise 5.6.2. Find all abelian groups of order 162. Give both the primary
decomposition and the invariant factor decomposition of each group.

Exercise 5.6.3. Let

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
Find the following canonical forms of A: The Jordan canonical form, the primary
canonical form over Q and the rational canonical form.

Exercise 5.6.4. Let

A =


1 0 0 0
0 1 0 0
−2 1 0 1
1 0 0 0

 .
Find the Jordan canonical form and the minimal polynomial of A.

Exercise 5.6.5. Let J(a) be the Jordan block matrix

[
a 0
1 a

]
. Consider A =

J(a)⊗ J(b) as an operator on C2⊗C2. Compute the Jordan canonical form of A.
(The answer will look different depending on how many of the numbers a and b
are zero.)

Exercise 5.6.6. An evil giant is thinking about an abelian group G of order 144.
You are allowed to ask two questions of the form: “What is the dimension of
plG/pl+1G, considered as a vector space over Z/pZ?”, where you may choose p
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and l as you like. The giant will answer thruthfully, but if you cannot guess the
group after two questions, she will kill you. Is there any way that you can be sure
of surviving?

Exercise 5.6.7. Show that any real 2 × 2-matrix is conjugate over R to exactly

one of the matrices

[
x 0
0 y

]
,

[
x y
−y x

]
(y 6= 0),

[
x 0
1 x

]
.

Exercise 5.6.8. Show that the two matrices

A =

0 1 0
0 0 1
1 0 0

 , B =

−1 −1 0
1 0 0
0 −3 1


are conjugate over Q.

Exercise 5.6.9. Show that a complex square matrix is similar to its transpose.



Chapter 6

Group representations

6.1 Fundamental facts

Recall from §1.4 that a representation of a group G on a vector space V is a group
homomorphism π : G→ GL(V ). More concretely, to each a ∈ G we associate an
invertible linear map π(a) on V , such that π(ab) = π(a) ◦ π(b) for all a, b ∈ G. It
follows that π(g−1) = π(g)−1 and π(1) = IdV . By standard abuse of terminology,
we will refer to the space V as a representation. We will often write π = πV .

Throughout this chapter, G is a finite group and V a finite-dimensional complex
vector space. In this case, the theory of group representations is particularly
elegant and complete, but we stress that it excludes many situations of great
interest.

The most basic problem of representation theory is to classify all representa-
tions (up to a natural notion of equivalence). As we will see, in our setting this
question has a very satisfactory answer. First of all, any representation splits
uniquely as a direct sum of so called irreducible representations. These irreducible
representations are enumerated by the conjugacy classes of G; in particular, there
are only finitely many. Finally, using so called characters we can in principle
decompose any representation explicitly as a sum of its irreducible components.

In order to talk about equivalent representations, we need the following notion.

Definition 6.1.1. Let V and W be two representations of G. Then, a linear map
φ : V → W is called intertwining1 if φ ◦ πV (g) = πW (g) ◦ φ for all g ∈ G. If there
exists an invertible intertwining map V → W , then we call V and W equivalent
and write V ' W .

If V ' W , then the two spaces have the same dimension and can both be
identified with Cn. The identity πV (g) = φ−1 ◦ πW (g) ◦φ means that we can make
this identification (that is, pick bases for V and W ) so that πV (g) and πW (g) are
given by the same matrix for all g. Thus, we can in effect identify πV and πW .

We will denote the vector space of linear maps V → W by Hom(V,W ) and the
subspace of intertwining maps by HomG(V,W ). Note that Hom(V,W ) is itself a

1Swedish: sammanflätande.

78
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representation, with

πHom(V,W )(g)(φ) = πW (g) ◦ φ ◦ πV (g−1).

When V is a representation, we write V G for the subspace of invariant elements,
that is,

V G = {v ∈ V ; π(g)v = v for all g ∈ G}. (6.1)

In this notation, HomG(V,W ) = Hom(V,W )G.
A useful method to obtain invariant elements is by taking averages over the

group action.

Lemma 6.1.2. Let V be a representation of G, and let v ∈ V . Then,

v̄ =
1

|G|
∑
g∈G

π(g)v ∈ V G.

(The prefactor 1/|G| is included for later convenience.)

Proof. For any h ∈ G,

π(h)v̄ =
1

|G|
∑
g∈G

π(hg)v =
1

|G|
∑
g∈G

π(g)v = v̄,

where we replaced g by h−1g in the sum.

Applying the Lemma to Hom(V,W ), we find that for any φ ∈ Hom(V,W ), the
average

φ̄ =
1

|G|
∑
g∈G

πW (g) ◦ φ ◦ πV (g−1)

is an intertwining map.
If V is a representation, a subrepresentation U ⊆ V is a subspace such that

πV (g)(U) ⊆ U for all g ∈ G. Equivalently, the restriction of the operators πV (g)
to U define a representation of G on U . It is easy to check that the kernel and
image of an intertwining map are subrepresentations.

Proposition 6.1.3. If V is a representation of G and U ⊆ V a subrepresentation,
then there exists another subrepresentation W such that V = U ⊕W .

Proof. First take any subspace X such that V = U ⊕ X as vector spaces. Let
P : V → U be the corresponding projection, that is, P (u+ x) = u for any u ∈ U
and x ∈ X. Then, P̄ : V → U is intertwining. Let u ∈ U and consider

P̄ (u) =
1

|G|
∑
g∈G

(π(g) ◦ P ◦ π(g−1))(u).
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Since U is a subrepresentation, we have π(g−1)(u) ∈ U and consequently

(π(g) ◦ P ◦ π(g−1)(u) = (π(g) ◦ π(g−1))(u) = u, g ∈ G.

Hence, P̄ (u) = u. It follows that P̄ is a projection on U , that is, Im(P̄ ) = U and
P̄ 2 = P̄ . Now let W = Ker(P̄ ). Then, W is a subrepresentation and (by the last
part of Lemma 3.4.1) V ' U ⊕W .

Any representation V has the trivial subrepresentations {0} and V . We call
V irreducible if V 6= {0} and it has no non-trivial subrepresentations. The set of
equivalence classes of irreducible representations of G will be denoted Irr(G).

Corollary 6.1.4 (Maschke’s Theorem). Any representation is a direct sum of
irreducible subrepresentations.

This follows from Proposition 6.1.3 by iteration, which must terminate as we
only consider finite-dimensional representations. In §6.2, we will show that the
decomposition into irreducible representations is unique.

Note that, although we assume that the ground field is C, the only thing
used so far is that |G|−1 exists. In fields of finite characteristic p, such as Zp,
Maschke’s theorem does not hold in general. This makes representation theory in
finite characteristic (so called modular representation theory) more involved than
characteristic 0.

Proposition 6.1.5 (Schur’s Lemma). If V and W are irreducible representations
and φ : V → W is intertwining, then φ = 0 if V 6' W and φ = λ Id if V = W .

Proof. The kernel and image of φ are subrepresentations. By irreducibility, they
are either {0} or the whole space V and W . Thus, either φ = 0 or φ is bijective. In
the second case, V ' W and we can identify V with W as representations. After
this identification, φ : V → V . Let λ be an eigenvalue of φ. Then, 0 6= Ker(φ −
λ Id). As this is a subrepresentation, Ker(φ− λ Id) = V , that is, φ = λ Id.

We stress that Schur’s lemma does not hold over the real numbers, as not all
real matrices have a real eigenvalue.

A useful consequence of Schur’s lemma is that

dimC EndG(V ) =


0, V = {0},
1, V irreducible,

≥ 2, else

(6.2)

(here we write EndG(V ) = HomG(V, V )). For the last statement, note that if
V = U⊕W as representations, then the maps φ(u+w) = au+bw, u ∈ U , w ∈ W ,
a, b ∈ C, form a two-dimensional subspace of EndG(V ).

For the next result we recall some definitions.
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Definition 6.1.6. An inner product on a complex vector space V is a map V ×
V → C, denoted (u, v) 7→ 〈u, v〉, which is linear in u, conjugate-symmetric, that
is,

〈v, u〉 = 〈u, v〉

and positive definite, that is,

〈u, u〉 > 0 for u 6= 0.

If V and W are inner product spaces, any A ∈ Hom(V,W ) has an adjoint
A∗ ∈ Hom(W,V ) defined by 〈Av,w〉 = 〈v, A∗w〉 for all v ∈ V , w ∈ W .2 We say
that A : V → V is unitary if A−1 = A∗, or equivalently 〈v, w〉 = 〈Av,Aw〉. If
V = W = Cn with the standard inner product

〈x, y〉 = x1ȳ1 + · · ·+ xnȳn,

then (A∗)ij = Āji.

Proposition 6.1.7. If V is a representation of G, then there is a basis for V where
all elements of G act by unitary matrices. Equivalently, there is a G-invariant
inner product on V , that is, 〈π(g)u, π(g)v〉 = 〈u, v〉 for all g ∈ G and u, v ∈ V .

Proof. Start with an arbitrary inner product 〈u, v〉0 on V . Then define

〈u, v〉 =
1

|G|
∑
g∈G

〈π(g)u, π(g)v〉0.

This is clearly an inner product. If we simultaneously replace u by π(h)u, v
by π(h)v and g by gh−1, the right-hand side does not change. Thus, it is G-
invariant.

We conclude with some natural operations on representations. If V and W are
representations, then V ×W is a representation with

πV×W (g)(v, w) = (πV (g)v, πW (g)w).

It is easy to see that V ×W = V ′ ⊕W ′, where V ′ = V × {0} ' V and W ′ =
{0} × W ' W as representations. Thus, we usually write V ⊕ W instead of
V ×W . In an appropriate choice of basis, the representation V ⊕W is given by
block matrices,

πV⊕W (g) =

[
πV (g) 0

0 πW (g)

]
. (6.3)

2The adjoint should not be confused with the dual map, that appeared in §4.5. The adjoint
of A depends anti-linearly on A whereas the map to the dual is linear.
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Direct product should not be confused with tensor product. If V and W are
representations, then V ⊗W is a representation with

πV⊗W (g)

(∑
i

vi ⊗ wi

)
=
∑
i

πV (g)vi ⊗ πW (g)wi.

The space C is a representation with πC(g) = Id for all g ∈ G. It is called
the trivial representation. (A group may have other, non-trivial, one-dimensional
representations.) We have already seen that, if V and W are representations, then
Hom(V,W ) is a representation. Choosing W as the trivial representation gives the
dual representation V ∗ = Hom(V,C). Explicitly,

πV ∗(g)(ξ) = ξ ◦ πV (g−1), g ∈ G, ξ ∈ V ∗.

Exercise 6.1.1. Show the equivalence of representations Hom(V,W ) ' V ∗ ⊗W .

Exercise 6.1.2. Let U ⊆ V be a subrepresentation. Given an invariant inner
product on V , show that

U⊥ = {x ∈ V ; 〈x, u〉 = 0 for all u ∈ U}

is a subrepresentation. Use this to give an alternative proof of Proposition 6.1.3
as a consequence of Proposition 6.1.7.

Exercise 6.1.3. Let V be a representation equipped with two invariant scalar
products 〈·, ·〉1 and 〈·, ·〉2. Show that there is an intertwining map Φ : V → V
such that 〈Φ(u), v〉1 = 〈u, v〉2 for all u, v ∈ V . Deduce that if V is irreducible, then
the invariant scalar product is unique up to multiplication by a non-zero constant.

Exercise 6.1.4. Let V and W be group representations equipped with invariant
inner products and let A ∈ HomG(V,W ). Show that A∗ ∈ HomG(W,V ).

Exercise 6.1.5. In this problem, we forget our standing assumption that groups
are finite and vector spaces complex. LetK be a field and define φ : K → GL(2, K)
by φ(x) = [ 1 x

0 1 ]. Show that φ is a representation of K (viewed as an additive group)
over the field K. Show that φ cannot be decomposed as a sum of irreducible
representations. (Choosing K as a finite field shows that Maschke’s theorem does
not hold for finite groups but arbitrary fields. Choosing K = C shows that it does
not hold for complex representations of infinite groups.)
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6.2 Characters

Recall that, if V is a finite-dimensional vector space, then the trace of an operator
φ ∈ GL(V ) can be defined as Tr(φ) =

∑n
k=1 akk, where A = (aij)

n
i,j=1 is a matrix

representing φ. This definition makes sense since Tr(T−1AT ) = Tr(A), so the
trace is independent of the choice of basis. Over the complex numbers, Tr(φ)
can alternatively be defined as the sum of the eigenvalues of φ, counted with
multiplicity.

The character of a representation π : G → GL(V ) is the map χ : G → C
defined by χ(g) = Tr(π(g)). We will often write χ = χV . One might think that
almost all information is lost when passing from a GL(V )-valued representation
to its C-valued character. However, we will see that a representation is uniquely
determined by its character. We note right away that the dimension is determined.
Namely, χ(1) = Tr(IdV ) = dimV .

The following simple fact will be useful.

Lemma 6.2.1. If π is a representation of G and g ∈ G, then any eigenvalue λ of
π(g) is a root of unity.

Proof. Iterating the eigenvalue equation π(g)v = λv gives π(gn)v = λnv. Since
gn = 1 for some n, it follows that λn = 1.

Lemma 6.2.2. If χ is the character of a representation π, then χ(g−1) = χ(g) for
any g ∈ G.

Proof. If λ1, . . . , λn are all the eigenvalues of π(g), then π(g−1) = π(g)−1 has
eigenvalues λ−1

1 , . . . , λ−1
n . It follows that

χ(g) = λ1 + · · ·+ λn, χ(g−1) = λ−1
1 + · · ·+ λ−1

n = λ̄1 + · · ·+ λ̄n, (6.4)

where we used Lemma 6.2.1 in the last step.

Lemma 6.2.3. When V and W are representations, we have

χV⊕W = χV + χW , χV⊗W = χV χW ,

χV ∗(g) = χV (g), χHom(V,W )(g) = χV (g)χW (g).

Proof. The first identity is immediate from (6.3). For the second identity, pick
bases (ei) of V and (fi) of W and suppose that, with respect to these bases,
πV (g) = (aij), πW (g) = (bij). Then,

πV⊗W (g)(ei ⊗ fj) =
∑
kl

akibljek ⊗ fl.
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Summing up the diagonal coefficients gives

χV⊗W (g) =
∑
kl

akkbll = χV (g)χW (g).

For the last identity, let (e∗i ) be the dual basis of (ei). It is easy to check that, in this
basis, the matrix representing πV ∗(g) is the transpose of the matrix representing
πV (g−1). Thus, χV ∗(g) = χV (g−1) = χV (g) by Lemma 6.2.2. The last identity
follows from the previous two using Exercise 6.1.1.

Recalling the notation (6.1), we clearly have

IdV G =
1

|G|
∑
g∈G

π(g)

for any representation V . Taking the trace of both sides gives

dim(V G) =
1

|G|
∑
g∈G

χ(g).

Applying this to the representation Hom(V,W ), with V and W irreducible, Schur’s
lemma gives the orthogonality relation

1

|G|
∑
g∈G

χV (g)χW (g) =

{
1, V ' W,

0, V 6' W.

Let L2(G) be the |G|-dimensional complex vector space of functions G → C
equipped with the scalar product

〈φ, ψ〉L2(G) =
1

|G|
∑
g∈G

φ(g)ψ(g).

We have then proved the following result, which will be successively strengthened
in Theorem 6.4.1 and Theorem 6.8.3.

Lemma 6.2.4. Characters of irreducible representations are orthonormal in L2(G).

In particular, it follows that there are only finitely many irreducible represen-
tations (up to equivalence). Let us denote them (Vj)

m
j=1. Suppose now that V is

an arbitrary representation. By Maschke’s theorem, we may write

V ' V1 ⊕ · · · ⊕ V1︸ ︷︷ ︸
k1

⊕ · · · ⊕ Vm ⊕ · · · ⊕ Vm︸ ︷︷ ︸
km

; (6.5)

that is, Vj appears in V with multiplicity kj. It follows that

χV = k1χV1 + · · ·+ kmχVm .

We can then compute the multiplicities using Lemma 6.2.4.
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Corollary 6.2.5. Any representation V can be split into irreducible components
as in (6.5), where the multiplicities are given by

kj = 〈χV , χVj〉L2(G). (6.6)

Moreover,
‖χV ‖2

L2(G) = 〈χV , χV 〉L2(G) = k2
1 + · · ·+ k2

m. (6.7)

This has several important consequences. First, it follows that the representa-
tion πV is uniquely determined by χV . Second, it follows that the decomposition
(6.5) is unique. Finally, we obtain a very useful irreducibility criterion.

