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1

Solving algebraic equations

An algebraic equation of degree n with complex coefficients is an equation:

f(X) = a0X
n + a1X

n−1 + · · ·+ an−1X + an = 0,

where ai ∈ C, n ≥ 0 and a0 6= 0 (if n = 0, f(X) is a constant polynomial). According
to the Fundamental theorem of algebra (proved by C.F. Gauss1 in 1799), if f(X) is non-
constant polynomial, then the equation f(X) = 0 has n complex solutions (roots) x1, . . . , xn
and f(X) = a0(X − x1) · · · (X − xn). Some of the xi may be equal and the number of
occurrences of xi as a root of f(X) = 0 is called its multiplicity.

One of the main mathematical problems before 18th century was to express solutions of al-
gebraic equations through their coefficients using the four arithmetical operations (addition,
subtraction, multiplication, division) and radicals. Such possibility was known for n = 1, 2
since antiquity, and for n = 3, 4 since 15th century. Finding similar expressions for equa-
tions of degree 5 was an unachievable task. The idea that such formulae may not exist was
a motivation for the works of many mathematicians during 18th century and finally lead to
the results, which are a part of the theory developed by Évariste Galois in the beginning of
19th century.

In this chapter, we look at some methods of solving the equations when general formulae
exist. We can always assume that a0 = 1 (if not, divide both sides of the equation by a0 6= 0).
We recall how to solve quadratic equations and afterwards discuss the cases of cubic and
quartic equations.

1 Johann Carl Friedrich Gauss (1777 – 1855) was a German mathematician – one of the most
prominent in the history of the subject. He left very important contributions in many parts of
mathematics and many other natural sciences including number theory, algebra, statistics, anal-
ysis, differential geometry, geodesy, geophysics, mechanics, electrostatics, astronomy and optics.



1.1 Quadratic equations. A quadratic equation f(X) = 0 has 2 roots x1, x2 and f(X) =
a0X

2 + a1X + a2 = a0(X − x1)(X − x2). Comparing the coefficients on the left and right in
this equality, we get the Vieta formulae2:

x1 + x2 = −a1

a0

x1x2 =
a2

a0

Denoting a1
a0

= p and a2
a0

= q, we get an equivalent equation:

X2 + pX + q = 0

and solve it by transforming to an equation with roots xi + p
2 whose sum is 0, that is,

replacing the equation above by the equivalent expression in which X2 + pX is completed
to a square:

(
X +

p

2

)2

+

(
q − p2

4

)
= 0.

Solving, we get the two solutions:

x1 = −p
2
−
√
p2

4
− q and x2 = −p

2
+

√
p2

4
− q.

The number ∆ = p2 − 4q = (x1 + x2)2 − 4x1x2 = (x1 − x2)2 is called the discriminant of
the polynomial X2 + pX + q (see p. 258). It is non-zero if and only if the roots x1, x2 are
different.

1.2 Cubic equations. A cubic equation f(X) = 0 has 3 roots x1, x2, x3 and f(X) =
a0X

3 + a1X
2 + a2X + a3 = a0(X −x1)(X −x2)(X −x3). Comparing the coefficients on the

left and right in this equality, we get the Vieta formulae:

x1 + x2 + x3 = −a1

a0
,

x1x2 + x2x3 + x1x3 =
a2

a0
, (1.1)

x1x2x3 = −a3

a0
,

2 Franciscus Vieta, in Franch François Viète, (1540–1603) was a Franch mathematician who intro-
duced modern notation in connection with algebraic equations.
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The equation having the roots xi+
a1
3a0

, where i = 1, 2, 3, has the coefficient of x2 equal to 0,
since the sum of these 3 numbers is zero. Technically, we get such an equation substituting
X = Y − a1

3a0
in the given cubic equation:

a0X
3 + a1X

2 + a2X + a3 =

a0

(
Y − a1

3a0

)3

+ a1

(
Y − a1

3a0

)2

+ a2

(
Y − a1

3a0

)
+ a3 = a0(Y 3 + pY + q)

where p and q are easily computable coefficients (it is not necessary to remember these
formulae, since it is easier to remember the substitution and to transform each time, when
it is necessary). Thus we can start with an equation:

X3 + pX + q = 0. (1.2)

We compare the last equality with the well-known identity:

(a+ b)3 − 3ab(a+ b)− (a3 + b3) = 0 (1.3)

and choose a, b in such a way that:

p = −3ab,

q = −(a3 + b3). (1.4)

If a, b are so chosen, then evidently x = a+ b is a solution of the equation (1.2). Since

a3 + b3 = −q,

a3b3 = −p
3

27
,

a3, b3 are solutions of the quadratic equation:

t2 + qt− p3

27
= 0.

Solving this equation gives a3, b3. Then we choose a, b, which satisfy (1.4) and get x = a+ b.
An (impressing) formula, which hardly needs to be memorized (it is easier to start “from
the beginning”, that is, from the identity (1.3), than to remember it) is thus the following:
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x1 = a+ b =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
(1.5)

We leave a discussion of different choices of signs of the roots to exercises, but notice that
in order to solve a cubic equation, it is sufficient to find one root x1 and solve a quadratic
equation after dividing the cubic by x − x1. The above expression (in different notations)
was first published by Gerolamo Cardano3 in his book “Ars Magna” in 1545 and is known
today as Cardano’s formula. However, the history surrounding the formula is very involved
and several Italian mathematicians knew the method before Cardano (notably, Scipione del
Ferro, Antonio Fiore and Niccoló Tartaglia about 20 years earlier that the appearance of
Cardano’s book ).

The discriminant of the cubic (1.2) is ∆ = −(4p3 + 27q2) = [(x1−x2)(x2−x3)(x3−x1)]2.
See p. 258 and Ex. 1.3 below.

1.3 Quartic equations. Such an equation f(X) = a0X
4 + a1X

3 + a2X
2 + a3X + a4 =

a0(x − x1)(X − x2)(X − x3)(X − x4) has 4 roots x1, x2, x3, x4. Similarly as for quadratic
and cubic equations, we can write down the Vieta formulae expressing relations between
the roots and the coefficients of the equation (we leave it as an exercise). Solving a quartic
equation (we assume a0 = 1 and denote the remaining coefficients avoiding indices):

X4 +mX3 + pX2 + qX + r = 0, (1.6)

it is not important to assume that m = 0 (but it could be achieved substituting X − m
4

instead of X similarly as in the quadratic and cubic cases). We simply complement X4+mX3

in such a way that we get a square of a quadratic polynomial and when it is done, we find
a parameter λ so that the quadratic polynomial in square brackets

(
X2 +

m

2
X +

λ

2

)2

−
[(

m2

4
+ λ− p

)
X2 +

(
mλ

2
− q
)
X +

(
λ2

4
− r
)]

= 0 (1.7)

is a square of a first degree polynomial. This is achieved when the discriminant of the
quadratic polynomial in the square bracket equals 0 (see Ex. 1.8), that is,

(
mλ

2
− q
)2

− 4

(
m2

4
+ λ− p

)(
λ2

4
− r
)

= 0 (1.8)

This is a cubic equation with respect to λ. Solving it, we get a root λ, which gives a possibility
to factorize the quartic polynomial (1.7) into a product of two quadratic polynomials and

3 Girolamo Cardano (1501 – 1576) was an Italian mathematician and physicists. He is also known
as a technical inventor.
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then solve two quadratic equations. The method described above was given by L. Ferrari4

in the middle of 16th century and published in Cardano’s book mentioned above.

