Assignment 3: Number Theory

Martin Westerholt-Raum

Factorization into irreducible elements (1 pt) Find all factorizations of 21 into irreducible elements of \mathcal{O}_K for $K = \mathbb{Q}(\sqrt{-13})$, and determine how many essentially different (i.e. up to reordering and multiplication by units) factorizations there are.

Factorization into prime ideals (1 pt) Factor the ideal (21) $\subset \mathcal{O}_K$ for $K = \mathbb{Q}(\sqrt{-13})$ into prime ideals.

Chinese remainder theorem (2 pt) Decompose the ring $\mathcal{O}_K/(21)$ for $K = \mathbb{Q}(\sqrt{-13})$ into a direct sum of fields, and given an explicit isomorphism.

Multimodular linear algebra (6 pt) Let $M \in Mat_n(\mathcal{O}_K)$ be an $n \times n$ matrix with entries in \mathcal{O}_K for an imaginary quadratic number field K. Describe an algorithm to compute the row Echelon normal form of M over K from the row Echelon normal forms of $M \pmod{\mathfrak{p}}$ for all prime ideals \mathfrak{p} of \mathcal{O}_K .

Applying the algorithm, compute the row Echelon normal form of

 $\begin{pmatrix} 14a & 5a-30 & 5a+65\\ -16a & -5a+28 & -3a-72\\ -40a+4 & -20a+98 & -22a-202 \end{pmatrix}$

over $K = \mathbb{Q}(\sqrt{-5})$ with $a = \sqrt{-5}$, and compare this with direct application of the Gaussian algorithm.

Noetherian and artinian rings (5 pt) Show that in a noetherian ring *R* in which every prime ideal is maximal, every descending chain of ideals becomes stationary.

Representatives of class group elements (5 pt) Let \mathfrak{m} be a nonzero integral ideal of the Dedekind domain \mathcal{O}_K for K a number field. Show that every ideal class in Cl_K , there exists an integral ideal prime to \mathfrak{m} .