Corollary 6.2.6. A representation V is irreducible if and only if ‖χV ‖L2(G) = 1.

To give an example, consider the action of the group S3 on V = C3 by permuting
the coordinates, that is,

π(σ)(x1, x2, x3) = (xσ−1(1), xσ−1(2), xσ−1(3)).

It is often called the defining representation. Equivalently, in terms of the stan-
dard basis vectors, π(σ)(ej) = eσ(j). Thus, the group elements act by the 3 × 3-
permutation matrices1 0 0

0 1 0
0 0 1

 ,
0 1 0

1 0 0
0 0 1

 ,
0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 ,
which are obtained by permuting the columns of the identity matrix. The traces
of these elements are, respectively, 3, 1, 1, 1, 0, 0. Thus, ‖χV ‖2 = (32 + 12 +
12 + 12)/6 = 2. Clearly, the only positive integer solution to k2

1 + · · · + k2
m = 2 is

m = 2, k1 = k2 = 1. Thus, V must be the sum of two irreducible representations,
appearing without multiplicity. Since dim(V ) = 3, the only possibility is that
V = V0⊕V2 with dim(V0) = 1 and dim(V2) = 2.3 It is easy to see this directly; the
spaces are V0 = {(x, x, x); x ∈ C} and V2 = {(x1, x2, x3) ∈ C3; x1 + x2 + x3 = 0}.
(Note that, in agreement with Exercise 6.1.2, V2 = V ⊥0 with respect to the standard
inner product on C3.) On V0, all elements of S3 act as the identity, that is, it is the
trivial representation. The space V2 is often called the standard representation.
It also exists over the real numbers, that is, S3 acts on V R

2 = {(x1, x2, x3) ∈
3We save the notation V1 for a later purpose.
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R3; x1 +x2 +x3 = 0} by permuting the coordinates. We can embed an equilateral
triangle in V R

2 with corners at, say, (2,−1,−1), (−1, 2,−1) and (−1,−1, 2), so that
S3 acts on the triangle. This takes us back to the example at the very beginning
of the present notes!

Exercise 6.2.1. Show that if U is a one-dimensional representation and V an
irreducible representation, then U ⊗ V is irreducible.

Exercise 6.2.2. If V andW are any representations, show that dim HomG(V,W ) =
〈χV , χW 〉L2(G). If the two representations decompose into irreducibles as V =⊕

j kjVj and W =
⊕

j ljVj, show that dim HomG(V,W ) =
∑

j kjlj.

Exercise 6.2.3. Let V be a representation of a group G and W a representation
of a group H. Show that V ⊗W is a representation of G×H with πV⊗W (g, h) =
πV (g) ⊗ πW (h). Show that the map (V,W ) 7→ V ⊗W gives a bijection Irr(G) ×
Irr(H)→ Irr(G×H).

6.3 The regular representation

How can we know that we have found all irreducible representations? It turns out
that there is a “master representation” that contains them all, namely, the regular
representation that we already introduced in §1.4. Let V = C[G] be the free
vector space spanned by G, that is, the space of formal sums

∑
g∈G agg, ag ∈ C.

Equivalently, it is the space of all functions G → C, where the sum
∑

g∈G agg is

identified with the function a(g) = ag. (As a vector space, V = L2(G), but we
prefer to use the second notation only when we work with a scalar product.) The
space V is a representation under

π(h)

(∑
g

agg

)
=
∑
g

aghg

(in terms of functions, (π(h)(f))(g) = f(h−1g)). We call this the regular represen-
tation of G. We will denote its character by χR.

It is very easy to compute χR. In the basis (g)g∈G for V , π(h) is represented
by a matrix with 1 at the matrix positions (g, hg) and 0 else. If h 6= 1, then all
diagonal entries are zero and thus χR(h) = 0. Moreover, χR(1) = dim(V ) = |G|.
If V is an arbitrary representation, it follows that

〈χR, χV 〉 =
1

|G|
∑
g∈G

χR(g)χV (g) = χV (1) = dimV.

Comparing this with (6.6), we can draw the following conclusion.
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Proposition 6.3.1. Any irreducible representation V appears in the regular rep-
resentation with multiplicity dimV .

Since the regular representation has dimension |G| and the sum of dimV copies
of V has dimension (dimV )2, we have the following important consequence.

Corollary 6.3.2. We have

|G| =
∑

V ∈Irr(G)

(dimV )2. (6.8)

Since the dimension of a representation is often referred to as its degree, (6.8)
is called the degree equation.

Let us return to the example of S3. At the end of §6.2, we found two irreducible
representations: the trivial representation V0 and the two-dimensional representa-
tion V2. Thus, (6.8) starts as 6 = 12 + 22 + · · · . We see that we are missing just
one term, corresponding to another one-dimensional representation. This is the
alternating representation π(σ) = sgn(σ) IdC. We will denote it V1.

6.4 The character table

Although it follows from Lemma 6.2.4 that a group G can have at most |G| ir-
reducible representations, we still do not know the exact number. This will be
deduced from a stronger form of the lemma. To this end, we first note that by the
matrix identity Tr(ABA−1) = Tr(B), we have χ(hgh−1) = χ(g) for any character
χ and elements g, h ∈ G. A function f : G→ C that satisfies f(hgh−1) = f(g) is
called a class function. Equivalently, a class function is a function that is constant
on the conjugacy classes {hgh−1; h ∈ G}.
Theorem 6.4.1. The irreducible characters form an orthonormal basis for the
space of class functions in L2(G). In particular, the number of irreducible charac-
ters is the same as the number of conjugacy classes.

Proof. We have already proved that the characters are orthonormal (Lemma 6.2.4)
and we just observed that they are class functions. All that remains is to prove
that they span the space of all class functions. To this end, we let α be a class
function orthogonal to all characters and prove that α = 0. For such α and
any representation V , let φ =

∑
g α(g)πV (g) ∈ End(V ). We claim that φ is

intertwining. Indeed,

πV (h) ◦ φ ◦ πV (h−1) =
∑
g∈G

α(g)πV (hgh−1) =
∑
g∈G

α(h−1gh)πV (g)

=
∑
g∈G

α(g)πV (g) = φ.
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In the case when V is irreducible, Schur’s lemma gives φ = λ Id for some λ ∈ C.
But since

Tr(φ) =
∑
g

α(g)χV (g) = |G|〈χV , α〉 = 0,

we must have λ = 0 and hence φ = 0 for any irreducible representation. By
Maschke’s theorem, φ = 0 in general. In particular, for the regular representation,
0 = φ(h) =

∑
g α(g)gh for all h, which implies α = 0.

It follows that the representation theory of G is encoded by the square table
(χ(C))χ,C , where χ runs over the irreducible characters and C over the conjugacy
classes. It is called the character table.

Corollary 6.4.2. The rows and columns of the character table satisfy the ortho-
gonality relations ∑

C

|C|
|G|

χ(C)ψ(C) = δχ,ψ, (6.9a)

∑
χ

χ(C)χ(D) =
|G|
|C|

δCD. (6.9b)

The first of these relations is a reformulation of Lemma 6.2.4, using that the
characters are constant on the conjugacy classes. It can be written as the unitarity
relation AA∗ = Id, where Aχ,C =

√
|C|/|G|χ(C). It implies A∗A = Id, which is

the second relation.
Since the irreducible representations of G are enumerated by the conjugacy

classes, it is very natural to look for a construction that associates an irreducible
representation to each conjugacy class. Nobody has been able to do this for general
finite groups! However, in §7 we will give such a construction for the symmetric
groups Sn.

Corollary 6.4.3. If G is an abelian group with n elements, then G has exactly n in-
equivalent irreducible representations, which are all one-dimensional. On the other
hand, if G is a non-abelian group with n elements, then G has strictly fewer than n
inequivalent irreducible representations, and not all of them are one-dimensional.

This follows immediately from Theorem 6.4.1 and the degree equation (6.8),
as a group is abelian if and only if each element is in its own conjugacy class.

Exercise 6.4.1. If V is irreducible, show that∑
g∈G

χV (g)πV (g) =
|G|

dimV
IdV .
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Exercise 6.4.2. Let g and h be two elements in a group such that χ(g) = χ(h)
for all irreducible characters χ. Show that g and h belong to the same conjugacy
class.

Exercise 6.4.3. By Corollary 6.4.3, any irreducible representation of an abelian
group is one-dimensional. Give an easier proof of this using Schur’s lemma.

6.5 Examples

We will give some examples of character tables. We first consider the cyclic group
Zn, then very briefly general finite abelian groups, then S3 and finally S4.

By Corollary 6.4.3, any irreducible representation of Zn is one-dimensional,
that is, it is a map π : Zn → C, such that π(x+ y) = π(x)π(y). It is easy to guess
that π(x) = eλx for some λ. Since π(x + n) = π(x) we must have λ = 2iπξ/n,
ξ ∈ Z. Taking ξ ∈ Zn gives inequivalent representations πξ. By Corollary 6.4.3,
these are all the irreducible representations. The corresponding characters are
χξ(x) = πξ(x) = e2iπxξ/n, so the character table can be identified with the matrix
(e2iπxξ/n)0≤x,ξ≤n−1.

For Zn, there is a visible duality between characters and group elements. To
make this more precise, note that χξχη = χξ+η, which reflects the equivalence of
representations πξ⊗πη ' πξ+η. Thus, the characters form an abelian group under
multiplication, and this group is ismomorphic to Zn. More generally, for any finite
group G, the characters of one-dimensional representations form a group under
multiplication. If G is abelian, this group is denoted Ĝ. By Theorem 5.1.1, G is
then a direct product of cyclic groups. Using also Exercise 6.2.3, it follows that
Ĝ ' G for any finite abelian group.

Next, we consider the group S3. As we saw at the end of §6.3, it has exactly
three irreducible representations: the trivial representation V0, the alternating
representation V1 and the standard representation V2. Let us write χj = χVj . In
agreement with Theorem 6.4.1, S3 has three conjugacy classes, exemplified by the
identity 1, the transposition (12) and the 3-cycle (123). The character χ0 of the
trivial representation is the constant function 1. The character χ1 is simply the
sign, which assumes the values 1, −1, 1 on the three respective elements. Note
also that χ2(1) = dim(V2) = 2. Thus, the character table of S3 has the form

1 (12) (123)
χ0 1 1 1
χ1 1 -1 1
χ2 2

The missing entries can be computed very easily using that each column must be
orthogonal to the first, see (6.9b). This gives the end result
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1 (12) (123)
χ0 1 1 1
χ1 1 -1 1
χ2 2 0 -1

Finally, consider the group S4. It has five conjugacy classes, exemplified by
the elements 1, (12), (123), (1234) and (12)(34). The number of elements in these
classes are, respectively, 1, 6, 8, 6 and 3. (This follows from Lemma 1.6.1 but is
also easy to figure out directly.) We know two one-dimensional representations of
S4, the trivial representation and the alternating representation π(σ)x = sgn(σ)x,
x ∈ C. Let us call them V0 and V1, respectively. Computing the sign of the five
representative elements, we find that the character table starts as

1 (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1

Next, we consider the defining representation on V = C4, that is,

π(σ)(x1, x2, x3, x4) = (xσ−1(1), xσ−1(2), xσ−1(3), xσ−1(4)).

The matrix for π(σ) in the standard basis is given by acting with σ on the columns
of the identity matrix. For instance,

π(1 2 3)(x1, x2, x3, x4) = (x3, x1, x2, x4) =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



x1

x2

x3

x4


In particular, the trace χ(σ) is the number of fix-points of σ. For our five elements,
the respective number of fix-points is 4, 2, 1, 0, 0. Clearly, V is not irreducible,
since {(x, x, x, x); x ∈ C} forms an invariant subspace equivalent to V0. If we write
V ' V0 ⊕ V2, then χ2 = χV − χ0 takes the values 3, 1, 0, −1, −1. Let us apply
Corollary 6.2.6 to prove that V2 is irreducible. Indeed,

‖χ2‖2 =
1

24

∑
C

|C| · |χ2(C)|2 =
1

24
(1 · 9 + 6 · 1 + 8 · 0 + 6 · 1 + 3 · 1) = 1.

Explicitly, V2 = V ⊥0 is the subspace x1 + · · · + x4 = 0 of V . We can obtain yet
another irreducible representation as V3 = V1⊗V2, cf. Exercise 6.2.1, with character
χ3 = χ1χ2. It can be realized explicitly on the same space as V2, but with the
group action

π(σ)(x1, x2, x3, x4) = sgn(σ)(xσ−1(1), . . . , xσ−1(4)).
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So far we have the character table

1 (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1
χ2 3 1 0 -1 -1
χ3 3 -1 0 1 -1

We know that we are missing one irreducible representation. If its dimension is d,
then (6.8) gives 24 = 12 + 12 + 32 + 32 +d2, so d = 2. Thus, the full character table
is of the form

1 (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1
χ2 3 1 0 -1 -1
χ3 3 -1 0 1 -1
χ4 2

The missing entries are now easy to fill in from the fact that each column is
orthogonal to the first one (and to each other). We obtain the final result

1 (12) (123) (1234) (12)(34)
χ0 1 1 1 1 1
χ1 1 -1 1 -1 1
χ2 3 1 0 -1 -1
χ3 3 -1 0 1 -1
χ4 2 0 -1 0 2

(6.10)

Note that this does not tell us what the representation V4 is. We will return to
that question in the next section.

Exercise 6.5.1. Let V be the standard representation of S3. Find the explicit
decomposition of V ⊗n as a sum of irreducible representations.

Exercise 6.5.2. Define the finite Fourier transform of f : Zn → C by

f̂(ξ) =
1

n

∑
x∈Zn

f(x)e−2πixξ/n, ξ ∈ Zn.

Deduce from Theorem 6.4.1 that
√
n‖f̂‖L2(Zn) = ‖f‖L2(Zn). Choosing f(x) = 1 for

0 ≤ x ≤ k − 1 and f(x) = 0 for k ≤ x ≤ n− 1, show that

n−1∑
x=1

(
sin(πkx/n)

sin(πx/n)

)2

= k(n− k), 0 ≤ k ≤ n.
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6.6 Interpreting the character table

Although a group is not uniquely determined by its character table (see Exercices
6.6.3–6.6.4), a lot of information about it is. To give some examples, we will show
how to determine all normal subgroups and identify the center and the commutator
subgroup.

When χ is a character, we will write Ker(χ) = {g ∈ G; χ(g) = χ(1)}. The
reason for this notation is the following fact.

Lemma 6.6.1. If the representation π has character χ, then Ker(π) = Ker(χ).

Proof. If λ1, . . . , λm are the eigenvalues of π(g) we need to prove that

λ1 + · · ·+ λm = m ⇐⇒ λ1 = · · · = λm = 1.

This follows from the fact that |λj| = 1, see Lemma 6.2.1.

Let N be a normal subgroup of G and consider a representation of G/N . By
generalities on normal subgroups, there is a bijection between representations ρ of
G/N and representations π of G such that N ⊆ Ker(π). This correspondence is
simply given by ρ(gN) = π(g). As a subspace is closed under ρ if and only if it is
closed under π, the representation ρ is irreducible if and only if π is. We conclude
that the irreducible characters of G/N are given by

Irr(G/N) = {χ ∈ Irr(G); N ⊆ Ker(χ)}. (6.11)

If g ∈ Ker(χ) for all χ, then choosing D as the conjugacy class of g and C = {1}
in (6.9b) we find that g = 1. Applying this fact to the group G/N gives

N =
⋂

χ∈Irr(G), N⊆Ker(χ)

Ker(χ). (6.12)

Thus, any normal subgroup is an intersection of kernels of irreducible characters.
Since the converse is clear, all normal subgroups can be found from the character
table.

Proposition 6.6.2. The normal subgroups of G are precisely the intersections of
kernels of irreducible characters.