As we noted before, many attempts to solve quintics (that is, fifth degree polynomial equa-
tions) were fruitless. Already during 18th century some mathematicians suspected that sim-
ilar formulae as for equations of degrees less than 5 are impossible. It is not too difficult to
see that the situation with the equations of degree 5 differs from the situation in the case
of equations of lower degree (see Ex. 1.6). J.L. Lagrange5 was the first mathematician who
tried to prove that there are no algebraic formulae for solutions of the general fifth degree
algebraic equations. His thorough analysis of polynomial equations and their solutions led
him to a notion of resolvent, which was later used by Galois and found broader applications
in the modern numerical applications related to computations of Galois groups. The final
proof that it is is impossible to express a solutions of general quintic equations using the
four arithmetical operations (addition, subtraction, multiplication, division) and extracting
roots applied to the coefficients of the equation was proved by Abel6 in 1823 (earlier an
incomplete proof was published by Ruffini7 in 1799). Galois gave an independent proof of
the same result using different methods, which we follow in Chapter 13.

EXERCISES 1

1.1. Solve the following equations using Cardano’s or Ferrari’s methods:

(a) X3 − 6X + 9 = 0; (e) X4 − 2X3 + 2X2 + 4X − 8 = 0;
(b) X3 + 9X2 + 18X + 28 = 0; (f) X4 − 3X3 +X2 + 4X − 6 = 0;
(c) X3 + 3X2 − 6X + 4 = 0; (g) X4 − 2X3 +X2 + 2X − 1 = 0;
(d) X3 + 6X + 2 = 0; (h) X4 − 4X3 − 20X2 − 8X + 4 = 0.

1.2. Show that the system (1.4) has exactly three solutions (a, b) and find all three solutions
of the equation X3 + pX + q = 0 following the discussion above concerning Cardano’s
formula.

1.3. (a) Using Vieta’s formulae (1.1) show that the discriminant ∆(f) = [(x1 − x2)(x2 −
x3)(x3 − x1)]2 of f(X) = X3 + pX + q is equal to ∆(f) = −(4p3 + 27q2) (x1, x2, x3 denote
the zeros of f(X)). Note that the equation X3 + pX + q = 0 has multiple roots if and only
if ∆ = 0.

4 Lodovico Ferrari (1522-1565) was an Italian mathematician who was a servant, later a student
and finally a successor of G. Cardano at the Universisty of Pavia.

5 Joseph-Louis Lagrange (1736-1813) was an Italian mathematician, who mostly worked in France.
His contributions to the theory of algebraic equations are very important as well as his contri-
butions in many other fields of mathematics, physics and astronomy.

6 Nils Henrik Abel (1801–1829) was a Norwegian mathematician who first proved that the general
quintic equation is impossible to solve by purely algebraic means.

7 Paulo Ruffini (1765 – 1822) was an Italian mathematician and physician.
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(b) Assume that p, q are real numbers. Show that the equation f(X) = X3 + pX + q = 0
has 3 different real roots if and only if ∆(f) > 0.

1.4. The discriminant of the polynomial X3 − 6X + 4 equals ∆ = 432, so the equation
X3 − 6X + 4 = 0 has three different real roots (see Ex. 1.3). The formula (1.5) gives

x1 = 3
√
−2 + 2i+ 3

√
−2− 2i.

Find the solutions of the equation without using Cardano’s formula and identify these solu-
tions with the expressions given by Cardano’s formula.

Remark. The case of the cubic polynomials having 3 real roots in the context of Cardano’s
formula was a serious problem for mathematicians during at least 300 years. As ∆ = −(4p3+

27q2) > 0, we have q2

4 + p3

27 < 0 in the formulae (1.5), so in order to compute the real number
x1, we have to manipulate with complex numbers on the right hand side. The Cardano’s
formulae were considered as “not correct” as the real values (even integer values) of the roots
are expressed through the complex numbers which were considered with great suspicion.
Mathematician tried to find “better” formulae in which negative numbers under square
roots do not appear in order to eliminate what was known as “Casus Irreducibilis”. First
during the 19th century it became clear that it is impossible to find “better” formulae – in
general, it is impossible to express the real roots of a cubic with 3 real roots by so called
real radicals, that is, without help of complex numbers. We explain this phenomenon closer
in Chapter 13.

1.5. Assume that a cubic equation X3 + pX + q = 0 has 3 real solutions, that is, ∆ =
−(4p3 + 27q2) > 0. Show that there exists r ∈ R and ϕ ∈ [0, 2π] such that the solutions of
the cubic equation are

x1 = 2 3
√
r cos

ϕ

3
, x2 = 2 3

√
r cos

ϕ+ 2π

3
, x3 = 2 3

√
r cos

ϕ+ 4π

3
.

1.6. (a) Find a cubic equation having a solution α =
3
√
a+
√
b+

3
√
a−
√
b, where a2−b = c3

and a, b, c ∈ Q. Write down all solutions of the equation you have found and motivate that
a solution to any cubic equation x3 + px + q = 0, where p, q are rational numbers, can be
written as α above.

(b) Find a quintic equation (that is, an equation of degree 5) having a solution α =
5
√
a+
√
b +

5
√
a−
√
b, where a2 − b = c5 and a, b, c ∈ Q. Choose a, b in such a way that

the polynomial having α as its zero is irreducible over Q. Can every quintic equation with
rational coefficients be solved by a number given as α above?

Remark. The quintic equation, whose one of the zeros is α in (b) above (see it on p. 136),
is sometimes called de Moivre’s quintic. Of course, we have a formula giving a solution
of such an equation, since we construct it starting from a solution. But our objective is
to prove that there are cases when for a quintic equations with rational coefficients it is
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impossible to express a solution using the four arithmetical operations (addition, subtraction,
multiplication, division) and extracting roots applied to the coefficients of the equation. Here
we have an example that sometimes it is possible even if the polynomial can not be factored
(over the rational numbers) into a product of polynomials of degrees less than 5. In fact, there
are less complicated examples which exemplify this statement like X5 − 2, but compering
(a) and (b) gives an idea what can make a difference that there exists a formula for a general
cubic equation, while there is no such a formula for general quintic equations.