Let us apply Proposition 6.6.2 to the character table (6.10) of S4. Obviously,
the trivial representation χ0 has S4 as kernel. The representations χ2 and χ3

have trivial kernel (that is, they are faithful). The kernel of χ1, that is, {σ ∈
S4; sgn(σ) = 1} is known as the alternating group A4. The kernel of χ4 is the
subgroup N = {id, (12)(34), (13)(24), (14)(23)}. Since N ⊆ A4, we do not find
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any more normal subgroups by taking intersections of the kernels. Thus, S4 has
only two non-trivial normal subgroups, A4 and N . Note that S4/N is a group
of order 6. As it is nonabelian (for instance, (12)(13)(12)(13) = (123) /∈ N , so
(12)(13) 6= (13)(12) in G/N), it follows from Exercise 1.7.22 that G/N ' S3.4

Thus, χ4 can also be viewed as an irreducible representation of S3. As it has
dimension 2, it is the standard representation. This answers our question about
what the representation with character χ4 “is”: it is the standard representation
of S3, disguised as a representation of S4.

Let us now consider the commutator subgroup (or derived group) G′. By
definition, it is the subgroup generated by all elements of the form aba−1b−1. Since
G is abelian if and only if G′ is trivial, |G|/|G′| measures how commutative G is.

Proposition 6.6.3. The subgroup G′ is the intersection of the kernels of all one-
dimensional representations of G. Moreover, the number of one-dimensional rep-
resentations of G is |G|/|G′|.

Proof. By (6.11),

Irr(G/G′) = {χ ∈ Irr(G); G′ ⊆ Ker(χ)}

and by (6.12),

G′ =
⋂

χ∈Irr(G), G′⊆Ker(χ)

Ker(χ).

Thus, it suffices to show that a representation of G is one-dimensional if and only
if it can be projected to G/G′. Since G/G′ is abelian, any representation of G/G′

is one-dimensional. Conversely, if π is one-dimensional, then all the 1×1-matrices
π(a) commute. In particular, π(aba−1b−1) = π(a)π(b)π(a)−1π(b)−1 = 1, so π
projects to G/G′.

Next, we consider the center. Recall that Z(G) is the set of elements in G that
commute with all other elements; it is an abelian normal subgroup. Since G is
abelian if and only if Z(G) = G, |G|/|Z(G)| measures how non-commutative G is.

When χ is a character, we define

Z(χ) = {g ∈ G; |χ(g)| = χ(1)}.
4The existence ofN is quite exceptional. If n 6= 4, then the only normal subgroups of Sn are An

and the trivial subgroups. A conceptual way of understanding S3 as a quotient of S4 is as follows.
A cube has four long diagonals and three axes connecting the midpoints of opposite faces. The
rotations of the cube can be identified with the group S4 acting on the diagonals (see Exercise
1.7.18). Each rotation also permutes the three axes, which gives a surjective homomorphism
S4 → S3. The kernel of this homomorphism (that is, the group of rotations fixing each pair of
opposite faces) is N , so we must have S4/N ' S3.
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Again using that the eigenvalues of π(g) are roots of unity, this can only happen
when they are all equal, so we can also write

Z(χ) = {g ∈ G; π(g) ∈ C Id}, χ = Tr(π).

The reason for the notation is the following fact.

Lemma 6.6.4. The center of G is Z(G) =
⋂
χ∈Irr(G) Z(χ).

Proof. Let π be an irreducible representation on V and χ its character. If g ∈ Z(G)
then π(g)π(h) = π(h)π(g) for all h ∈ G. Thus, π(g) ∈ EndG(V ). By Schur’s
lemma, g ∈ Z(χ). Conversely, if π(g) = λ Id, then for any h ∈ G we have
π(g)π(h)π(g)−1π(h)−1 = Id, which implies ghg−1h−1 ∈ Ker(π). If this holds for
each irreducible representation π, then (6.12) with N = {1} gives ghg−1h−1 = 1,
so g ∈ Z(G).

As an example, suppose G has the character table

C1 C2 C3 C4 C5 C6

χ1 1 1 1 1 1 1
χ2 1 −1 1 −1 i −i
χ3 1 1 1 1 −1 −1
χ4 1 −1 1 −1 −i i
χ5 2 2 −1 −1 0 0
χ6 2 −2 −1 1 0 0

.

We follow the convention that the first column corresponds to the conjugacy class
C1 = {1} and the first row to the trivial representation. This can be seen im-
mediately since, by (6.9), they are the unique row and column with only positive
entries. The entries of the first column are then the dimensions of the corre-
sponding representations. In this case, χ1, . . . , χ4 are one-dimensional and χ5, χ6

two-dimensional. The order of the group is thus 4 · 12 + 2 · 22 = 12. By (6.9b), the
order of a conjugacy class can be read off the character table as

|C| = |G|∑
χ∈Irr(G) |χ(C)|2

.

(Here and below, we use Irr(G) to denote the irreducible characters as well as
the irreducible representations; as a representation is uniquely determined by a
character this should not lead to confusion.) In the case at hand, we find that
|C1| = |C2| = 1, |C3| = |C4| = 2, |C5| = |C6| = 3. We may check again that
the total number of elements is 2 · 1 + 2 · 2 + 2 · 3 = 12. Writing for short
Ci1···ik = Ci1 ∪ · · · ∪ Cik , the kernels of the characters are Ker(χ1) = C123456 = G,
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Ker(χ2) = Ker(χ4) = C13, Ker(χ3) = C1234, Ker(χ5) = C12, Ker(χ6) = C1.
Taking intersections of these does not lead to any further subgroups; for instance,
C13 ∩ C12 = C1. Thus, G has exactly five normal subgroups. Moreover G′ =⋂4
j=1 Ker(χj) = C13. To compute the center, we see at a glance that Z(χ) = G

for the one-dimensional representations and Z(χ) = C12 for the two-dimensional
ones. Thus, Z(G) = C12. In conclusion, the lattice of normal subgroups looks like

C1 = {1} ⊆
{
C12 = Z(G)
C13 = G′

}
⊆ C1234 ⊆ C123456 = G.

We mention that there is exactly one group with this character table, called the
dicyclic group of order 12.

Exercise 6.6.1. Let G be a group with the following character table. Find the
order of G and the number of elements in each conjugacy class. Describe the lattice
of normal subgroups and identify the commutator subgroup and the center.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 −1 −1 1 1 −1 1 1 −1
χ3 1 1 1 1 1 −1 −1 −1 −1 −1
χ4 1 1 −1 −1 1 −1 1 −1 −1 1
χ5 2 −1 0 0 2 2 0 −1 2 0
χ6 2 −1 0 0 2 −2 0 1 −2 0
χ7 3 0 −1 1 −1 3 1 0 −1 −1
χ8 3 0 1 −1 −1 3 −1 0 −1 1
χ9 3 0 −1 1 −1 −3 −1 0 1 1
χ10 3 0 1 −1 −1 −3 1 0 1 −1

Exercise 6.6.2. Prove that, for any finite group G, the one-dimensional characters
form a group isomorphic to G/G′.

Exercise 6.6.3. Let G be the group of symmetries of the square (the dihedral
group of order 8). Show that G has the character table

1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
2 −2 0 0 0

Exercise 6.6.4. Let G be the quaternion group (see Exercise 1.7.3). Show that
G has the same character table as the dihedral group of order 8. Also show that
the two groups are not isomorphic.
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6.7 Group algebra and Fourier transform

So far, we have only considered C[G] as a vector space. However, it has a natural
multiplication, which makes it an associative algebra. In the description as formal
sums, this multiplication is simply obtained by extending the group multiplication:∑

g

agg
∑
g

bhh =
∑
g,h

agbhgh. (6.13)

In the description as functions, it is a convolution:

(φψ)(g) =
∑
h∈G

φ(h)ψ(h−1g).

We call C[G] equipped with this product the group algebra of G.
As we have seen, left multiplication π(g)h = gh gives a representation of G on

C[G] called the regular representation. It decomposes as

C[G] '
⊕

V ∈Irr(G)

(dimV )V. (6.14)

This does not say anything about the algebra structure on C[G]. However, we
can easily obtain a refinement of (6.14) that does. To this end, we consider
C[G] as a representation of G × G by the rule π(g, h)k = gkh−1. Note that if
V is any representation of G, then End(V ) is a representation of G × G under
πEnd(V )(g, h)φ = πV (g) ◦ φ ◦ πV (h−1). Moreover, End(V ) is an algebra (under
composition of maps). This gives meaning to the following result.

Theorem 6.7.1. As a representation of G×G and as an associative algebra,

C[G] '
⊕

V ∈Irr(G)

End(V ). (6.15)

Proof. A representation πV : G → GL(V ) extends by linearity to a map πV :
C[G]→ End(V ). It is trivial to check that πV commutes with the action of G×G
and preserves multiplication. Thus, it is enough to check that F =

⊕
V πV is

bijective. If F(x) = 0, then πV (x) = 0 for any irreducible representation V and
hence for any representation V . But then, in the regular representation, x =
π(x)1 = 0. This shows that F is injective. The surjectivity follows by comparing
dimensions; indeed, by (6.14), dim(C[G]) =

∑
V dim(V )2 =

∑
V dim End(V ).

One can prove that if V ∈ Irr(G) then End(V ) ∈ Irr(G × G), so (6.15) is in
fact a decomposition into irreducible components (see Exercise 6.7.3).



97

The isomorphism F : C[G] →
⊕

V End(V ) defined in the proof of Theo-
rem 6.7.1 is called the Fourier transform on G. To see why, consider the case
G = Zn. As all irreducible representations V are one-dimensional, we can identify
End(V ) with C. We can then view F as a map from functions G→ C to functions
Irr(G) = Ĝ → C. The value of F(f) on the character χξ(x) = e2πixξ/n is then∑

g∈G f(g)χξ(g) =
∑n−1

x=0 f(x)e2πixξ/n. This is the finite Fourier transform, see Ex-
ercise 6.5.2. For general finite groups, the Fourier transform takes a scalar-valued
function on G to an operator-valued function on Irr(G).

In classical Fourier analysis, one of the most fundamental problems is how to
recreate a function from its Fourier transform. The analogous result for finite
groups is as follows.

Theorem 6.7.2 (Fourier inversion formula). If A ∈ End(V ), then

F−1(A)(g) =
dimV

|G|
TrV

(
AπV (g−1)

)
.

Here, we consider C[G] as a space of functions on G.

Proof. An equivalent formulation is that if A =
∑

V AV ∈
⊕

V End(V ), then

F−1(A)(g) =
∑

V ∈Irr(G)

dimV

|G|
TrV

(
AV πV (g−1)

)
.

By linearity, it is enough to verify this when A = F(h) for some h ∈ G. On the
left, F−1(A) = h should be identified with the function g 7→ δg,h. On the right,
AV = πV (h). Thus, we must prove that

δg,h =
∑

V ∈Irr(G)

dimV

|G|
TrV

(
πV (h)πV (g−1)

)
=

∑
V ∈Irr(G)

dimV

|G|
χV
(
hg−1

)
. (6.16)

This is the special case hg−1 ∈ C and D = {1} of the orthogonality relation
(6.9b).

Exercise 6.7.1. Prove that the center of the group algebra is the space of class
functions.

Exercise 6.7.2. Prove that if G and H are finite abelian groups of the same order,
then C[G] ' C[H] as algebras.

Exercise 6.7.3. Prove that χEnd(V )(g, h) = χV (g)χV (h−1). Deduce that End(V ) ∈
Irr(G×G) if V ∈ Irr(G).
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Exercise 6.7.4. In general, a representation of an associative algebra A over a
ring R is an algebra homomorphism A → EndR(V ) for some R-module V . Show
that there is a one-to-one correspondence between representations of a finite group
and representations of the group algebra.

Exercise 6.7.5. We have seen that, when G is embedded into G×G as g 7→ (g, 1),
then then each irreducible representation V appears in C[G] with multiplicity
dimV . Show that, if G is embedded as g 7→ (g, g), then the multiplicity is∑

C χV (C), where the sum runs over all conjugacy classes. Deduce that the row
sums in the character table are always non-negative integers.

6.8 Peter–Weyl Theorem

One important class of theorems in classical Fourier analysis, associated with the
names Parseval and Plancherel, state that various versions of the Fourier transform
are unitary. We will show such a result in the setting of finite groups. As we will
see, it is an easy consequence of the unitarity of the character table (6.9).

To talk about unitarity, we must introduce inner products on C[G] and End(V ).
The group algebra will be identified with the inner product space L2(G). On
End(V ), we will use a rescaled version of the following product.

Lemma 6.8.1. If V is a representation of G, then 〈A,B〉 = Tr(AB∗) is a G×G-
invariant inner product on End(V ), where ∗ denotes adjoint with respect to a
G-invariant inner product on V .

Proof. If we choose an orthogonal basis (ek)
n
k=1 for V and let A = (akl), B = (bkl)

be the corresponding matrices, then it is easy to check that

〈A,B〉 =
n∑

k,l=1

aklb̄kl. (6.17)

In particular, this implies that the inner product is positive definite. The invariance
follows from an easy computation:〈

πEnd(V )(g, h)A, πEnd(V )(g, h)B
〉

= Tr
(
πV (g)AπV (h)−1(πV (g)BπV (h−1))∗

)
= Tr

(
πV (g)AπV (h)−1πV (h)B∗πV (g−1)

)
= Tr

(
πV (g)AB∗πV (g−1)

)
= Tr(AB∗) = 〈A,B〉,

where we used that πV (g)∗ = πV (g−1).
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If V ∈ Irr(G), it follows from Exercise 6.1.3 and Exercise 6.7.3 that the G×G-
invariant inner product on End(V ) is unique up to rescaling. We will in fact define

〈A,B〉 = λV TrV (AB∗), A, B ∈ End(V ), (6.18)

where λV = dimV/|G|2. We then have a natural inner product on
⊕

V End(V ),
given by〈∑

V

AV ,
∑
V

BV

〉
=
∑
V

λV TrV (AVB
∗
V ), AV , BV ∈ End(V ).

Theorem 6.8.2. With respect to the inner products defined above, the Fourier
transform F : L2(G)→

⊕
V ∈Irr(G) End(V ) is unitary, that is, F−1 = F∗.

With respect to the direct sum composition
⊕

V End(V ), F takes the form of
a block matrix

F =

πV0πV1
...

 , Irr(G) = {V0, V1, . . . }.

Thus, the equivalent identities FF∗ = Id⊕
V End(V ), F∗F = IdL2(G) can be written

as
πW ◦ π∗V = δV,W IdEnd(V ), (6.19a)∑
V ∈Irr(G)

π∗V ◦ πV = IdL2(G) . (6.19b)

Note that it follows from Schur’s Lemma and Exercise 6.7.3 that (6.19a) holds
up to a multiplicative constant. Although one could prove Theorem 6.8.2 using
this observation, we will simply observe that (6.19b) has already appeared in slight
disgusise in §6.7. Namely, as the group elements generate L2(G), it suffices to
compare 〈Xg, h〉L2(G), where X are the two sides of (6.19b) and g, h ∈ G. On the
right, we get δg,h/|G|. On the left, we get∑

V ∈Irr(G)

〈πV (g), πV (h)〉End(V ) =
∑

V ∈Irr(G)

dim(V )

|G|2
Tr (πV (g)πV (h)∗) .

As πV (h)∗ = πV (h−1) for an invariant scalar product, we are reduced to the identity
(6.16).

In Theorem 6.4.1, we saw that the characters of irreducible representations
form an orthogonal basis for the subspace of L2(G) consisting of class functions.
As a consequence of Theorem 6.8.2, we can find an extension to an orthogonal
basis for the whole space. To this end, assume that we have chosen an invariant
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inner product and an orthogonal basis on each V ∈ Irr(G). Identifying elements

of End(V ) with matrices, let E
(V )
kl be the matrix with a 1 in position (k, l) and a

0 everywhere else. It is then clear from (6.17) that (E
(V )
kl )nk, l=1 form an orthogonal

basis for End(V ). By Theorem 6.8.2, F−1(E
(V )
k,l ) form an orthogonal basis for

L2(G), where V varies over Irr(G) and 1 ≤ k, l ≤ dim(V ). Applying Theorem 6.7.2
we find that, as a function on G,

F−1
(
E

(V )
k,l

)
(g) =

dimV

|G|
Tr
(
E

(V )
kl πV (g−1)

)
=

dimV

|G|
πV (g−1)lk. (6.20)

Here, we used the elementary identity Tr(EklA) = Alk, where Alk is a matrix
element of A. Since the Fourier transform is unitary, it follows that the matrix
elements πV (g)kl form an orthogonal basis of L2(G). In view of the rescaling (6.18),

‖E(V )
kl ‖2 = dimV/|G|2. As F preserves the norm, it follows that ‖πV (g)‖2 =

1/ dimV . Thus, we arrive at the following result.

Theorem 6.8.3 (Peter–Weyl Theorem for finite groups). The matrix elements
πV (g)kl of all irreducible representations form an orthogonal basis for L2(G). Ex-
plicitly, the orthogonality relation is

1

|G|
∑
g∈G

πV (g)ij πW (g)kl =
δikδjlδVW

dimV
. (6.21)

The relations (6.21) are called Schur’s orthogonality relations. Theorem 6.8.3
holds in the more general setting of compact groups; for instance, the caseG = R/Z
is related to classical Fourier series.

6.9 Frobenius divisibility

To go further into the representation theory of finite groups, one often needs some
algebraic number theory and Galois theory. Just to give a glimpse of what can be
done, we will prove the following theorem of Frobenius.

Theorem 6.9.1. If V is an irreducible representation of a group G, then dimV
divides |G|.

With a little bit of extra effort one can show that dimV divides |G|/|Z(G)|.
To prove Theorem 6.9.1, we need the notion of an algebraic integer, which is

defined as a solution x to an equation of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0, a0, . . . , an−1 ∈ Z. (6.22)

For instance, i and
√

2 are algebraic integers, but 1/2 is not. Denoting the algebraic
integers by A, it is very easy to see that A∩Q = Z. Thus, to prove Theorem 6.9.1
it is enough to prove that |G|/ dimV ∈ A.
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Lemma 6.9.2. The following conditions are equivalent:

(A) α is an algebraic integer.

(B) There exists a ring R ⊆ C such that α ∈ R and R is finitely generated as an
abelian group.

Proof. If α solves (6.22), then Z[α] is generated by 1, α, . . . , αn−1. Thus, we can
take R = Z[α].

Conversely, if R is a ring as in (B) and β1, . . . , βn are generators, then we can
write αβj =

∑
k ajkβk for some ajk ∈ Z. This means that the column vector

(β1, . . . , βn) is an eigenvector of the matrix A = (ajk) with eigenvalue α. It follows
that det(α Id−A) = 0, which is an equation for α of the form (6.22).

Corollary 6.9.3. The algebraic integers form a ring.

Proof. Let α and β be algebraic integers. If α solves a monic equation of degree
m and β a monic equation of degree n, then Z[α, β] is generated as an abelian
group by the monomials αkβl with k < m and l < n. Since α + β ∈ Z[α, β] and
αβ ∈ Z[α, β] we conclude from Lemma 6.9.2 that α + β and αβ are algebraic
integers.

Let Z[G] ⊆ C[G] be the set of of formal sums
∑

g∈G a(g)g, a(g) ∈ Z. Clearly,
it is a ring with multiplication (6.13). We denote by S the center of this ring, that
is, the set of a ∈ Z[G] such that ab = ba for all b ∈ Z[G]. Then, S is itself a ring.

Lemma 6.9.4. As an abelian group, S is generated by the elements φC =
∑

g∈C g,
where C runs over conjugacy classes of G.

Proof. Let x =
∑

g∈G a(g)g ∈ S. That x commutes with h means that
∑

g a(g)g =∑
g a(g)hgh−1. Replacing g by h−1gh on the right, we see that a(g) = a(h−1gh).

Thus, a is constant on the conjugacy classes. If a(C) ∈ Z denotes the value at the
class C, then x =

∑
C a(C)φC .

Let πV : C[G] → End(V ) be the linear extension of an irreducible represen-
tation G → GL(V ). Suppose s ∈ S. Since s commutes with the group elements,
πV (s) is an intertwining operator. By Schur’s lemma, πV (s) = λ(s) IdV for some
λ(s) ∈ C. Then, λ : S → C is a ring homomorphism. By Lemma 6.9.4, the ring
λ(S) is finitely generated as an abelian group. Thus, by Lemma 6.9.2, λ(φC) are
algebraic integers.

We will now use the identity∑
g∈G

χV (g) πV (g) =
|G|

dimV
IdV , V ∈ Irr(G),
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see Exercise 6.4.1. (If you do not know how to do this, look again at the proof
of Theorem 6.4.1.) Summing over conjugacy classes, the left-hand side may be
written ∑

C

χV (C)
∑
g∈C

πV (g) =
∑
C

χV (C)πV (φC) =
∑
C

χV (C)λ(φC) IdV .

We conclude that
|G|

dimV
=
∑
C

χV (C)λ(φC).

By Lemma 6.2.1, χV (C) is a sum of roots of unity. As any root of unity is an
algebraic integer, λ(φC) is an algebraic integer and A is a ring, it follows that
|G|/ dimV ∈ A. As we explained above, this proves Theorem 6.9.1.

Exercise 6.9.1. Let G be a group of order p2, where p is a prime. Use Theo-
rem 6.9.1 to prove that G is abelian (thus, by Theorem 5.1.1, G ' Z2

p or G ' Zp2).

Exercise 6.9.2. Let G be a group of order pq, where p < q are primes. Using
Proposition 6.6.3 and Theorem 6.9.1, show that if p - q − 1, then G is abelian
(thus, by Theorem 5.1.1, G ' Zp × Zq).5

Exercise 6.9.3. Let C and D be two conjugacy classes of G. For e ∈ G, let
n(C,D, e) be the number of pairs (c, d) ∈ C × D such that cd = e. Show that
n(C,D, e) depends only on the conjugacy class E of e, so it makes sense to write
it as n(C,D,E). Show that the elements φC introduced in Lemma 6.9.4 satisfy

φCφD =
∑
E

n(C,D,E)φE.

Finally, show that the numbers λ(φC) satisfy

det
D,E

(
λ(φC)− n(C,D,E)

)
= 0,

where the determinant is indexed by conjugacy classes of G. (This gives an explicit
equation of the form (6.22) for the algebraic integers λ(φC).)

6.10 Additional problems

Exercise 6.10.1. A finite group G has six conjugacy classes, which we denote
C1, . . . , C6. We know two irreducible characters χ1 and χ2 of the group, given by

C1 C2 C3 C4 C5 C6

χ1 1 −1 1 −1 i −i
χ2 2 2 −1 −1 0 0

5If p | q − 1 there is also a non-abelian group of order pq.



103

Compute the whole character table of G.

Exercise 6.10.2. If χ is an irreducible character, show that Z(χ)/Ker(χ) is a
cyclic group. Deduce that if G has a faithful irreducible representation, then Z(G)
is cyclic.

Exercise 6.10.3. Show that∑
g∈G

φ(g)ψ(g−1) =
1

|G|
∑

V ∈Irr(G)

(dimV )χV (φψ), φ, ψ ∈ C[G]

(here, the character χV is extended linearly to C[G]).

Exercise 6.10.4. Let W be any representation. Suppose the decomposition into
irreducibles is

W = k1V1 ⊕ · · · ⊕ kmVm.

Prove that the projection from W to the subspace equivalent to k1V1 (an isotypic
component) is given by

dimV1

|G|
∑
g∈G

χV1(g)πW (g).

Exercise 6.10.5. Suppose V and W are irreducible representations. Show that

dimV

|G|
∑
g∈G

χV (gh)χW (g) =

{
χV (h), V = W,

0, V 6' W.



Chapter 7

Representations of the symmetric
group

7.1 Statement of results

In this chapter, we describe all irreducible representations of the group Sn and
compute the character table. We will state and explain the main results before
going into the proofs. As before, when we make general statements about group
representations, we mean finite-dimensional representations over C of finite groups.
The group algebra C[Sn] will be denoted An.

Let us start with some remarks relevant for general groups. We have seen that

C[G] '
⊕

V ∈Irr(G)

End(V ), (7.1)

both as algebras and as representations of G × G. We restrict attention to the
action of G ' G × {1} given by π(g)x = πV (g) ◦ x for x ∈ End(V ). Choosing a
basis for V , we can view x as a matrix. The group action is then given by matrix
multiplication from the left, that is,

π(g)[A1 · · · An] = [πV (g)A1 · · · πV (g)An],

where Aj are columns. Hence, V can be identified with the space of matrices that
have non-zero entries only in (say) the first column. This space equals End(V )E11,
where E11 ∈ End(V ) is the matrix with 1 in the upper left corner and 0 elsewhere.
Note that E2

11 = E11, that is, E11 is an idempotent. Applying the isomorphism
(7.1) to E11 yields an idempotent e ∈ C[G] with V ' C[G]e.1 This proves the
following fact.

Proposition 7.1.1. Any irreducible representation of G is equivalent to a left ideal
C[G]e, where e is an idempotent.

1By (6.20), e is essentially a matrix element of πV , but that is irrelevant for the present
discussion.

104
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As a simple example, if c =
∑

g∈G g, then hc =
∑

g∈G hg =
∑

g∈G g = c for

all h ∈ G. Moreover, with e = c/|G|, we have e2 = e. Thus, C[G]e is a one-
dimensional representation where each element of G acts as the identity; that is,
it is the trivial representation.

In general, it is difficult to construct the idempotents that generate all irre-
ducible representations. However, for the group Sn there is an explicit construction
that we will describe. We stress that we will not actually use Proposition 7.1.1; it
is only included here for motivation.

The starting point for our construction is a partition λ of n, that is, a sequence
λ1 ≥ λ2 ≥ · · · ≥ λm of positive integers with

∑
j λj = n. Partitions are conve-

niently pictured as Young diagrams. To explain this, the following example should
be sufficient:

λ = (4, 2, 1) . (7.2)

By a tableau (pl. tableaux), we mean a filling of the boxes of a Young dia-
gram with the symbols 1, . . . , n, such that each symbol is used exactly once. The
canonical tableau is the particular tableau defined as in the following example:

1 2 3 4
5 6
7

.

Let P denote the subgroup of Sn consisting of permutations fixing the symbols
in each row of the canonical tableau and Q the subgroup fixing the symbols in each
column. In the above example, P ' S4×S2 consists of permutations of {1, . . . , 7}
fixing {1, 2, 3, 4}, {5, 6} and {7} and Q ' S3 × S2 fixes {1, 5, 7}, {2, 6}, {3} and
{4}. Now let

cλ =
∑
p∈P

p
∑
q∈Q

sgn(q)q ∈ An. (7.3)

This is known as a Young symmetrizer. We will show that it is proportional to an
idempotent. Our first main result is then as follows.

Theorem 7.1.2. The irreducible representations of Sn are exactly the left ideals
Vλ = Ancλ, where λ ranges over all partitions of n.

The one-row partition λ = (n) corresponds to c =
∑

g∈Sn
g. As we saw above,

it gives the trivial representation. By a similar computation, the one-column
partition λ = (1, . . . , 1) corresponds to the alternating representation, which is
one-dimensional and where each g acts by multiplication with sgn(g).
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To give a less trivial example, the partition λ = (n − 1, 1) gives the standard
representation, equivalent to the action by Sn on

Vn = {x ∈ Cn; x1 + · · ·+ xn = 0}.

Let us check this directly when n = 3; see Exercise 7.1.2 for the general case. In
this case P = {id, (12)}, Q = {id, (13)}, so

c = (id +(12))(id−(13)) = id +(12)− (13)− (132).

We compute
(13)c = (13) + (123)− id−(23)

and let V = span{c, (13)c}. We claim that Vλ = V . Since S3 is generated by (12)
and (13) and obviously (13)V = V , it is enough to check that (12)V ⊆ V . To this
end, we compute

(12)c = (12) + id−(132)− (13) = c,

(12)(13)c = (132) + (23)− (12)− (123) = −c− (13)c.

To find an explicit isomorphism φ : V → {x1 + x2 + x3 = 0}, we note that
since c is fixed by (12) it is natural to let φ(c) = (1, 1,−2). Then necessarily
φ((13)c) = (−2, 1, 1). It is then clear that φ commutes with the action of (13).
We leave to the reader to check that it also commutes with (12), and hence with
any element in S3.

Having constructed the irreducible representations of Sn, we want to compute
the character table. As we explained in §1.6, a conjugacy class of Sn consists of
all elements containing exactly ck k-cycles for each k, where ck are non-negative
integers subject to

c1 + 2c2 + · · ·+ ncn = n.

Equivalently, a conjugacy class is described by the partition containing k copies
of the number ck for each k. For instance, the partition (7.2) corresponds to
permutations in S7 composed of a 4-cycle, a 2-cycle and a fixpoint. This gives a
direct correspondence between irreducible representations and conjugacy classes,
as they are both labelled by partitions. No such correspondence is known for
general groups.

The following result describes the character table of Sn. It will be convenient
to let ρ = (m − 1,m − 2, . . . , 1, 0). We will also use multi-index notation like
xλ = xλ11 · · ·xλmm .

Theorem 7.1.3. Let χλ be the character of the irreducible representation Vλ and C
the conjugacy class with cycle structure (c1, . . . , cn). Then, χλ(C) is the coefficient
of xλ+ρ in the polynomial∏

1≤i<j≤m

(xi − xj)
n∏
k=1

(xk1 + · · ·+ xkm)ck .
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One can use Theorem 7.1.3 to compute the dimension of Vλ. There is an
attractive way to express the result in terms of hook lengths. The hook length of
a box in a Young diagram is the number of boxes in the “hook” consisting of the
box itself and all boxes that are straight below it or straight to the right of it.

Corollary 7.1.4. We have dimVλ = n!/H, where H is the product of the hook
lengths of all the boxes in the Young diagram for λ.

As an example, in the following diagram, each box is labelled by its hook length.
The corresponding representation has dimension 7!/6 · 4 · 3 · 2 = 35.

6 4 2 1
3 1
1

(7.4)

The Young symmetrizers cλ also allow us to answer a question raised in §4.3.
Let V be a finite-dimensional complex vector space and let Sn act on V ⊗n by

π(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

We want to understand how V ⊗n decomposes under this action. We have con-
structed two invariant subspaces, equivalent to V �n and V ∧n. As Sn acts trivially
on V �n, it is isomorphic to a multiple of the trivial representation. Similarly, V ∧n

is a multiple of the alternating representation. We constructed these subspaces
as the image of the projections (4.14). These projections are multiples of π(cλ),
where λ is the one-row and one-column partition, respectively, and where we have
extended the group action linearly to π : An → End(V ⊗n). It is natural to guess
that the complete decomposition of V ⊗n involves the spaces V λ = π(cλ)V

⊗n for
other partitions λ.

To understand the situation, it is useful to consider the representation ρ of
GL(V ) on V ⊗n by

ρ(A)(v1 ⊗ · · · ⊗ vn) = Av1 ⊗ · · · ⊗ Avn. (7.5)

This commutes with the action of Sn, which implies that V λ is a representation of
GL(V ). The following result is proved in §7.3.

Theorem 7.1.5. As representations of Sn ×GL(V ),

V ⊗n '
⊕
λ

Vλ ⊗ V λ, (7.6)

where the sum runs over partitions of n.
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It follows that

V ⊗n '
⊕
λ

dim(V λ)Vλ '
⊕
λ

dim(Vλ)V
λ (7.7)

as a representation of Sn and GL(V ), respectively. The symmetric role played by
the groups Sn and GL(V ) is known as Schur–Weyl duality.

Note that it can happen that V λ = {0}, so that the corresponding term is
absent from (7.6). For instance, V (1,...,1) = V ∧n = 0 when n > dimV . This is a
general phenomenon.

Theorem 7.1.6. The space V λ = {0} if and only if the number of parts in λ is
larger than dim(V ). Otherwise, V λ is an irreducible representation of GL(V ).

Studying the representations V λ takes us into the representation theory of
Lie groups2. This is an important area with many applications in mathematics
and physics. Just as for finite groups, characters are an indispensable tool in
this theory. We will compute the character of V λ. By this, we mean an explicit
expression for χλ(A) = TrV λ(ρ(A)) in terms of the eigenvalues of A ∈ GL(V ). It is
easy to see a priori that such an expression exists. As the trace is invariant under
conjugation, it only depends on the Jordan canonical form of A. It then follows
by a continuity argument (the trace depends continuously on the matrix elements,
and the diagonalizable matrices are dense in GL(V )) that it only depends on the
eigenvalues.