1.7. Solve the binomial equation Xn − a = 0 of degree n > 0, where a ∈ C.

1.8. Show that a given trinomial aX2+bX+c ∈ C[X] is a square of a binomial pX+q ∈ C[X]
if and only if the discriminant of the trinomial b2 − 4ac = 0.

USING COMPUTERS 1

Maple gives a possibility to find solutions of equations of low degrees in closed form (ex-
pressed by arithmetical operations on coefficients and using radicals). Thus all equations of
degree at most 4 and some other simple equations (like the equations f(Xn) = 0 when f
has degree at most 3) can be solved. The solutions are obtained by:

>solve(f(X))

in order to solve the equation f(X) = 0. The numerical real values of zeros can be obtained
using >fsolve(f(X)) and all values by >fsolve(f(X),complex). Of course, you can use
these commands in order to find the zeros of the equations, for example, in Ex. 1.1, but the
intention in this section is rather to get some experience and feeling of raw computations
before the computer era. Nevertheless, if you want to get exact values of all zeros (when such
values are possible to give and the suitable procedures are implemented), then it is possible
to use the command >solve as above or the following commands, which give a greater
flexibility already for polynomials of degree 4 and which we explain through an example
(see Ex. 1.1(h)):

>alias(a=RootOf(X^4-4*X^3-20*X^2-8*X+4))

a

>allvalues(a)

1 +
√

7−
√

6 + 2
√

7, 1 +
√

7 +

√
6 + 2

√
7, 1−

√
7 +

√
6− 2

√
7, 1−

√
7−

√
6− 2

√
7

Notice that the command alias(a=RootOf(f(X))) defines one of the zeros of f(X). Asking
allvalues(a), we get all possible values. If we want to identify the value denoted by a, we

7



can compere it with all possible values. So for example allvalues(a)[1] gives the first one
and we can consider the difference of it with a defined by alias(a=RootOf(f(X))). If it is
0, then a denotes just this value.

It is also possible to get the discriminants of the polynomials (see p. 258) pointing the
variable with respect to which the discriminant should be computed:

> discrim(X^3+pX+q, X);

−4p3 − 27q2

but it may be instructive to try to get this result without use of a computer (see Ex. 1.3
and its solution).

8



2

Field extensions

A short introduction to groups, rings and fields is presented in the Appendix. Here we only
recall some notations, which play an important role in this chapter. If a field K is a subfield
of a field L, then we say that K ⊆ L is a field extension. If Ki, i ∈ I (I an index set) are
subfields of L, then the intersection ∩Ki, i ∈ I, is also a subfield of L. If L ⊇ K and X is a
subset of L, then K(X) denotes the intersections of all subfields of L, which contain both
K and X (K(X) is the least subfield of L containing both K and X). If X = {α1, . . . , αn},
then we usually write K(X) = K(α1, . . . , αn). If X = K ′ is a subfield of L, then K(K ′) is
denoted by KK ′ and called the compositum of K and K ′. Every field is an extension of
the smallest field contained in it – the intersection of all its subfields. Such an intersection
does not contain any smaller fields. A field without any smaller subfields (one says often
proper subfields) is called a prime field.

The rational numbers is the only infinite prime field (up to isomorphism of fields). For every
prime number p, there is a finite prime field Fp consisting of the residues 0, 1, . . . , p−1 of the
integers Z modulo p, which are added and multiplied modulo p (the field Fp is the quotient
of Z modulo the ideal generated by the prime number p – see A.4 for more details).

By the characteristic of a field K, we mean the number 0 if the prime subfield of K is
infinite and the number of elements in the prime subfield of K if it is finite. The characteristic
of K is denoted by char(K).

T.2.1 (a) The characteristic of a field is 0 or a prime number.

(b) Any field K of characteristic 0 contains a unique subfield isomorphic to the rational
numbers Q and any field of characteristic p contains a unique subfield isomorphic to Fp.

EXERCISES 2

2.1. Which of the following subsets of C are fields with respect to the usual addition and
multiplication of numbers:



(a) Z; (e) {a+ b 3
√

2, a, b ∈ Q};
(b) {0, 1}; (f) {a+ b 4

√
2, a, b ∈ Q};

(c) {0}; (g) {a+ b
√

2, a, b ∈ Z};
(d) {a+ b

√
2, a, b ∈ Q}; (h) {z ∈ C : |z| ≤ 1}.

2.2. Show that every subfield of C contains Q.

2.3. Give an example of an infinite field of characteristic 6= 0.

2.4. Show that the characteristic of a field K is the least natural number n > 0 such that
na = 0 for each a ∈ K or it is 0 if such n does not exist.

2.5. (a) Let L ⊇ K be a field extension and let α ∈ LrK, α2 ∈ K. Show that

K(α) = {a+ bα, where a, b ∈ K}.

(b) Let K(
√
a) and K(

√
b), where a, b ∈ K, ab 6= 0, be two field extensions of K. Show that

K(
√
a) = K(

√
b) if and only if ab is a square in K (that is, there is c ∈ K such that ab = c2).

2.6. Give a description of all numbers belonging to the fields:

(a) Q(
√

2); (b) Q(i); (c) Q(
√

2, i); (d) Q(
√

2,
√

3).

2.7. Show that

(a) Q(
√

5, i
√

5) = Q(i,
√

5);
(b) Q(

√
2,
√

6) = Q(
√

2,
√

3);
(c) Q(

√
5,
√

7) = Q(
√

5 +
√

7);
(d) Q(

√
a,
√
b) = Q(

√
a+
√
b), when a, b ∈ Q,

√
a+
√
b 6= 0.

2.8. Give a description of the following subfields of C:

(a) Q(X), where X = {
√

2, 1 + 2
√

8};
(b) Q(i)(X), where X = {

√
2};

(c) K1K2, where K1 = Q(i), K2 = Q(
√

5);
(d) Q(X), where X = {z ∈ C : z4 = 1}.

2.9. Let K be a field.

(a) Show that all the matrices

[
a b
−b a

]
, where a, b ∈ K, form a field L with respect to matrix

addition and matrix multiplication if and only if the equation X2 + 1 = 0 has not solutions
in K.

(b) Show that L contains a field isomorphic to K.

(c) Use (a) in order to construct a field with 9 elements and find its characteristic.

10



Remark. We discuss finite fields in Chapter 5, where general construction of finite fields is
given.

2.10. Let K be a field

(a) Formulate a suitable condition such that all matrices

[
a b
−b a− b

]
, a, b ∈ K, form a field

with respect to the matrix addition and multiplication.

(b) Use (a) in order to construct a field with 4 elements and write down the addition and
the multiplication tables for the elements in this field.