Our expression for the trace is given in terms of certain symmetric polynomials
known as Schur polynomials. They are given by

Sλ(x1, . . . , xm) =
det1≤i,j≤m(x

λj+m−j
i )∏

1≤i<j≤m(xi − xj)
. (7.8)

Here, λ is a partition with at most m parts. If the number of parts k is strictly
less than m we should interpret λk+1 = · · · = λm = 0 in (7.8). Note that Sλ is
a polynomial. Roughly speaking, the reason is that if we have a zero xi = xj in
the denominator, then two rows of the matrix in the numerator agree, so that the
determinant is also zero. For a more precise explanation, see Lemma 7.4.1.

Theorem 7.1.7. If dim(V ) = m, λ is a partition with at most m parts and
A ∈ GL(V ) has eigenvalues x1, . . . , xm, then χλ(A) = Sλ(x1, . . . , xm).

As an application of Theorem 7.1.7, we can compute the dimension of V λ. It
is given by the following variation of the hook length formula.

2A Lie group is a group that is also a smooth manifold, such that the group operations are
smooth functions.
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Corollary 7.1.8. If V is a vector space of dimension m and λ a partition with at
most m parts, then

dimV λ =
∏
i,j

m− i+ j

h(i, j)
.

Here, the product is over all boxes in the Young diagram, where the box in row i
and column j has coordinates (i, j), and h(i, j) denotes the hook length of that box.

As an example, in the following Young diagram, we choose m = 3 and label
each box by 3− i+ j.

3 4 5 6
2 3
1

.

Comparing with (7.4), the corresponding representation V λ has dimension

6 · 5 · 4 · 32 · 2
6 · 4 · 3 · 2

= 15.

Note that if λ has more than m parts, then some boxes will be labelled 0, so
Corollary 7.1.8 gives the correct result also in this case.

Although any irreducible representation of Sn is equivalent to some Vλ, the
group GL(V ) has other representations than V λ. We will describe without proof
how to construct the remaining representations. We first note that, if k ∈ Z,
then detk(g) = det(g)k defines a one-dimensional representation of GL(V ). If
λ1 ≥ · · · ≥ λm is a sequence of integers (some or all of which may be negative), we
define

W (λ1,...,λm) = det −k ⊗ V (λ1+k,...,λm+k),

where k is large enough so that the right-hand side is well-defined. We claim that
the result is independent of k. Moreover, any continuous irreducible representation
of GL(V ) is equivalent to one of the representations W (λ).

Exercise 7.1.1. Use the hook length formula to compute the dimension of all
irreducible representations of S5. Show that the result agrees with the degree
equation (6.8).

Exercise 7.1.2. Use Theorem 7.1.3 to verify that V(n−1,1) is the standard repre-
sentation.

7.2 Irreducible representations

In this section, we prove Theorem 7.1.2. We will construct the irreducible represen-
tations as left ideals of the form Ancλ, where cλ is proportional to an idempotent.
It will be useful to understand the intertwining maps between such representations.
We will use the following result, which we formulate in a more general setting.
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Lemma 7.2.1. If R is a ring, e ∈ R an idempotent and M an R-module, then

HomR(Re,M) ' eM,

where x ∈ eM corresponds to the homomorphism y 7→ yx.

Proof. Let φ ∈ HomR(Re,M) and let x = φ(e). Then x = φ(e2) = eφ(e) = ex, so
x ∈ eM . Moreover, for any y ∈ Re we have y = ye and hence φ(y) = yφ(e) = yx.
Conversely, if x ∈ eM , then φ(y) = yx is clearly an R-module homomorphism.

In particular, when G is a group and e and f are idempotents in C[G], then

HomG

(
C[G]e,C[G]f

)
' eC[G]f (7.9)

(by linearity, HomG = HomC[G]). This gives useful tests for irreducibility and
equivalence. By (6.2), dim HomG(V, V ) = 1 if and only if V is irreducible. Schur’s
lemma also tells us that if V and W are irreducible, then dim HomG(V,W ) is 1 if
V ' W and 0 else. Thus, (7.9) has the following consequences.

Corollary 7.2.2. If e is an idempotent in C[G], then C[G]e is irreducible if and
only if e 6= 0 and eC[G]e = Ce. Moreover, if e and f are idempotents and C[G]e
and C[G]f are irreducible, then eC[G]f = Cef when C[G]e ' C[G]f and eC[G]f =
0 else.

We continue with the following observation.

Lemma 7.2.3. The elements c2
λ are non-zero.

Proof. Consider the matrix A representing cλ in the regular representation. Ex-
plicitly, if cλ =

∑
g∈Sn

agg, then A = (ahg−1)g,h∈G. In particular, Tr(A) = n!aid.
We claim that aid = 1. Indeed, the only contribution to this coefficient comes from
the terms in (7.3) with p = q−1 ∈ P ∩ Q = {id}. Thus, Tr(A) = n!. But if we
had c2

λ = 0, then we would have A2 = 0. It would follow that all eigenvalues of A
would be zero and, in particular, Tr(A) = 0.

Next, we give an intrinsic description of the set PQ.

Lemma 7.2.4. A permutation g ∈ PQ if and only if there is no pair of labels
(i, j), i 6= j, in the same column of the canonical tableau such that (g(i), g(j)) are
in the same row.

As an example, consider the canonical tableau

1 2
3

.

In this case, Lemma 7.2.4 states that g ∈ PQ if and only if {g(1), g(3)} 6= {1, 2},
that is, g(2) 6= 3. To check this claim we note that P = {id, (12)} and Q =
{id, (13)}, so PQ = {id, (12), (13), (12)(13) = (132)}. Indeed, these are the four
permutations such that g(2) 6= 3.
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Proof of Lemma 7.2.4. Suppose g = pq with p ∈ P and q ∈ Q and let i 6= j be in
the same column. Then, q(i) 6= q(j) are still in the same column, hence in distinct
rows. It follows that g(i) = p(q(i)) and g(j) = p(q(j)) are in distinct rows.

For the converse, suppose g has the mentioned property. Let g(T ) be the
tableau obtained from the canonical tableau by replacing each label i by g(i).
Then, there is no pair of labels that are in the same row of T and the same column
of g(T ). This means that we can reorder the elements within each row of T so that
they end up in the same column as in g(T ), and then obtain g(T ) by reordering
the elements within each column. In terms of permutations, we go from T to g(T )
by first applying a permutation p ∈ P and then the permutation pqp−1 for some
q ∈ Q. Then, g = pq.

We introduce the notation

aλ =
∑
g∈P

g, bλ =
∑
q∈Q

sgn(q)q,

so that cλ = aλbλ. It is easy to check that

aλp = paλ = aλ, bλq = qbλ = sgn(q)bλ, p ∈ P, q ∈ Q. (7.10)

Lemma 7.2.5. We have aλAnbλ ⊆ Ccλ.

Proof. It suffices to prove that aλgbλ ∈ Ccλ for g ∈ Sn. If g ∈ PQ, this follows from
(7.10). Assuming that g /∈ PQ, we will show that aλgbλ = 0. By Lemma 7.2.4,
we can find a pair (i, j) in the same column of the standard tableau such that
(g(i), g(j)) are in the same row. Let p = (g(i) g(j)) ∈ P . Then, q = g−1pg =
(ij) ∈ Q. This gives

aλgbλ = aλpgbλ = aλgqbλ = sgn(q)aλgbλ = −aλgbλ,

so aλgbλ = 0.

Applying Lemma 7.2.5 to the element bλaλ gives c2
λ = zcλ for some z ∈ C. By

Lemma 7.2.3, z 6= 0. This proves the following important fact.

Corollary 7.2.6. The element cλ is proportional to a non-zero idempotent eλ.

We can now apply the first part of Corollary 7.2.2. We have eλAneλ ⊆
aλAnbλ ⊆ Ceλ by Lemma 7.2.5. This completes the first step of our proof of
Theorem 7.1.2.

Corollary 7.2.7. The representations Vλ = Ancλ are irreducible.
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To proceed, we need to introduce the lexicographic order on partitions. This
is the same order that we use to compare words in a lexicon; to order abacus
and abandon, we observe that the first three letters agree and then compare the
fourth letter. For partitions, we write λ > µ if there exists j such that λi = µi for
1 ≤ i < j and λj > µj. For instance, the partitions of 5 are ordered as

(5) > (4, 1) > (3, 2) > (3, 1, 1) > (2, 2, 1) > (2, 1, 1, 1) > (1, 1, 1, 1, 1).

For completeness, we mention that to compare, say, (3, 1, 1) and (3, 1), we first
append zeroes to the shorter partition (that is, (3, 1, 1) > (3, 1) since (3, 1, 1) >
(3, 1, 0)). However, as we will only compare partitions of the same number, we
will never need this convention. The lexicographic order is total, that is, for two
partitions λ and µ we either have λ > µ, λ = µ or λ < µ.

Lemma 7.2.8. Let Tλ and Tµ be two tableaux on two Young diagrams λ and µ,
with the same total number of boxes. Assuming also that λ > µ, there exists a pair
(i, j) such that i and j appear in the same row of Tλ and the same column of Tµ.

Proof. Suppose for a contradiction that there is no such pair (i, j). Then, all the
λ1 symbols in the first row of Tλ appear in different columns in Tµ. Since there
are µ1 such columns, we have λ1 ≤ µ1 and consequently λ1 = µ1. We may then
reorder the symbols within each column of Tµ so that the first row of Tλ and Tµ
agree. This does not affect our assumption that there is no pair (i, j) with the
stated property. Repeating the same argument for each row we eventually find
that λ = µ.

A slight variation of the proof of Lemma 7.2.5 now gives the following result.

Lemma 7.2.9. If λ > µ then aλAnbµ = 0.

Proof. It suffices to show that aλgbµ = 0 for g ∈ Sn. We choose Tλ as the canonical
tableau on λ and Tµ as the tableau obtained from the canonical tableau on µ
by replacing each i by g(i). Picking a pair (i, j) as in Lemma 7.2.8, we have
p = (ij) ∈ Pλ, q = g−1pg = (g−1(i)g−1(j)) ∈ Qµ, where we indicate the dependence
of the groups P and Q on the underlying partition. Then,

aλgbµ = aλpgbµ = aλgqbµ = −aλgbµ,

so aλgbµ = 0.

In particular, it follows that eλAneµ = 0 if λ > µ. Thus, by the second part of
Corollary 7.2.2, Vλ 6' Vµ, so all the representations Vλ are inequivalent. As their
total number is the same as the number of conjugacy classes in Sn, there are no
further irreducible representations. This completes the proof of Theorem 7.1.2.



113

7.3 Schur–Weyl duality

In this section we will prove Theorem 7.1.5 and start working towards a proof of
Theorem 7.1.6. We recall the general setup. Let V be a complex vector space and
consider the representations of Sn and GL(V ) on V ⊗n by

π(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n),

ρ(A)(v1 ⊗ · · · ⊗ vn) = Av1 ⊗ · · · ⊗ Avn.

We will use the same symbols to denote the linear extension π : An → End(V ⊗n)
and the natural extension ρ : End(V )→ End(V ⊗n) defined by the same identity.
(Note that ρ is not linear.) For λ a partition of n, we define Vλ = Ancλ and
V λ = π(cλ)V

⊗n. Then, Vλ is a representation of Sn and V λ a representation of
GL(V ).

Theorem 7.1.5 asserts that

V ⊗n '
⊕
λ

Vλ ⊗ V λ (7.11)

as a representation of Sn×GL(V ). Given Theorem 7.1.2, this is very easy to prove.
Indeed, it follows from Lemma 7.2.1 that HomSn(Vλ, V

⊗n) ' V λ, where x ∈ V λ

corresponds to the homomorphism y 7→ π(y)x from Vλ to V ⊗n. This shows that
the multiplicity of Vλ in V ⊗n is dim(V λ) (see Problem 6.2.3), so (7.11) holds as
representations of Sn. Moreover, as the embedding y ⊗ x 7→ π(y)x is intertwining
also for the GL(V ) action, the proof of Theorem 7.1.5 is complete.

The proof of Theorem 7.1.6 is more involved. Below, we will prove that V λ is
either zero or irreducible. To determine exactly when it is zero has to wait until
the end of §7.5.

We know that GL(V ) commutes with the action of Sn, that is, ρ(GL(V )) ⊆
EndSn(V ⊗n). We will show that ρ(GL(V )) in fact spans EndSn(V ⊗n). Thus, if a
subspace is closed under the action of GL(V ) it must be closed under EndSn(V ⊗n).
We will then use (7.11) to show that V λ has no non-trivial invariant subspaces.
Although we will not need it, we mention that one can show that the two algebras
A = π(An) and B = span(ρ(End(V ))) satisfy

EndA(V ⊗n) = B, EndB(V ⊗n) = A,

that is, each is the centralizer of each other. This is an instance of the double
centralizer theorem, which holds in a more general framework of semisimple as-
sociative algebras. Note the dual roles played by the finite group Sn and the Lie
group GL(V ).

Lemma 7.3.1. We have EndSn(V ⊗n) ' End(V )�n, where the isomorphism is
given by the natural embedding End(V )�n → End(V )⊗n ' End(V ⊗n).
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Proof. If A ∈ EndSn(V ⊗n) ' End(V )⊗n, then it is clear that P (A) = A, where P
denotes the projection to End(V )�n. Conversely, if B ∈ End(V )�n ⊆ End(V ⊗n),
then it is clear that B commutes with the action of Sn.

We want to prove that the elements ρ(A) = A⊗n, A ∈ GL(V ), span EndSn(V ⊗n) '
End(V )�n. This will follow from the following fact.

Lemma 7.3.2. If V is a finite-dimensional complex vector space, then V �n is
spanned by v ⊗ · · · ⊗ v, v ∈ V .

Proof. We find it easiest to understand this using the identification of symmetric
tensors with polynomials. Namely, if (ej)

m
j=1 is a basis for V , then ej1 � · · · �

ejm 7→ xj1 · · ·xjm gives an isomorphism from V �n to the space of homogeneous
polynomials of degree n in x1, . . . , xm. Lemma 7.3.2 asserts that these polynomials
are spanned by all powers f = (a1x1 + · · · + amxm)n. Let U be the span of all
such powers. Considering f = f(a1) as a function of a1, we have h−1(f(a1 + h)−
f(a1)) ∈ U . By continuity, ∂f/∂a1 ∈ U . Repeating this argument, any derivative
∂l1+···+lmf/∂al11 · · · ∂almm ∈ U . But if l1 + · · · + lm = n, this is a non-zero multiple
of xl11 · · ·xlmm , which clearly span the homogeneous polynomials.

Corollary 7.3.3. The space EndSn(V ⊗n) is spanned by ρ(GL(V )).

Proof. By Lemma 7.3.1 and Lemma 7.3.2, EndSn(V ⊗n) is spanned by ρ(End(V )).
But GL(V ) is dense in End(V ) (if det(A) = 0 there is an arbitrarily small per-
turbation of A with non-zero determinant), so ρ(End(V )) and ρ(GL(V ) span the
same subspace.

Finally, we need the following fact.

Lemma 7.3.4. If A ∈ End(V λ), then A can be extended to an element of EndSn(V ⊗n).

Proof. Applying the isomorphism (7.11), one may define the extension of A to be
id⊗A on the term corresponding to λ and zero else.

More generally, it is easy to see that

EndSn(V ⊗n) =
⊕
λ,µ

HomSn(Vλ ⊗ V λ, Vµ ⊗ V µ) '
⊕
λ

End(V λ).

This can be compared with (7.1), which tells us that

An '
⊕
λ

End(Vλ).

We can now prove the following weak version of Theorem 7.1.6.
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Corollary 7.3.5. As a representation of GL(V ), V λ is either zero or irreducible.

Proof. Suppose that U ⊆ V λ is closed under ρ(GL(V )). By Corollary 7.3.3, U is
closed under EndSn(V ⊗n) and hence, by Lemma 7.3.4, under End(V λ). But there
is no non-trivial invariant subspace under End(V λ), since any non-zero vector is
mapped to any other non-zero vector by some linear transformation.

7.4 Two determinant evaluations

In order to prove Theorem 7.1.3, we will need two well-known determinant eval-
uations: the Vandermonde determinant and the Cauchy determinant. To prove
them, the following elementary result is useful. Note that it also implies that the
Schur polynomials defined in (7.8) are actual polynomials.