2.11. In a field K the equality a4 = a is satisfied for all a ∈ K. Find the characteristic of
the field K.

2.12. Let K be a field of characteristic p.

(a) Show that (a+ b)p
m

= ap
m

+ bp
m

when a, b ∈ K and m is a natural number.

(b) Let p divide a positive integer n. Show that an + bn = (a
n
p + b

n
p )p when a, b ∈ K.

(c) Define ϕ : K → K such that ϕ(x) = xp. Show that the image of ϕ, which we denote by
Kp, is a subfield of K.

2.13. Let K ⊆ L be a field extension and let M1,M2 be two fields containing K and
contained in L.

(a) Motivate that M1M2 consists of all quotients of finite sums
∑
αiβi, where αi ∈M1 and

βi ∈M2.

(b) Motivate that for each x ∈M1M2 there are α1, . . . , αm ∈M1 and β1, . . . , βn ∈M2 such
that x ∈ K(α1, . . . , αm, β1, . . . , βn).

2.14. Let K be a field of characteristic p. Show that for any a ∈ K, the polynomial f(X) =
Xp −X + a has p zeros in K or no zeros in K (H137).
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3

Polynomials and irreducibility

In this chapter, we gather a few facts concerning zeros of polynomials and discuss some
simple metods helping to decide whether a polynomial is irreducible or reducible. In many
practical situations, this information is very essential for studies of field extensions. A short
presentation of polynomial rings can be found in the Appendix (see A.6).

Let K be a field and let f(X) = anX
n + · · · + a1X + a0 be a polynomial with coefficients

ai ∈ K. When an 6= 0, then n is called the degree of f(X) and is denoted by deg f . The zero
polynomial is the one with all coefficients equal to 0. Its degree is usually not defined, but
sometimes it is defined as 1 or ∞. For practical reasons, we shall assume that the degree of
the zero polynomial is 1.

If L is a field containing K, then we say that α ∈ L is a zero of f ∈ K[X] if f(α) = 0.

T.3.1 Factor Theorem. Let K ⊆ L be a field extension.

(a) The remainder of f ∈ K[X] divided by X − a, a ∈ L, is equal f(a);

(b) An element a ∈ L is a zero of f ∈ K[X] if and only if X − a|f(X) (in L[X]).

A polynomial f ∈ K[X] is reducible (in K[X] or over K) if f = gh, where g, h ∈ K[X],
deg g ≥ 1 and deg h ≥ 1. A non-constant polynomial which is not reducible is called irre-
ducible. Of course, every polynomial of degree 1 is irreducible.

In the polynomial rings over fields, every non constant polynomial is a product of irreducible
factors and such a product is unique in the following sense:

T.3.2 Let K be a field. Every polynomial of degree degree ≥ 1 in K[X] is a product of
irreducible polynomials . If

f = p1 . . . pk = p′1 . . . p
′
l,

where pi and p′i are irreducible polynomials, then k = l and with suitable numbering of the
factors pi, p

′
j, we have p′i = cipi, where ci ∈ K.



We gather a few facts about irreducible polynomials in different rings. More detailed infor-
mation is given in the exercises.

In the ring C[X], the only irreducible polynomials are exactly the polynomials of degree 1.
This is the content of the Fundamental Theorem of (polynomial) Algebra, which was
the first time proved by C.F. Gauss in 1799: If f(X) ∈ C[X], then f(X) = c(X−z1) . . . (X−
zn), where n is the degree of the polynomial f(X), c ∈ C and zi ∈ C are all its zeros (with
suitable multiplicities).

In the ring R[X] all irreducible polynomials are of degree 1 and the polynomials of degree 2
of the shape c(X2 + pX + q) such that ∆ = p2− 4q < 0 and c ∈ R, c 6= 0. This follows easily
from the description of the irreducible polynomials in C[X] ( see Ex. 3.5).

In the ring Q[X] of the polynomials with rational coefficients, there are irreducible polyno-
mials of arbitrary degrees. For example, the polynomials Xn − 2 are irreducible for every
n ≥ 1 (see Ex. 3.7). In order to prove that a polynomial with integer coefficients is irreducible
in Q[X] (which is a frequent situations in many exercises in Galois Theory), it is convenient
to study the irreducibility of this polynomial in Z[X] in combination with Gauss’s Lemma
or reductions of the polynomial modulo suitable prime numbers (see Ex. 3.8).

T.3.3 Gauss’s Lemma. A nonconstant polynomial with integer coefficients is reducible in
Z[X] if and only if it is reducible in Q[X]. More exactly, if f ∈ Z[X] and f = gh, where
g, h ∈ Q[X], then there are rational numbers r, s such that rg, sh ∈ Z[X] and rs = 1, so
f = (rg)(sh).

Remark. Gauss’s Lemma is true for every principal ideal domain R and its quotient field
K instead of Z and Q. The proof of this more general version is essentially the same as the
proof of the above version on p. 93.

If f(X) = anX
n+· · ·+a1X+a0 is a polynomial with integer coefficients ai for i = 0, 1, . . . , n,

then its reductions modulo a prime number p is the polynomial f̄(X) = ānX
n + · · ·+

ā1X+ ā0 whose coefficients are the residues of ai modulo p. We denote the reduction modulo
p by f(X) (mod p). The reduction modulo p is a ring homomorphism of the polynomial
ring Z[X] onto the polynomial ring Fp[X] (compare the text on reduction modulo a ring
homomorphism on p. 77).

EXERCISES 3

3.1. (a) Show that a polynomial f ∈ K[X] of degree 2 or 3 is reducible in K[X] if and only
if f has a zero in K, that is, there is x0 ∈ K such that f(x0) = 0.

(b) Show that the polynomial X4 + 4 over the rational numbers Q, has no rational zeros,
but is reducible in Q[X] (notice that Q may be replaced by R).

3.2. Make a list of all irreducible polynomials of degrees 1 to 5 over the field F2 with 2
elements.
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3.3. Show that if a rational number p
q , where p, q are relatively prime integers, is a solution

of an equation anX
n + · · ·+ a1X + a0 = 0 with integer coefficients ai, i = 0, 1, . . . , n, then

p|a0 and q|an.

3.4. Factorize the following polynomials as a product of irreducible ones:

(a) X4 + 64 in Q[X]; (e) X3 − 2 in Q[X];
(b) X4 + 1 in R[X]; (f) X6 + 27 in R[X];
(c) X7 + 1 in F2[X]; (g) X3 + 2 in F3[X];
(d) X4 + 2 in F5[X]; (h) X4 +X + 2 in F3[X].

3.5. (a) Show that if a real polynomial f(X) ∈ R[X] has a complex zero z, then also the
conjugated number z̄ is a zero of f(X).

(b) Show that a real polynomial of degree at least 1 is a product of irreducible polynomials
of degrees 1 or 2.