Lemma 7.4.1. If f = f(x1, . . . , xn) is an anti-symmetric polynomial (over C,
say), then f is divisible by

∏
1≤i<j≤n(xi − xj).

Proof. Considering f as a function of x1, it vanishes at the points x2, . . . , xn. Thus,
it is divisible by g = (x1− x2) · · · (x1− xn). Considering now f/g as a polynomial
in x2, it vanishes at x3, . . . , xn. Iterating this argument, we arrive at the desired
conclusion.

For the determinant evaluations, we only need the following special case.

Corollary 7.4.2. If f = f(x1, . . . , xn) is an anti-symmetric polynomial (over C,
say) of degree at most n − 1 in each variable, then f is a constant multiple of∏

1≤i<j≤n(xi − xj).

Another way to see this is the following. The space of polynomials with the
stated properties can be identified with V ∧n, where V is the space of polynomials in
one variable of degree at most n−1. But since dim(V ) = n, we have dim(V ∧n) = 1,
so there is only one such polynomial up to multiplication by constants.

Lemma 7.4.3 (Vandermonde determinant). We have

det
1≤i,j≤n

(xn−ji ) =
∏

1≤i<j≤n

(xi − xj). (7.12)

Proof. By Corollary 7.4.2, the two sides of (7.12) differ by a multiplicative con-
stant. To compute the constant, we compare the coefficient of xn−1

1 xn−2
2 · · ·xn−1 on

both sides. On the left, this monomial appears by multiplying the entries on the
main diagonal; that is, in (1.8) it corresponds to the term with σ = id. Thus, the
coefficient is 1. On the right, it appears when expanding the product and always
choosing xi in xi − xj. Thus, the coefficient is again 1.
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Lemma 7.4.4 (Cauchy determinant). We have

det
1≤j,k≤n

(
1

1− xjyk

)
=

∏
1≤j<k≤n(xj − xk)(yj − yk)∏n

j,k=1(1− xjyk)
. (7.13)

Proof. Clearly,
∏

j,k(1−xjyk) det((1−xjyk)−1) is a polynomial in the variables xj
and yj. Moreover, it has degree at most n − 1 in each of these variables, and is
separately anti-symmetric in xj and yj. Thus, by Corollary 7.4.2, the two sides of
(7.13) agree up to a multiplicative constant. To compute the constant, we multiply
(7.13) by

∏
j,k(1−xjyk) and let xn = 1/yn. On the left, we only get a contribution

from terms involving the lower right matrix element, that is, from terms with
σ(n) = n in (1.8). If we let Dn denote the left-hand side of (7.13), these terms
combine to Dn−1/(1− xnyn). Thus, we have

n∏
j,k=1

(1− xjyk) ·Dn

∣∣∣
xn=1/yn

=

∏n
j,k=1(1− xjyk)

1− xnyn

∣∣∣
xn=1/yn

·Dn−1

=
n−1∏
j=1

(1− xjyn)(1− yj/yn)
n−1∏
j,k=1

(1− xjyk) ·Dn−1.

On the right, we have

∏
1≤j<k≤n

(xj−xk)(yj−yk)
∣∣∣
xn=1/yn

=
n−1∏
j=1

(xj−1/yn)(yj−yn)
∏

1≤j<k≤n−1

(xj−xk)(yj−yk).

Noting that (1 − xjyn)(1 − yj/yn) = (xj − 1/yn)(yj − yn), the result now follows
by induction on n.

Exercise 7.4.1. Prove that if pj is a polynomial of degree j with leading coefficient
aj, then

det
1≤i,j≤n

(pn−j(xi)) = a0a1 · · · an−1

∏
1≤i<j≤n

(xi − xj).

Exercise 7.4.2. Find an alternative proof of the Cauchy determinant by expansion
along a row and induction on n. You will need the partial fraction identity∏n−1

j=1 (x− aj)∏n
j=1(x− bj)

=
n∑
k=1

1

x− bk

∏n−1
j=1 (bk − bj)∏n

j=1, j 6=k(bk − bj)
,

that you may have learned as a tool for integrating rational functions.
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7.5 Characters

Throughout this section, V is a complex vector space of dimension m. We will
compute the characters χλ(g) = TrVλ(g) and χλ(A) = TrV λ(A), where g ∈ Sn,
A ∈ GL(V ).

By Theorem 7.1.5,

TrV ⊗n(ρ(A)π(σ)) =
∑
λ

χλ(σ)χλ(A), (7.14)

where the sum runs over partitions of n. The left-hand side can be computed
directly as follows.

Lemma 7.5.1. Suppose that A ∈ GL(V ) has eigenvalues x1, . . . , xm and let σ ∈ Sn
have cycle structure (c1, . . . , cn). Then,

TrV ⊗n(ρ(A)π(σ)) =
n∏
k=1

(xk1 + · · ·+ xkm)ck . (7.15)

Proof. Choosing a basis (ej)
m
j=1 in V , we write Aej =

∑
k A

k
j ek. Then,

ρ(A)π(σ)(ej1 ⊗ · · · ⊗ ejn) =
m∑

k1,...,kn=1

Ak1jσ−1(1)
. . . Aknjσ−1(n)

ek1 ⊗ · · · ⊗ ekn .

It follows that

TrV ⊗n(ρ(A)π(σ)) =
m∑

k1,...,kn=1

A
kσ(1)
k1
· · ·Akσ(n)kn

. (7.16)

To explain why this can be written as indicated, we give an example. If σ =
(12)(345) ∈ S5, then the right-hand side of (7.16) factors as∑

k1,k2

Ak2k1A
k1
k2

∑
k3,k4,k5

Ak4k3A
k5
k4
Ak3k5 .

Since
Tr(Aj) =

∑
k1,...,kj

Ak2k1A
k3
k2
· · ·Akjkj−1

Ak1kj ,

this can be written as Tr(A2) Tr(A3). For general σ, we obtain in the same way∏n
k=1 Tr(Ak)ck . Since Ak has eigenvalues xk1, . . . , x

k
m, the result follows.

Fixing a basis for V and generic scalars x1, . . . , xm, let D be the diagonal matrix
with xj in position (j, j) and 0 else. Then,

ρ(D)(ek1 ⊗ · · · ⊗ ekn) = xk1 · · · xkm(ek1 ⊗ · · · ⊗ ekn). (7.17)
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This gives an eigenbasis for ρ(D). The eigenvalues are the numbers xλ = xλ11 · · ·xλmm ,
where λj ≥ 0 and λ1 + · · · + λm = n. Let us write Uλ for the corresponding
eigenspace, so that

V ⊗n =
⊕
λ

Uλ. (7.18)

It then follows from (7.17) that the vector

eλ = e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
λ1

⊗ · · · ⊗ en ⊗ · · · ⊗ en︸ ︷︷ ︸
λn

generates Uλ as a representation of Sn, that is, Uλ = π(An)eλ.
Let P ' Sλ1 × · · ·× Sλm be the subgroup of Sn fixing the element eλ (if λj = 0,

the corresponding factor is absent). Also, let aλ =
∑

g∈P g. If λ is a partition, this
agrees with the notation introduced in §7.1.

In general, if H is a subgroup of G, let C[G/H] be the free vector space spanned
by the cosets gH (we do not assume that H is normal, so C[G/H] need not be
a group algebra). There is a natural representation of G on C[G/H] defined
by π(g1)g2H = g1g2H.3 We can now give a more intrinsic description of the
representations Uλ.

Lemma 7.5.2. We have the equivalence of representations Uλ ' C[Sn/P ] ' Anaλ.

Proof. We define maps φ : Sn/P → Uλ and ψ : Sn/P → Anaλ by φ(gP ) = π(g)eλ,
ψ(gP ) = gaλ. Since eλ and aλ are fixed by P , these maps are well-defined. We
extend them linearly to C[Sn/P ]. These extensions are clearly surjective and
intertwining, so it is enough to prove injectivity. To this end, let gj ∈ G be
representatives for the cosets, so that any x ∈ C[Sn/P ] can be written uniquely
as x =

∑
j cjgjP , cj ∈ C. Then, φ(x) =

∑
j cjπ(gj)eλ. Each term in this sum

is a tensor product of our original basis vectors, and they are all distinct since
π(g1)eλ = π(g2)eλ would give g1g

−1
2 ∈ P . Thus, φ(x) = 0 only for x = 0. Moreover,

ψ(x) =
∑

j cjgjaλ =
∑

j

∑
p∈P cjgjp. Since the elements gjp are mutually distinct,

we also have Ker(ψ) = 0.

Let us now consider the trace of ρ(D)π(σ), where σ ∈ Sn. On the one hand, it
is given explicitly by the right-hand side of (7.15). On the other hand, by (7.18)
it can be expressed as

∑
λ ψλ(σ)xλ, where ψλ is the character of Uλ. This proves

the following result.

Lemma 7.5.3. If C is the conjugacy class with cycle structure (c1, . . . , cn), then

n∏
k=1

(xk1 + · · ·+ xkm)ck =
∑

λ1,...,λm≥0,
λ1+···+λm=n

ψλ(C)xλ. (7.19)

3The technical term for π is the representation of G induced from the trivial representation
of H.
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The representations Uλ are equivalent under permutations of λj. Also, if some
λj = 0, Uλ is equivalent to the representation obtained by deleting zero entries
from λ. Both these properties follow from Lemma 7.5.3, but are also easy to see
directly. Thus, each representation Uλ is equivalent to a representation indexed by
a partition (for instance, U(2,0,3) ' U(3,2)). We will need the following fact on the
decomposition of Uλ into irreducible parts.

Lemma 7.5.4. If λ is a partition, then Uλ ' Vλ ⊕
⊕

µ>λKµλVµ, where Kµλ are
non-negative integers.

The numbers Kµλ are called Kostka numbers.

Proof. We will use the equivalence Uλ ' Anaλ. It suffices to prove that

dim HomSn(Uλ, Vµ) =

{
1 µ = λ,

0 µ < λ.

It is easy to see that aλ is proportional to an idempotent. Thus, by (7.9), it
suffices to show that aλAncµ = Ccµ for µ = λ and 0 for µ < λ. This follows from
Lemma 7.2.5 and Lemma 7.2.9.

To prove Theorem 7.1.3, we need to multiply (7.19) by
∏

1≤i<j≤m(xi−xj). The
expansion of that factor into monomials is the Vandermonde determinant. It will
be convenient to introduce the notation

σ(ρ) = (m− σ(1), . . . ,m− σ(m)), σ ∈ Sm.

Then, (7.12) can be written compactly as∏
1≤i<j≤m

(xi − xj) =
∑
σ∈Sm

sgn(σ)xσ(ρ).

Consequently,

∏
1≤i<j≤m

(xi−xj)
n∏
k=1

(xk1 +· · ·+xkm)ck =
∑

µ1,...,µm≥0
µ1+···+µm=n

∑
σ∈Sm

sgn(σ)ψµ(C)xµ+σ(ρ). (7.20)

When λ is a partition, let φλ = φλ(C) be the coefficient of xλ+ρ in (7.20). Then,
Theorem 7.1.3 says that χλ = φλ. We can write

φλ =
∑
σ∈S′m

sgn(σ)ψλ+ρ−σ(ρ), (7.21)
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where the prime means that we exclude terms for which λ + ρ − σ(ρ) contains
negative entries. Equivalently,

φλ =
∑
σ∈S′m

sgn(σ)ψ[λ+ρ−σ(ρ)], (7.22)

where [λ] denotes the partition obtained from λ by ordering the entries decreasingly
and deleting zero entries.

To give an example, if m = 3, then ρ = (2, 1, 0) and σ(ρ) assumes the values

(2, 1, 0), (1, 0, 2), (0, 2, 1), (2, 0, 1), (0, 1, 2), (1, 2, 0),

where we first applied the even permutations and then the odd ones. The corre-
sponding values of ρ− σ(ρ) are

(0, 0, 0), (1, 1,−2), (2,−1,−1), (0, 1,−1), (2, 0,−2), (1,−1, 0).

If λ = (2, 2, 1), then the second and fifth value is excluded from the summation
(7.21). For the remaining terms, λ+ ρ− σ(ρ) equals

(2, 2, 1), (4, 1, 0), (2, 3, 0), (3, 1, 1).

Thus, (7.22) takes the form

φ(2,2,1) = ψ(2,2,1) + ψ(4,1) − ψ(3,2) − ψ(3,1,1).

Note that all the partitions appearing on the right exceed (2, 2, 1) in the lexico-
graphic ordering. This is a general phenomenon.

Lemma 7.5.5. All partitions appearing in (7.22) satisfy [λ+ ρ− σ(ρ)] ≥ λ, with
equality if and only if σ = id.

Proof. Consider the lexicographic order on Zm. If x ∈ Zm, let [x] denote the
vector obtained from x by ordering the elements decreasingly. By the definition
of lexicographic order, [x] ≥ x. In particular, ρ = [σ(ρ)] ≥ σ(ρ) for all σ ∈ Sm.
It follows that [λ + ρ − σ(ρ)] ≥ λ + ρ − σ(ρ) ≥ λ. Since we assume that all
entries in [λ + ρ − σ(ρ)] are non-negative, deleting zero entries does not effect
the lexicographic order. Finally, if σ 6= id we have ρ > σ(ρ) and consequently
[λ+ ρ− σ(ρ)] > λ.

We are now ready to complete our computation of the irreducible characters
of Sn.
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Proof of Theorem 7.1.3. Recall that we must prove that χλ = φλ. By Lemma 7.5.5,

φλ = ψλ +
∑
µ>λ

Lµλψµ,

for some integers Lλµ. Combining this with Lemma 7.5.4 gives

φλ = χλ +
∑
µ>λ

Mµλχµ

for some integers Mλµ. By orthonormality of characters,

‖φλ‖2 = 1 +
∑
µ>λ

M2
µλ.

Thus, to prove that χλ = φλ, we only have to prove that ‖φλ‖ = 1.
By Lemma 1.6.1,

‖φλ‖2 =
1

n!

∑
C

|C|φλ(C)2 =
∑

c1+2c2+···+ncn=n

φλ(C)2∏n
j=1 j

cjcj!
.

Recall that φλ(C) is the coefficient of xλ+ρ in (7.20). Thus, ‖φλ‖2 is the coefficient
of xλ+ρyλ+ρ in∏

1≤i<j≤m

(xi − xj)(yi − yj)

×
∑

c1+2c2+···+ncn=n

n∏
j=1

(xj1 + · · ·+ xjm)cj(yj1 + · · ·+ yjm)cj

jcjcj!
. (7.23)

The right-hand side of (7.23) resembles the Taylor series for the exponential
function, but the restriction on the summation variables prevents us from sum-
ming it explicitly. However, we can ignore this restriction without changing the
coefficient that we are interested in. In fact, we claim that ‖φλ‖2 is the coefficient
of xλ+ρyλ+ρ in

∏
1≤i<j≤m

(xi − xj)(yi − yj)
∑

c1,c2,...≥0

∞∏
j=1

(xj1 + · · ·+ xjm)cj(yj1 + · · ·+ yjm)cj

jcjcj!
. (7.24)

The reason is that, when λ is a partition of n, then xλ+ρ is homogeneous of degree
m− 1 + n. On the other hand, each term in (7.24) is homogeneous in x of degree
m − 1 + c1 + 2c2 + · · · . Thus, to obtain terms of the form xλ+ρ we must have
c1 + 2c2 + · · ·+ ncn = n and cn+1 = cn+2 = · · · = 0. In particular, this shows that
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(7.24) makes sense as a formal power series. As we will see in a moment, it also
makes sense as a convergent series in the region maxi,j |xiyj| < 1. Indeed, using
the standard Taylor expansions

ex =
∞∑
k=0

xk

k
, log

(
1

1− x

)
=
∞∑
k=1

xk

k

we can write (7.24) as

∏
1≤i<j≤m

(xi − xj)(yi − yj)
∞∏
k=1

exp

(
(xk1 + · · ·+ xkm)(yk1 + · · ·+ ykm)

k

)

=
∏

1≤i<j≤m

(xi − xj)(yi − yj)
m∏

i,j=1

exp

(
∞∑
k=1

xki y
k
j

k

)
=

∏
1≤i<j≤m(xi − xj)(yi − yj)∏m

i,j=1 1− xiyj
.