3.6. Using Gauss’s Lemma show that the following polynomials are irreducible in Q[X]:

(a) X4 + 1; (b) X4 − 10X2 + 1; (c) X4 − 4X3 + 12X2 − 16X + 8.

Remark. The polynomials (a)–(c) are chosen in such a way that any reduction of them
modulo a prime number gives a reducible polynomial over Fp. Se Ex. 5.12.

3.7. (a) Prove Eisentein’s criterion: Let f(X) = anX
n + · · · + a1X + a0 ∈ Z[X] and let

p be a prime number such that p|a0, p|a1, . . . , p|an−1, p - an and p2 - a0. Show that f(X) is
irreducible in Z[X].

(b) Show that the polynomials Xn − 2 for n = 1, 2, . . . are irreducible over Q.

(c) Show that the polynomial f(X) = Xp−1
X−1 = Xp−1 + · · ·+X + 1 is irreducible over Q for

every prime number p.

3.8. (a) Show that if a reduction of a monic polynomial f(X) ∈ Z[X] modulo a prime
number p is irreducible as a polynomial in Fp[X], then f(X) is irreducible in Q[X].

(b) Show that if a monic polynomial f(X) ∈ Z[X] has reductions modulo two prime numbers
p, q such that f(X) (mod p) is a product of two irreducible factors of degrees d1p, d2p and
f(X) (mod q) is a product of two irreducible factors of degrees d1q, d2q and {d1p, d2p} 6=
{d1q, d2q}, then f(X) is irreducible in Q[X].

(c) Using (a) or (b) show that the following polynomials are irreducible in Q[X]:

(c1) X4 +X + 1; (c2) X5 +X2 + 1; (c2) X4 + 3X + 4;
(c4) X5 + 3X + 1; (c5) X6 + 5X2 +X + 1; (c6) X7 +X4 +X2 + 1.

3.9. (a) Let f(X) = X4 +pX2 +qX+r be a polynomial with coefficients in a field K. Show
that f(X) = (X2 + aX + b)(X2 + a′X + b′), where a, b, a′, b′ are in a some field containing
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K if and only if a2 is a solution of the equation r(f)(T ) = T 3 + 2pT 2 + (p2 − 4r)T − q2 = 0
called the resolvent of f(X).

(b) Show that f(X) in (a) is a product of two quadratic polynomials over K if and only if

(∗) q 6= 0 and the resolvent r(f) has a zero, which is a square in K or

(∗∗) q = 0 and the resolvent r(f) has two zeros, which are squares in K or δ = p2 − 4r is a
square in K.

3.10. Show that over every field there exists infinitely many irreducible polynomials.

3.11. Show that if a monic polynomial with rational coefficients divides a monic polynomial
with integer coefficients, then has also integer coefficients.

USING COMPUTERS 3

An implementation of algorithms giving a possibility to factorize polynomials over the ra-
tional numbers Q or over finite fields Fp is usual in many program packages. In Maple,
it is possible to construct finite field extensions of Q and Fp and factor polynomials over
them, but we postpone our general discussion of field extensions to the next chapter. The
command >factor(f(X)) gives a possibility to factor a polynomial f(X) ∈ Q[X] over
Q or to establish its irreducibility. If we want to know the same over the real or com-
plex numbers, we can use >factor(f(X),real), respectively >factor(f(X),complex). The
command >irreduc(f(X)) gives true or false depending whether f(X) is irreducible or
not over the field of rational numbers. The same over the real numbers is achieved by
>irreduc(f(X),real).

The same thing over any finite field Fp is achieved by the command >Factor(f(X)) mod p.
Observe the usage of the capital letter F in the last command. Over the finite fields Fp,
there is the command >Irreduc(f(X)) mod p. For example, the following command lists
all quadratic irreducible polynomials over the field F5:

> for i from 0 to 4 do for j from 0 to 4 do if Irreduc(x^2+i*x+j) mod 5 = true

then print(x^2+i*x+j) fi od od

3.12. List all monic irreducible polynomials of degrees less than 4 over the field F3.

3.13. Verify the results of Ex. 3.1, 3.4 and 3.8 using Maple.
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4

Algebraic extensions

Let K ⊆ L be a field extension. We say that an element α ∈ L is algebraic over K if there
is a non-zero polynomial f ∈ K[X] such that f(α) = 0. If such a polynomial does not exist,
α is called transcendental over K. If α ∈ C is algebraic over Q, then we say that α is an
algebraic number. A number α ∈ C, which is not algebraic is called transcendental. If
α ∈ L is algebraic over K, then any non-zero polynomial of the least possible degree among
all the polynomials f ∈ K[X] such that f(α) = 0 is called a minimal polynomial of α
over K. The degree of f is called the degree of α over K.

T.4.1 Let α ∈ L ⊇ K be algebraic over K.

(a) Any minimal polynomial of α over K is irreducible and divides every polynomial in K[X]
which has α as its zero.

(b) An irreducible polynomial f ∈ K[X] such that f(α) = 0 is a minimal polynomial of α
over K.

(c) All minimal polynomials of α over K can be obtained by multiplying one of them by
nonzero elements of K.

Using the last statement, we usually choose the minimal polynomial, which is the unique
minimal polynomial whose highest coefficient equals 1. The degree of the minimal polynomial
of α over K is called the degree of α over K. An extension K(α) of K is called simple and
α is called its generator.

T.4.2 Simple extension theorem. (a) If α ∈ L ⊇ K is algebraic over K, then each
element in K(α) can be uniquely represented as a0 + a1α + · · · + an−1α

n−1, where ai ∈ K
and n is the degree of the minimal polynomial of α over K. Thus [K(α) : K] = n and
1, α, . . . , αn−1 is a basis of K(α) over K.

(b) If α ∈ L ⊇ K is transcendental over K, then K[α] ' K[X], where K[X] is the ring of
polynomials over K.



If L ⊇ K is a field extension, then L can be considered as a vector space over K. By the
degree [L : K], we mean the dimension of the linear space L over K. If this dimension is
not finite, we write [L : K] =∞. T.4.2 says that [K(α) : K] = deg (f) when α is algebraic
and f its minimal polynomial.

T.4.3 Tower Law. Let M ⊇ L and L ⊇ K be finite field extensions. Then M ⊇ K is a
finite field extension and [M : K] = [M : L][L : K].

An extension L ⊇ K is called algebraic if every element in L is algebraic over K. It is
called finite if [L : K] 6= ∞. We say that the extension L ⊇ K is finitely generated if
L = K(α1, . . . , αn), where αi ∈ L.

T.4.4 A field extension L ⊇ K is finite if and only if it is algebraic and finitely generated.

T.4.5 If K ⊆ M ⊆ L are field extensions such that M is algebraic over K and α ∈ L is
algebraic over M , then it is algebraic over K.

T.4.6 Let L ⊇ K. All elements in L algebraic over K form a field.