We recognize this as the Cauchy determinant evaluation (7.13). Thus, (7.24) equals

det
1≤i,j≤m

(
1

1− xiyj

)
=
∑
σ∈Sm

sgn(σ)
m∏
j=1

1

1− xjyσ(j)

=
∑
σ∈Sm

∑
k1,...,km≥0

sgn(σ)xk11 · · ·xkmm yk1σ(1) · · · y
km
σ(m),

where we used the geometric series

1

1− x
=
∞∑
k=0

xk.

Note that the entries in the vector λ + ρ are mutually distinct. Thus, only the
permutation σ contributes to the coefficient of xλ+ρyλ+ρ, and we find that this
coefficient is 1.

We now turn to the problem of computing the character χλ of V λ. By (7.14)
and (7.15),

n∏
k=1

(xk1 + · · ·+ xkm)ck =
∑
λ

χλ(C)χλ(A),

where C is the conjugacy class with cycle structure (c1, . . . , cn) and A ∈ GL(V )
has eigenvalues x1, . . . , xm. We also know that χλ(C) is the coefficient of xλ+ρ in∏

1≤i<j≤m

(xi − xj)
n∏
k=1

(xk1 + · · ·+ xkm)ck . (7.25)

These two expansions can be related by the following result.
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Lemma 7.5.6. Let P be an anti-symmetric polynomial in m variables. Write

P (x1, . . . , xm) =
∑

k1,...,km≥0

Ck1,...,kmx
k1
1 · · ·xkmm .

Then,
P (x1, . . . , xm)∏
1≤i<j≤m(xi − xj)

=
∑

λ1≥λ2≥···≥λm≥0

Cλ+ρ Sλ(x1, . . . , xm), (7.26)

where Sλ is the Schur polynomial defined in (7.8).

Proof. That P is anti-symmetric means that the coefficients Ck1,...,km are anti-
symmetric in (k1, . . . , km). In particular, Ck1,...,km = 0 when ki = kj for some
i 6= j. If that is not the case, we can write k = σ(λ + ρ) for a unique sequence
λ1 ≥ · · · ≥ λm ≥ 0 and a unique σ ∈ Sm. By anti-symmetry, we then have
Ck1,...,km = sgn(σ)Cλ+ρ. It follows that

P (x1, . . . , xm) =
∑

λ1≥λ2≥···≥λm≥0

Cλ+ρ

∑
σ∈Sn

sgn(σ)xλ1+ρ1
σ(1) · · · x

λm+ρm
σ(m) .

Writing the inner sum as a determinant completes the proof.

Applying Lemma 7.5.6 to the case when P is given by (7.25) gives∑
λ

χλ(C)χλ(A) =
∑
λ

χλ(C)Sλ(x1, . . . , xn). (7.27)

On the left, the sum runs a priori over all partitions of n, whereas the sum on the
right is over partitions with at most m parts. This can be viewed as a linear relation
between the columns of the character table of Sn. However, as the columns are
orthogonal, they are in particular linearly independent, so we must have χλ(A) = 0
if λ has more than m parts and χλ(A) = Sλ(x1, . . . , xn) else. As dimV λ = χλ(Id),
we have in the first case V λ = {0}. As Sλ is not the zero polynomials (both
the rows and columns in (7.8) are visibly linearly independent for generic xj), we
have in the second case V λ 6= {0}, so by Corollary 7.3.5 V λ is irreducible. This
completes the proof of Theorem 7.1.6 and proves Theorem 7.1.7.

Exercise 7.5.1. Many textbooks give a more computational proof of Lemma 7.5.3,
which we outline in the following exercise.

(a) Prove that, when H is a subgroup of G, the character of C[G/H] is given by
χ(C) = |G| · |C ∩H|/|H| · |C|.
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(b) Let C ⊆ Sn be the conjugacy class with cycle structure (c1, . . . , cn) and
P = Sλ1 × · · · × Sλm ⊆ Sn. Prove that

|C ∩ P | =
∑
(c)

m∏
j=1

λj!∏n
k=1 k

cjkcjk!
,

where the sum is over all non-negative integer (m × n)-matrices (cjk) with
row sums λ1, . . . , λm and column sums c1, . . . , cn.

(c) Prove that

ψλ(C) =
∑
(c)

n∏
k=1

ck!∏m
j=1 cjk!

,

with the sum as in part (b).

(d) Use the multinomial theorem

(x1 + · · ·+ xm)k =
∑

k1+···+km=k

k!

k1! · · · km!
xk11 · · ·xkmm (7.28)

to complete the proof of Lemma 7.5.3.

7.6 Dimensions

Having obtained expressions for the characters, it is easy to compute the dimen-
sion of Vλ and V λ. Starting with the first case, we get from Theorem 7.1.3 that
dim(Vλ) = χλ(1) is the coefficient of xλ+ρ in

(x1 + · · ·+ xm)n
∏

1≤i<j≤m

(xi − xj). (7.29)

By the multinomial theorem (7.28) and the Vandermonde determinant evaluation
(7.12), (7.29) equals

∑
λ1+···+λm=n

∑
σ∈Sn

n!

λ1! · · ·λm!
sgn(σ)xλ+σ(ρ),

so

dim(Vλ) =
∑
σ∈Sn

n!∏m
j=1(λj + σ(j)− j)!

= n! det
1≤j,k≤m

(
1

(λj + k − j)!

)
,
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where matrix entries with λj + k − j < 0 should be interpreted as zero. We can
write

1

(λj + k − j)!
=

∏m−k
l=1 (λj + k − j + l)

(λj +m− j)!
.

Note that the numerator on the right has the form pm−k(λj − j), where pm−k is
a monic polynomial of degree m − k. Thus, by a variation of the Vandermonde
determinant evaluation (see Exercise 7.4.1),

dim(Vλ) =
n!∏m

j=1(λj +m− j)!
det

1≤j,k≤m
(pm−k(λj − j))

=
n!
∏

1≤i<j≤m(λi − λj + j − i)∏m
j=1(λj +m− j)!

. (7.30)

It is not hard to see that this is equivalent to Corollary 7.1.4; see Exercise 7.6.1.
We can also use Theorem 7.1.7 to compute the dimension of V λ. An easy way

is to specialize the variables of the Schur polynomial as a geometric progression,
xj = tm−j. At this point, the Schur polynomial is evaluated by (7.12) as

Sλ(t
m−1, . . . , t, 1) =

det1≤i,j≤m(t(m−i)(λj+m−j))∏
1≤i<j≤m t

m−i − tm−j
=

∏
1≤i<j≤m

tλi+m−i − tλj+m−j

tm−i − tm−j
.

For instance by L’Hôpital’s rule, we have

lim
t→1

ta − tb

tc − td
=
a− b
c− d

.

Thus,

dim(V λ) = Sλ(1, 1, . . . , 1) =
∏

1≤i<j≤m

λi − λj + j − i
j − i

.

If λ has less than m parts, it should be extended to Zm≥0 by appending zeroes at
the end. We leave to the reader to check that this is equivalent to Corollary 7.1.8.

Exercise 7.6.1. Prove that (7.30) is equivalent to Corollary 7.1.4. For instance,
argue by induction on the number of columns and investigate how the expressions
change when a column is added to the left of the Young diagram.

7.7 Additional problems

Exercise 7.7.1. Prove that bλaλ is proportional to an idempotent. Hint: Consider
the automorphism φ of C[Sn] defined on the group elements by φ(g) = sgn(g)g.
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Exercise 7.7.2. Show that Vλ = Anbλaλ. (Exercise 7.7.1 may be useful.)

Exercise 7.7.3. When λ is a partition, the transpose λ′ is the partition obtained
by reflecting the Young diagram of λ in the main diagonal. For instance, the
following pictures illustrates that (4, 2, 1)′ = (3, 2, 1, 1):

.

Let W = V(1,...,1) be the alternating representation of Sn. Using Exercise 7.7.2,
show that Vλ ⊗W ' Vλ′ for all λ.

Exercise 7.7.4. Let σ = (1 2 · · · n) ∈ Sn. Compute χλ(σ) for all λ.

Exercise 7.7.5. If σ is a product of k disjoint cycles, counting also the fix-points,
and λ is a partition with λk+1 ≥ k + 1, show that χλ(σ) = 0.



Chapter 8

Representations of SU(2)

8.1 Compact groups

The n × n unitary matrices with determinant 1 form the special unitary group
SU(n). In this chapter we take a brief look at the representation theory of SU(2).
This is one of the most important examples for applications in physics, as it de-
scribes the notion of quantum mechanical spin. It is also one of the simplest ex-
ample of a compact group, whose representation theory is in general very similar
to that of finite groups.

It is easy to see that A ∈ SU(2) if and only if

A =

[
α β
−β̄ ᾱ

]
, (8.1)

where α and β are complex numbers with

|α|2 + |β|2 = 1.

Thus, SU(2) can be identified with a sphere of real dimension 3. As the group
operations are smooth functions on the sphere, SU(2) is a compact Lie group.

Most of the general theory for finite groups from §6 extends to compact groups.
The reason is that there is an extension of our main technique, namely, averaging
over the group. More precisely, we define a compact group G to be a compact
Hausdorff topological space, equipped with a group structure such that the group
operations are continuous1. Let C(G) be the vector space of continuous functions
G → C. There is then a unique linear functional I : C(G) → C satisfying the
following properties:

(A) I is left-invariant, that is, I(Lgf) = I(f), where Lg is the shift operator
(Lgf)(h) = f(gh), g, h ∈ G.

(B) I is continuous, in the sense that if fn → f uniformly then I(fn)→ I(f).

1The reader who is not familiar with topology can think of a compact matrix group such as
the orthogonal or unitary matrices.

127
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(C) I is normalized as I(1) = 1.

The functional I is called the Haar measure.2 It has the additional properties:

(D) I is right-invariant, that is, I(Rgf) = I(f), where (Rgf)(h) = f(hg).

(E) I is positive, that is, if f ≥ 0 then I(f) ≥ 0, with equality only for f = 0.

We will write the Haar measure as

I(f) =

∫
G

f(g) dg.

We will not prove the existence and uniqueness in general, but we will give direct
proofs for the cases that we need.

The Haar measure on a finite group (equipped with the discrete topology) is

I(f) =
1

|G|
∑
g∈G

f(g).

As another example, the Haar measure on R/Z is given by

I(f) =

∫ 1

0

f(x) dx.

It is also easy to describe the Haar measure on SU(2), using the identification with
the unit sphere S3 in R4.

Lemma 8.1.1. The Haar measure on SU(2) is given by integration with respect
to the normalized Euclidean volume measure

I(f) =
1

2π2

∫
S3

f dS.

Proof. Any left shift A 7→ BA, A, B ∈ SU(2), corresponds to a real linear trans-
formation of the parameters (α, β) in (8.1). These transformations must preserve
S3. We assume that it is known that any linear transformation that preserves the
sphere is orthogonal and preserves Euclidean measure. This proves property (A).
Property (B) is obvious and (C) holds since S3 has volume 2π2. Note also that
(D) is proved in the same way as (A), and (E) is obvious.

2There is an equivalent definition as a measure on an appropriate class of subsets of G, but
we will have no reason to discuss that.



129

A representation of a compact group G is a continuous homomorphism π : G→
GL(V ). We will restrict to the case when V is finite-dimensional and complex.
Note that the Haar measure can be extended to vector-valued functions on G. Ex-
plicitly, if f = (f1, . . . , fn) : G→ Cn is continuous then I(f) = (I(f1), . . . , I(fn)).
If v ∈ V , we can then define

v̄ =

∫
G

π(g)v dg ∈ V G. (8.2)

Using this averaging operator, the proofs of Maschke’s theorem and Schur’s lemma
extend verbatim to the case of compact groups. It is also easy to extend Propo-
sition 6.1.7, which tells us that any representation can be viewed as a continuous
homomorphism G→ SU(n) for some n.

We define an inner product on C(G) by

〈φ, ψ〉 =

∫
G

φ(g)ψ(g) dg.

Again with the same proof as for finite groups, Lemma 6.2.4 and Corollary 6.2.5
hold for compact groups. One difference is that the number of inequivalent irre-
ducible representations need not be finite.

Finally, we mention that there are extensions of Theorem 6.7.1 and Theo-
rem 6.8.3. These are most naturally formulated in terms of the Hilbert space
completion L2(G) of C(G) with respect to the inner product defined above. We
can write

L2(G) '
⊕

V ∈Irr(G)

End(V ),

where the sum on the right is the Hilbert space completion of the algebraic direct
sum. Moreover, the matrix elements of all irreducible representations form a com-
plete orthogonal system in L2(G). As an example, for G = R/Z this is the system
(e2πinx)∞n=−∞, which underlies the theory of Fourier series.

Exercise 8.1.1. Show that SU(2) acts on C ∪ {∞} by

φ

([
α β
−β̄ ᾱ

])
(z) =

αz + β

−β̄z + ᾱ
.

Show that C ∪ {∞} can be identified with the sphere S2 ⊆ R3 in such a way that
φ : SU(2) → SO(3). (Here, SO(3) denotes the three-dimensional orthogonal real
matrices with determinant 1, that is, the rotations of R3 fixing the origin.) Finally,
show that φ gives an isomorphism SU(2)/{± Id} ' SO(3).
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Exercise 8.1.2. Let G be the group of matrices Aab = [ a b0 1 ], where a > 0 and
b ∈ R. (It can be viewed as a group of affine transformations x 7→ ax + b of R.)
Define the functionals

I1(f) =

∫∫
f(Aab)

da db

a2
, I2(f) =

∫∫
f(Aab)

da db

a

on, say, continuous and compactly supported functions on G. Show that I1 is left
invariant and I2 right invariant. (This shows that, in the more general setting of
locally compact groups, conditions (A) and (D) are not equivalent.)

8.2 Representations

We already know some representations of SU(2). If V = C2 then, by Theo-
rem 7.1.6, V (n) ' V �n is an irreducible representation of GL(2,C). We will denote
this representation Vn. We claim that it is also irreducible for SU(2). To see this,
it suffices to note that the four unitary matrices[

1 0
0 1

]
,

[
i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 i
i 0

]
form a basis for End(V ). Thus, if a subspace is invariant under SU(2) it is trivial.

A useful realization of Vn is as homogeneous polynomials of degree n in two
variables x and y. To this end, we identify x and y with a basis for V and xkyn−k

with
x� · · · � x︸ ︷︷ ︸

k

� y � · · · � y︸ ︷︷ ︸
n−k

.

A matrix A = [ a bc d ] acts on the basis vectors by Ax = ax+ cy, Ay = bx+ dy and
more generally on homogeneous polynomials by

(π(A)p)(x, y) = p(ax+ cy, bx+ dy).

Note that if b = c = 0, then xkyn−k is an eigenvector with eigenvalue akdn−k. It
follows that

TrV �n(π(A)) =
n∑
k=0

akdn−k =
an+1 − dn+1

a− d
.

This is equal to the Schur polynomial S(n)(a, d), so we get a direct verification of
Theorem 7.1.7 for Vn. If A is unitary, then it is conjugate to a diagonal matrix
with eigenvalues e±iθ. We will write the corresponding character as

χn(θ) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin(n+ 1)θ

sin θ
. (8.3)
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Equivalently,

χn(θ) =
n∑
k=0

ei(2k−n)θ

=

{
1 + 2 cos(2θ) + 2 cos(4θ) + · · ·+ 2 cos(nθ), n even,

2 cos(θ) + 2 cos(3θ) + · · ·+ 2 cos(nθ), n odd.
(8.4)

We will prove that any irreducible representation of SU(2) is equivalent to one
of the representations Vn. We first prove a similar result for U(1) = {z ∈ C; |z| =
1} ' R/Z. The Haar measure on U(1) is

I(f) =
1

2π

∫ 2π

0

f(eiθ) dθ.

We let Wn be the one-dimensional representation of U(1) given by π(z) = zn Id,
where n ∈ Z. We will write the character of Wn as ψn(θ) = Tr(π(eiθ)) = einθ.

Lemma 8.2.1. Any irreducible representation of U(1) is equivalent to Wn for
some n ∈ Z.

Proof. Let V be an irreducible representation, and suppose that V is not equiv-
alent to Wn for any n. Then, the character f(θ) = TrV (π(eiθ)) is a 2π-periodic
continuous function such that

〈f, ψn〉 =
1

2π

∫ 2π

0

f(θ)e−inθ dθ = 0

for all n ∈ Z. It is then a basic fact from Fourier series that f = 0, which gives
the contradiction dim(V ) = f(1) = 0.

Proposition 8.2.2. Any irreducible representation of SU(2) is equivalent to Vn
for some n ∈ Z≥0.

Proof. Let V be a representation of SU(2) and let

R(z) =

[
z 0
0 z−1

]
.

Then, R is a homomorphism U(1) → SU(2), so ρ = πV ◦ R is a representation of
U(1) on V . By Lemma 8.2.1, it splits into a finite sum of the representations Wk,
so f(θ) = TrV (ρ(eiθ)) =

∑
k cke

ikθ, where only finitely many terms are non-zero.
Since any matrix in SU(2) is conjugate to R(z) for some z, so we can identify f
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with the character of V . Since f(θ) = f(−θ), the coefficients satisfy ck = c−k, so
we can write

f(θ) = c0 + 2c1 cos(θ) + 2c2 cos(2θ) + · · ·+ 2cn cos(nθ)

for some n. It is then clear from (8.4) that f is a linear combination of χ0, . . . , χn.
Since V is irreducible, this is only possible if V ' Vj for some j.

As Proposition 6.1.7 holds for compact groups, there is an SU(2)-invariant
inner product on Vn. (One can also extend Exercise 6.1.3, so this inner product is
unique up to normalization.) On V1 = C2 we can take the standard inner product
with orthonormal basis e1 = (1, 0), e2 = (0, 1). On V ⊗n1 we then have an invariant
inner product

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 = 〈u1, v1〉 · · · 〈un, vn〉.

There is an intertwining embedding I : V �n → V ⊗n, given by

I(u1 � · · · � un) =
1

n!

∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n).

A basis for V �n is given by (Ek)
n
k=0, where

Ek = e1 � · · · � e1︸ ︷︷ ︸
k

� e2 � · · · � e2︸ ︷︷ ︸
n−k

.

We then obtain an invariant inner product on V �n by defining

〈Ek, El〉V �n = 〈I(Ek), I(El)〉V ⊗n .

It is clear that 〈Ek, El〉 = 0 if k 6= l. If k = l, we write I(Ek) and I(El) as sums
over σ, τ ∈ Sn, respectively. For fixed σ, there are then k!(n− k)! permutations τ
that contribute 1 to the sum; all other terms contribute 1. We conclude that

〈Ek, Ek〉 =
1

(n!)2

∑
σ∈Sn

k!(n− k)! =
1(
n
k

) .
This gives the following result.

Lemma 8.2.3. There is an SU(2)-invariant inner product on Vn defined by 〈Ek, El〉 =
δkl/
(
n
k

)
.

We will give another proof of Lemma 8.2.3 in §8.3.
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Exercise 8.2.1. Show that Vn can be realized as the space of all polynomials of
degree at most n in z, with the action

(π(A)p)(z) = (bx+ dy)np

(
ax+ cy

bx+ dy

)
, A =

[
a b
c d

]
∈ GL(2,C).

Show that, in this realization, the SU(2)-invariant inner product takes the form3

〈p, q〉 =
n+ 1

π

∫
C

p(z)q(z)

(1 + |z|2)n+2
dxdy, z = x+ iy.

Exercise 8.2.2. Prove that any irreducible representation of a compact abelian
group is one-dimensional. Then prove directly that any continuous homomorphism
from U(1) to itself has the form f(z) = zn. (This gives a proof of Lemma 8.2.1
that does not rely on the theory of Fourier series.)

Exercise 8.2.3. Show that Vn is a representation of SO(3) ' SU(2)/{±1} (see
Exercise 8.1.1) if and only if n is even. (In quantum mechanics, n/2 is known as
the spin. If a particle with half-integer spin, such an an electron, rotates 360◦,
then its wave function ψ transforms into −ψ.)

Exercise 8.2.4. Using characters, show the equivalence of representations

Vm ⊗ Vn ' Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ V|m−n| =
min(m,n)⊕
j=0

Vm+n−2j.

8.3 Matrix elements and Krawtchouk polynomials

We will now compute the matrix elements of πVn(g) in the basis (Ek)
n
k=0 defined

above. In the realization of Vn as a space of homogeneous polynomials, we have
Ek = xkyn−k. The matrix elements then appear in the expansion

(ax+ cy)k(bx+ dy)n−k =
n∑
l=0

π(A)lk x
lyn−l, A =

[
a b
c d

]
∈ GL(2,C). (8.5)

Clearly, we can compute the matrix elements from (8.5) using the binomial
theorem. This can be done in several ways. Rather than expanding (ax + cy)k

3You will need the integral evaluation∫ ∞

0

tk

(1 + t)n+2
dt =

k!(n− k)!

(n+ 1)!
, k = 0, . . . , n,

which is easy to prove by induction on k and partial integration.
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directly into monomials, we will expand it into the elements xm(bx+ dy)k−m. For
simplicity, we assume that ad− bc = 1, that is, A ∈ SL(2,C). Then,

ax+ cy =
ad− bc

d
x+

c

d
(bx+ dy) =

x+ c(bx+ dy)

d
,

so we get

(ax+ cy)k =
1

dk

k∑
m=0

(
k

m

)
ck−mxm(bx+ dy)k−m.

Multiplying this by (bx+ dy)n−k and expanding (bx+ dy)n−m using the binomial
theorem gives

π(A)lk =

min(k,l)∑
m=0

(
k

m

)(
n−m
l −m

)
bl−mck−mdn−k−l.

If we let tm denote the m-th term in this sum, then tm+1/tm is a rational function
of m. In general, sums with this property are called hypergeometric. The standard
notation for hypergeometric sums involves the shifted factorials (or Pochhammer
symbols)

(a)m = a(a+ 1) · · · (a+m− 1),

which are related to binomial coefficients by(
n

m

)
= (−1)m

(−n)m
m!

.

The expression above can be written

π(A)lk =

(
n

l

)
blckdn−k−l

min(k,l)∑
m=0

(−k)m(−l)m
m!(−n)m

(
− 1

bc

)m
. (8.6)

The standard notation for this sum is(
n

l

)
blckdn−k−l2F1

(
−k,−l
−n ;− 1

bc

)
, (8.7)

where 2F1 is known as Gauss’s hypergeometric function.
Note that (−k)m is a polynomial in k of degree m so, except for the prefactor

(c/d)k, (8.7) is a polynomial in k of degree l. These polynomials are known as
Krawtchouk polynomials. The standard notation for these polynomials is

Kk(x; p;n) = 2F1

(
−k,−x
−n ;

1

p

)
. (8.8)

We can then formulate (8.7) as follows.
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Proposition 8.3.1. The element A = [ a bc d ] ∈ SL(2,C) acts on the basis vectors
Ek = xkyn−k by π(A)Ek =

∑
l π(A)lkEl, where

π(A)lk =

(
n

l

)
blckdn−k−lKl(k;−bc;n).

In particular, A =
[
α β
−β̄ ᾱ

]
∈ SU(2) acts by

π(A)lk =

(
n

l

)
βl(−β̄)kᾱn−k−lKl

(
k; |β|2;n

)
. (8.9)

We note that Lemma 8.2.3 follows from Proposition 8.3.1. Indeed, Lemma 8.2.3
is equivalent to

〈π(A)Ek, El〉 = 〈Ek, π(A∗)El〉, A ∈ SU(2).

Since Ek are mutually orthogonal, this can be written

π(A)lk‖El‖2 = π(A∗)kl‖Ek‖2. (8.10)

Applying Proposition 8.3.1 and simplifying gives(
n

l

)
Kl(k; |β|2;n)‖El‖2 =

(
n

k

)
Kk(l; |β|2;n)‖Ek‖2.

Since (8.8) is symmetric in k and x, this is indeed true if ‖Ek‖2 =
(
n
k

)−1
.

The invariance of the inner product is reflected in orthogonality relations for
the matrix elements. Indeed, the identity π(A)π(A−1) = Id can be written

n∑
l=0

π(A)klπ(A−1)lm = δkm. (8.11)

Assuming A ∈ SU(2), we have A−1 = A∗. Using (8.10), we can then write (8.11)
as

1

‖Ek‖2
δkm =

n∑
l=0

1

‖El‖2
π(A)kl π(A)ml.

Expressing the matrix elements as in (8.9) we get after simplification

1(
n
k

) (1− |β|2

|β|2

)k
δkm =

n∑
l=0

(
n

l

)
|β|2l(1− |β|2)n−lKk(l; |β|2;n)Km(l; |β|2;n).

Thus, the Krawtchouk polynomials are the orthogonal polynomials with respect
to the binomial distribution.
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Corollary 8.3.2. For n a non-negative integer and 0 < p < 1, let∫
f(x) dµ(x) =

n∑
l=0

(
n

l

)
pl(1− p)n−lf(l).

Then, the Krawtchouk polynomials Kk(x) = Kk(x; p;n) satisfy the orthogonality
relations ∫

Kk(x)Kl(x) dµ(x) =
(1− p)k

pk
(
n
k

) δkl, 0 ≤ k, l ≤ n.

Exercise 8.3.1. Let S =
∑∞

k=0 tk be a series (convergent or divergent) such that
tk+1/tk is a rational function in k. Show that there exist parameters such that

S = C
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)kk!

xk.

This is the hypergeometric series rFs.

Exercise 8.3.2. Replacing m by k −m in the sum

2F1

(
−k, a
b

;x

)
=

k∑
m=0

(−k)m(a)m
(b)mm!

xm,

show that

2F1

(
−k, a
b

;x

)
= (−1)k

(a)k
(b)k

xk 2F1

(
−k, 1− b− k

1− a− k ;
1

x

)
.

Exercise 8.3.3. The matrix elements of any group representation satisfy π(AB)kl =∑n
m=0 π(A)kmπ(B)ml. Write this explicitly for arbitrary matrices in SL(2,C). De-

duce the addition formula for Krawtchouk polynomials:

n∑
m=0

(
n

m

)
Kk(m; p;n)Kl(m; q;n)zm

= (1 + z)n−k−l
(

1 + z − z

p

)k (
1 + z − z

q

)l
Kl(k; r;n),

where r = −(p+ pz − z)(q + qz − z)/z.
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8.4 Jacobi polynomials

The Jacobi polynomials are the orthogonal polynomials for the measure∫
f(x) dµ(x) =

∫ 1

−1

f(x)(1− x)a(1 + x)b dx,

where a, b > −1. Historically, the Jacobi polynomials together with their de-
generate cases were known as “classical orthogonal polynomials” (nowadays, the
meaning of this term has expanded). Important special cases include the Gegen-
bauer or ultraspherical polynomials, a = b, the Legendre or spherical polynomials,
a = b = 0, the Chebyshev polynomials of the first kind, a = b = −1/2 and second
kind, a = b = 1/2, the Laguerre polynomials as a degenerate case when a → ∞
and the Hermite polynomials as a subsequent degeneration b→∞. We will show
that the Schur orthogonality relations (cf. (6.21)) for SU(2) are equivalent to the
orthogonality for Jacobi polynomials, where a and b are arbitrary non-negative
integers.

For a general compact group, the Schur orthogonality relations are∫
G

πV (g)ij πW (g)kl dg =
δikδjlδVW

dimV
. (8.12)

Here, V and W are irreducible representations equipped with invariant inner prod-
ucts, and the matrix elements are taken with respect to orthonormal bases. The
proof of (6.21) extends verbatim to prove (8.12). A deeper statement, which we
will not prove, is that the matrix elements form a complete system in L2(G) (for
finite groups we saw this by a dimension count).

Note that the basis elements Ek = xkyn−k for Vn are not normalized. Compen-
sating for this, we get the relation∫

SU(2)

π(g)mij π(g)nkl dg =
δikδjlδmn

(
n
i

)
(n+ 1)

(
n
j

) ,
where the upper index on the matrix elements indicates the choice of representa-
tion. Using (8.9), this takes the form

1

2π2

∫
|α|2+|β|2=1

αn−k−lᾱm−i−jβi+lβ̄j+k2F1

(
−i,−j
−m ;

1

|β|2

)
2F1

(
−k,−l
−n ;

1

|β|2

)
dS

=
δikδjlδmn

(n+ 1)
(
n
j

)(
n
k

) . (8.13)

This gives an orthogonal system on S3. To understand it more clearly, we introduce
polar coordinates α = reiθ, β = seiφ. The change of variables(

Re(α), Im(α),Re(β), Im(β)
)
7→ (r, s, θ, φ)
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has Jacobian rs. Thus, (8.13) takes the form

1

2π2

∫
Q

∫ 2π

θ=0

∫ 2π

φ=0

rn+m−i−j−k−l+1si+j+k+l+1eiθ(n+i+j−m−k−l)eiφ(i+l−j−k)

× 2F1

(
−i,−j
−m ;

1

s2

)
2F1

(
−k,−l
−n ;

1

s2

)
dσdθdφ

=
δikδjlδmn

(n+ 1)
(
n
j

)(
n
k

) , (8.14)

where dσ is arc length measure on the quarter circle

Q = {(r, s); r, s ≥ 0, r2 + s2 = 1}.

Note that if n + i + j 6= m + k + l then the integral over θ in (8.14) vanishes.
Similarly, the integral over φ vanishes if i + l 6= j + k. Thus, the only non-trivial
case is when i+ l = j + k and n+ i+ j = m+ k+ l. Rewriting this special case in
terms of the parameters i, k, a = j − i = l− k and b = m− i− j = n− k− l gives

2

∫
Q

r2b+1s2(a+i+k)+1
2F1

(
−i,−a− i
−a− b− 2i

;
1

s2

)
2F1

(
−k,−a− k
−a− b− 2k

;
1

s2

)
dσ

=
δik

(a+ b+ 2k + 1)
(
a+b+2k
a+k

)(
a+b+2k

k

) . (8.15)

Let us now assume that a ≥ 0 and b ≥ 0 (using symmetries of the matrix elements,
one can show that this is no essential restriction). By Exercise 8.3.2,

2F1

(
−i,−a− i
−a− b− 2i

;
1

s2

)
= (−1)i

(−a− i)i
(−a− b− 2i)i

1

s2i 2F1

(
−i, a+ b+ i+ 1

a+ 1
; s2

)
= (−1)i

(a+ i)!(a+ b+ i)!

a!(a+ b+ 2i)!

1

s2i 2F1

(
−i, a+ b+ i+ 1

a+ 1
; s2

)
.

Using this and the same identity with i replaced by k, (8.15) takes the form

2

∫
Q

r2b+1s2a+1
2F1

(
−i, a+ b+ i+ 1

a+ 1
; s2

)
2F1

(
−k, a+ b+ k + 1

a+ 1
; s2

)
dσ

=
a!2(b+ k)!k!

(a+ k)!(a+ b+ k)!(a+ b+ 2k + 1)
δik.

To relate this to Jacobi polynomials, we introduce the parametrization (r(x), s(x)) =
(
√

(1 + x)/2,
√

(1− x)/2). Then, (r(x), s(x)) runs through Q as −1 ≤ x ≤ 1.
Moreover,

dσ =
√
r′(x)2 + s′(x)2 dx =

1

4rs
dx.
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This leads to∫ 1

−1

(1−x)a(1+x)b 2F1

(
−i, a+ b+ i+ 1

a+ 1
;
1− x

2

)
2F1

(
−k, a+ b+ k + 1

a+ 1
;
1− x

2

)
dx

=
2a+b+1a!2(b+ k)!k!

(a+ k)!(a+ b+ k)!(a+ b+ 2k + 1)
δik.

The standard notation for Jacobi polynomials is

P (a,b)
n (x) =

(a+ 1)n
n!

2F1

(
−n, a+ b+ n+ 1

a+ 1
;
1− x

2

)
.

If a is an integer, the prefactor is (a+n)!/a!n!. Replacing (i, k) by (m,n), we have
obtained a representation-theoretic proof of the following fact.

Proposition 8.4.1. For a and b non-negative integers, the Jacobi polynomials
satisfy the orthogonality relations∫ 1

−1

P (a,b)
m (x)P (a,b)

n (x)(1− x)a(1 + x)b dx =
2a+b−1(a+ n)!(b+ n)!

n!(a+ b+ n)!(a+ b+ 2n+ 1)
δmn.

This holds for arbitrary a, b > −1, with the factorials replaced by the gamma
function. The general case can also be obtained from representation theory; for
instance, using the non-compact group SU(1, 1).
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