If L ⊇ K, then the field of all elements of L algebraic over K is called the algebraic closure
of K in L. If K = Q and L = C, then the field of algebraic elements over Q will be denoted
by A and called the field of algebraic numbers. A field K is called algebraically closed
if it does not posses algebraic extensions, that is, for every field L ⊇ K, if α ∈ L is algebraic
over K, then α ∈ K. This means that K is algebraically closed when the only irreducible
polynomials over K are polynomials of degree 1. The fields C and A are algebraically closed
(see Ex. 13.14 for C and Ex. 4.17 for A).

EXERCISES 4

4.1. Which of the following numbers are algebraic?

(a) 1 +
√

2 +
√

3; (d)
√
π + 1;

(b)
√

3 + 4
√

3; (e)
√
π +
√

2;

(c) 3
√

3 +
√

2; (f) 3
√

1 +
√
e.

4.2. (a) Show that if f ∈ K[X] is irreducible over K and L ⊇ K is a field extension such
that the degree deg f and the degree [L : K] are relatively prime, then f is irreducible over
L.

(b) Prove Nagell’s Lemma: Let L ⊃ K be a field extension of prime degree q. If f ∈ K[X]
has prime degree p and is irreducible over K, but reducible over L, then q = p.

Remark. We use Nagell’s Lemma in Ex. 13.6, where following Nagell, we prove, in a very
simple way, insolvability in radicals of some fifth degree equations.
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4.3. Find the minimal polynomial and the degree of α over K when:

(a) K = Q, α =
3
√√

3 + 1; (d) K = Q(i), α =
√

2;

(b) K = Q, α =
√

2 + 3
√

2; (e) K = Q(
√

2), α = 3
√

2;
(c) K = Q, α5 = 1, α 6= 1; (f) K = Q, αp = 1, α 6= 1, p a prime number.

4.4. Find the degree and a basis of the following extensions L ⊇ K:

(a) K = Q, L = Q(
√

2, i); (f) K = Q, L = Q(
√

2,
√

3,
√

5);

(b) K = Q, L = Q(
√

2,
√

3); (g) K = Q(
√

3), L = Q(
3
√

1 +
√

3);

(c) K = Q, L = Q(i, 3
√

2); (h) K = F2, L = F2(α), where α4 + α2 + 1 = 0;

(d) K = Q, L = Q( 3
√

2 + 2 3
√

4); (i) K = F3, L = F3(α), where α3 + α2 + 2 = 0;
(e) K = R(X + 1

X ), L = R(X); (j) K = R(X2 + 1
X2 ), L = R(X).

4.5. Show that a complex number z = a+ bi is algebraic (over Q) if and only if a and b are
algebraic.

4.6. Show that the numbers sin rπ and cos rπ are algebraic if r is a rational number.

4.7. Let L = Q( 3
√

2). Find a, b, c ∈ Q such that x = a+ b 3
√

2 + c 3
√

4 when

(a) x =
1
3
√

2
; (b) x =

1

1 + 3
√

2
; (c) x =

1 + 3
√

2

1 + 3
√

2 + 3
√

4
.

4.8. Let L = Q(
√

2,
√

3). Find a, b, c, d ∈ Q such that x = a+ b
√

2 + c
√

3 + d
√

6 when

(a) x =
1√

2 +
√

3
; (b) x =

1

1 +
√

2 +
√

3
; (c) x =

√
2 +
√

3

1 +
√

2 +
√

3 +
√

6
.

4.9. Let L = F2(α), where α4+α+1 = 0. Find a, b, c, d,∈ F2 such that x = a+bα+cα2+dα3

when

(a) x =
1

α
; (b) x = α5; (c) x = α15; (d) x =

1

α2 + α+ 1
.

4.10. (a) Show that if α ∈ K(X) r K, α = p(X)
q(X) , where p, q ∈ K[X] and SGD(p, q) = 1,

then [K(X) : K(α)] ≤ n, where n = max(deg p,deg q).

(b) Show that if α ∈ K(X)rK, then α is transcendent over K.

(c) Show that with the notations in (a), there is an equality [K(X) : K(α)] = n.

Remark. A famous theorem of Lüroth says that all subfields L of K(X) containing K are
of the form K(α), where α ∈ K(X). The results of the exercise may be used in a proof of
Lüroth’s theorem (for a proof see XX[?]).

4.11. Let M1,M2 be two fields between K and L.
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(a) Prove that if M1 and M2 are algebraic extensions of K, then also M1M2 is an algebraic
extension of K.

(b) Prove that if [M1 : K] 6=∞ and [M2 : K] 6=∞, then [M1M2 : K] 6=∞.

(c) Show that if [M1 : K] = r and [M2 : K] = s, where (r, s) = 1, then [M1M2 : K] = rs
and M1 ∩M2 = K.

(d) Is there any “general” relation between [M1 : K], [M2 : K] and [M1M2 : K]?

4.12. Show that if [K(α) : K] is odd, then K(α) = K(α2). Is it true that K(α) = K(α2)
implies that [K(α) : K] is odd?

4.13. (a) Show that if L is a field containing C and [L : C] 6=∞, then L = C.

(b) Show that if L is a field containing R and [L : R] 6=∞, then L = R or L ∼= C.

4.14. Is it true that for each divisor d to [L : K] there exists a field M between K and L
such that [M : K] = d ?

4.15. It is (well-)known that the numbers e and π are transcendental. It is not known
whether e+π and eπ are transcendental. Show that at least one of the numbers e+π or eπ
must be transcendental.

4.16. (a) Let K ⊆ L be a field extension and let f(α) = 0, where α ∈ L and f(X) is a
polynomial whose coefficients are algebraic over K. Prove that α is also algebraic over K.

(b) Assume that the number α is algebraic. Prove that also the following numbers are
algebraic:

(b1) α2; (b2)
√
α; (b3) 3

√
1 +
√
α.

4.17. Show that the algebraical closure of a field K in an algebraically closed field L con-
taining it is also algebraically closed (for example, since A is the algebraical closure of Q in
C, it is algebraically closed – see Ex. 13.14).

USING COMPUTERS 4

Finite algebraic extensions of rational numbers Q and of finite fields Fp can be constructed
in Maple using the command RootOf like:

> alias(a = RootOf(X^2+1));

a
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which defines the extension Q(i) with i denoted here by a. If a field K = Q(a), where
a is defined by RootOf (see p. 7), then we can both factorize a polynomial g(X) over K
by >factor(g(X),a) or ask whether it is irreducible using >irreducible(g(X),a). For
example, the polynomial X4 + 1 over the field Q(i) is factored by the command:

> factor(X^4+1,a);

(X2 − a)(X2 + a)

If we want to define a finite field as an extension of Fp for a prime number p, then we write

> alias(b = RootOf(X^3+X+1 mod 2));

We have defined the field F2(b) (we use b if it is the same session in which we used a above),
whose degree is 8 over F2 (the polynomial X3 + X + 1 is irreducible over F2) and we can
make computations with it. For example:

>simplify(b^7 mod 2);

1

which could be expected in the group of order 7 of all nonzero elements in the field F2(b). It is
possible to solve problems like Ex. 4.7, 4.8 or 4.9 finding for example >simplify(1/(b^2+b+1))
in the field F2(b).

In Maple, it is possible to find the minimal polynomial of an algebraic number over Q and
over finite algebraic extensions of it (even if these tools are far from being perfect as yet and

the results of computations should be always checked). For example, take α =
3
√

1 +
√

3.
We guess that this number has degree 6 over Q (but one can try with bigger values than
the expected degree of the minimal polynomial and one has to be cautious). We use the
following commands:

> with(PolynomialTools);

> r:= evalf((1+sqrt(3))^(1/3));

1.397964868

> MinimalPolynomial(r,6);

3 6

-2 - 2 _X + _X

One can check the irreducibility of this polynomial (of course, it is irreducible by Eisenstein’s
criterion):

>factor(X^6-2*X^3-2)

X6 − 2X3 − 2

In general, we can find the minimal polynomial of α over a finite extension K of Q finding
such polynomial over Q and then factoring this polynomial over K. We can check which of
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the factors has α as its zero. If we continue with α above and if we want to get the minimal
polynomial of this number over K = Q(

√
3), then we note easily that X3 − (1 +

√
3) is a

polynomial with coefficients in K of degree 3 having α as its zero. Since we already know
that [Q(α) : Q] = 6 and [K : Q] = 2, so [Q(α) : K] = 3, which means that the polynomial
X3 − (1 +

√
3) is minimal for α over K by T.4.2. In Maple, we can use the command:

>factor(X^6-2*X^3-2,sqrt(3))

(X3 − 1 +
√

3)(−X3 + 1 +
√

3)

which says that the two polynomials of degree 3 are irreducible (the second factor is the
minimal polynomial of α). Observe, that instead of sqrt(3) one could define the field K
using construction with RootOf.

Working in a field generated by algebraic numbers, it is possible to express the elements
of the field by the elements of a basis using the command rationalise as the following
example shows. We work in the field Q(

√
5,
√

7) and we want express a number in this field
by the powers of the generators

√
5,
√

7:

>a:= sqrt(5); b := sqrt(7)

5
1
2

7
1
2

>expand(rationalize(1/(a+b)))

3

19

√
5 +

11

19
− 1/19

√
7− 2/19

√
7
√

5

4.18. Solve some of the exercises in Ex. 4.7, 4.8 or 4.9 using Maple.

4.19. Find minimal polynomials of the following numbers α over given fields:

(a) α = 4
√

2 +
√

2 + 1 over Q; (c) α = 3
√

2 +
√

2 + 1 over Q(
√

2);

(b) α = 3
√

2 + i over Q; (d) α = 4
√

2 + i+ 1 over Q(i).

4.20. Factorize the given polynomial f(X) ∈ Q[X] into irreducible factors over K = Q(a),
where a is a zero of f(X):

(a) f(X) = X6 − 2; (d) f(X) = X6 − 3X2 − 1;
(b) f(X) = X5 − 5X + 12; (e) f(X) = X6 + 2X3 − 2;
(c) f(X) = X6 + 3X3 + 3; (f) f(X) = X7 + 7X3 + 7X2 + 7X − 1.
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5

Splitting fields. Finite fields

If K is a field and f ∈ K[X], then we say that L is a splitting field of f over K if
L = K(α1, . . . , αn) and f(X) = a(X − α1) . . . (X − αn), where a ∈ K. We say that f has
all its zeros in L and that L is generated over K by these zeros. Sometimes, the splitting
field of f over K is denoted by Kf . If τ : K → K ′ is an embedding of the field K into
a field K ′, that is, τ is a injective function such that τ(x + y) = τ(x) + τ(y) and τ(xy) =
τ(x)τ(y) for x, y ∈ K, then τ can be extended to an embedding of the polynomial rings
τ : K[X]→ K ′[X] (denoted by the same letter): τ(f(X)) = τ(an)Xn+ · · ·+ τ(a1)X+ τ(a0)
when f(X) = anX

n + . . .+a1X +a0 ∈ K[X] (compare to a more general context on p. 77).
Very often, we consider the case when τ(K) = K ′, that is, the function τ is an isomorphism
of the fields K and K ′.

T.5.1 (a) If f is an irreducible polynomial over K, then there exists a field L ⊇ K such
that L = K(α) and f(α) = 0.

(b) If τ : K → K ′ is a field isomorphism, f an irreducible polynomial over K,L = K(α),
where f(α) = 0 and L′ = K ′(α′), where τ(f)(α′) = 0, then there is an isomorphism σ :
K(α)→ K ′(α′) such that in the diagram:

K(α)
σ
// K ′(α′)

K

OO

τ
// K ′

OO

,

we have σ(α) = α′ and σ|K = τ .

In particular, if K = K ′ and τ = id, then σ is an isomorphism over K (that is, the
isomorphism σ maps each element in K on itself ) of the two simple extensions of K by two
arbitrary roots of f(X) = 0.



Usually, the above result is called Kronecker’s1 theorem. An inductive argument gives
the following theorem, which will be used frequently:

T.5.2 (a) Every polynomial f ∈ K[X] has a splitting field over K.

(b) If τ : K → K ′ is an isomorphism of fields, L is a splitting field of a polynomial f ∈ K[X]
and L′ is a splitting field of the polynomial τ(f) ∈ K ′[X], then there exists an isomorphism
σ : L→ L′

L
σ
// L′

K

OO

τ
// K ′

OO

which extends τ (that is σ|K = τ). In particular, if K = K ′ and τ = id, then two splitting
fields for f over K are K-isomorphic (that is, the isomorphism σ maps each element in K
on itself ).

Moreover, if f is separable, then there are exactly [L : K] different possibilities for σ when
τ is given.

If f(X) = a0X+. . .+anX
n ∈ K[X], then we define the derivative f ′ of f as the polynomial

f ′(X) = a1 + 2a2X + . . . + nanX
n−1. Exactly as for the polynomials in R[X], we have

(f1 + f2)′ = f ′1 + f ′2 and (f1f2)′ = f ′1f2 + f1f
′
2, which can be checked by an uncomplicated

computation.

T.5.3 A polynomial f ∈ K[X] has no multiple zeros in any extension L ⊇ K if and only if
SGD(f, f ′) = 1.

Using this theorem and the construction of the splitting fields, it possible to give a description
of all finite fields.

T.5.4 The number of elements in a finite field is a power of a prime number.

(a) If p is a prime number and n ≥ 1, then the splitting field for Xpn −X over Fp is a finite
field with pn element.

(b) Two finite fields with the same number of elements are isomorphic. More exactly, every
finite field with pn element is a splitting field of Xpn −X over Fp.

If a field K is algebraically closed, then all polynomials with coefficients in K split already
in K, that is, for every polynomial f(X) ∈ K[X], we have f(X) = a0(X −α1) · · · (X −αn),
where a0, αi ∈ K (see p. 18). The field of all complex numbers or the field of algebraic

1 Leopold Kronecker (1823 – 1891) was a German mathematician known for his very important
contributions in many fields of mathematics, but especially in number theory.
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numbers have this property (see Ex. 13.14 for C and Ex. 4.17 for A). By an algebraic
closure of a field K, we mean a field K, which is algebraic over K and algebraically closed.
This means that such a field K contains a splitting field of every polynomial with coefficients
in K. We have:

T.5.5 For every field K there exists an algebraic closure K and two algebraic closures of
the same field K are K-isomorphic.

EXERCISES 5

5.1. Find the degree and a basis of the splitting field over K for f ∈ K[X] when

(a) K = Q, f = (X2 − 2)(X2 − 5); (e) K = Q, f = X4 + 1;
(b) K = Q, f = X3 − 2; (f) K = Q(i), f = X4 − 2;
(c) K = Q, f = X4 − 2; (g) K = Q(i), f = (X2 − 2)(X2 − 3);
(d) K = Q, f = X4 +X2 − 1; (h) K = Q, f = Xp − 1, p a prime number.

5.2. Decide whether the following pairs of fields are isomorphic:

(a) Q( 4
√

2) and Q(i 4
√

2);

(b) Q(
3
√

1 +
√

3) and Q(
3
√

1−
√

3);

(c) Q(
√

2) and Q(
√

3).

5.3. Let L be a splitting field of a polynomial f(X) of degree n with coefficients in a field
K. Show that [L : K] ≤ n!.

5.4. Prove that a field with pn elements contains a field with pm elements if and only if m|n.

5.5. (a) Let f(X) be an irreducible polynomial of degree n over a field Fp. Show that
Fp[X]/(f(X)) is a field with pn element, which is isomorphic with the splitting field of the
polynomial Xpn −X and f(X) divides Xpn −X.

(b) Let f(X) be an irreducible polynomial in Fp[X]. Show that f(X)|Xpn −X if and only
if deg(f(X))|n.

5.6. Let vp(n) denote the number of the irreducible polynomials of degree n in Fp[X]. Prove
that ∑

d|n

dvp(d) = pn and vp(n) =
1

n

∑
d|n

pdµ
(n
d

)
,

where µ(n) is the Möbius function, that is, µ(n) = 0 if there is a prime number p whose
square divides n, µ(n) = (−1)k if n is a product of k different primes, and µ(1) = 1.
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5.7. (a) Prove that a finite subgroup of the multiplicative group K∗ of a field K is cyclic.

(b) Prove that if L ⊇ K are finite fields, then there is an element γ ∈ L such that L = K(γ).

5.8. (a) An irreducible polynomial f ∈ Fp[X] of degree n is called primitive if f - Xm−X
when m < pn. Prove that the number of primitive polynomials of degree n is equal to
1
nϕ(pn− 1), where ϕ is the Euler function, that is, ϕ(n) for integer n > 0 equals the number
of 0 < k < n such that gcd(k, n) = 1.

(b) Show that for every finite field F and for every n there exists irreducible polynomials of
degree n over F.

5.9. Show that (fg)′ = f ′g + fg′ when f, g ∈ K[X].

5.10. (a) Let L be a splitting field of the polynomial Xn − 1 over a field K. Show that the
zeros of this polynomial, that is, the n-th roots of 1, form a finite cyclic group and that
L = K(ε), where ε is a generator of this group.

(b) Motivate that the number of the n-th roots of 1 in a splitting field of Xn − 1 over a
field K is n if and only if the characteristic of K is 0 or it is relatively prime to n (does not
divide n).

(c) Let L be a splitting field of a polynomial Xn − a over a field K (a ∈ K∗). Show that
L = K(ε, α), where ε generates the group of solutions of Xn− 1 = 0 in L and α is any fixed
solution of the equation Xn − a = 0 in L. Motivate that all solutions of Xn − a = 0 are ηα,
where η are all different n-th roots of 1.

5.11. (a) Let a ∈ K, where K is a field and let p be a prime number. Show that the
polynomial Xp − a is irreducible over K or has a zero in this field.

(b) Show that (a) is not true in general for binomials Xn−a when n is not a prime number.

Remark. The result in (a) was first proved by Abel (see [Tsch, p. 287]). A more general
result on reducibility of binomial polynomials Xn − a is known as Capelli’s Theorem (see
[Tsch], p. 294): The polynomial Xn − a, where a ∈ K (K of characteristic 0), is reducible
over K if and only if there is a prime p dividing n and b ∈ K such that a = bp or n = 4 and
a = −4b4 (for a proof see [Tsch], IV §2, [XXSchinzel]).

5.12. The polynomial X4 + 1 is irreducible over Q. Show that any reduction of X4 + 1
modulo any prime number p gives a reducible polynomial over Fp.

5.13. Let K be an algebraic closure of a field K and let L be an extension of K contained
in K. Show that K is also an algebraic closure of L.
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USING COMPUTERS 5

It is possible to construct a splitting field of a polynomial (of not too high degree) using the
command >RootOf (see p. 7) and the command >allvalues, which gives values of all zeros
of the polynomial whose zero is defined by the command >RootOf, for example:

>alias(a=RootOf(X^4-10*X^2+1))

a

>allvalues(a)

√
3−
√

2,
√

3 +
√

2,−
√

3 +
√

2,−
√

3−
√

2

>factor(X^4-10*X^2+1,a)

(−X − 10a+ a3)(X − 10a+ a3)(X + a)(−X + a)

Thus the field K = Q(
√

2 +
√

3) is the splitting field of f(X) = X4 − 10X2 + 1, since it
splits in the linear factors when one of its zeros is adjoint to the field Q (in fact, we have
allvalues(a)[2] equal to

√
2 +
√

3, but all zeros give, of course, the same field).

The command >factor(f(X),{a,b}) gives a possibility to check whether the extension by
the chosen zeros of f(X)(here a, b) really gives a splitting field (in its splitting field, the
polynomial f(X) should split completely into linear factors). Unfortunately, the command
>alias can not be defined in terms of another alias, which sometimes makes that the output
in terms of different RootOfs is not easy to grasp. For example, we find that the splitting
field of f(X) = X3−2 is generated by two of its zeros (we choose a simple example in order
to save the space - see Ex. 5.16):

>a:=RootOf(X^3-2)

RootOf( Z3 − 2)

>factor(X^3-2,a)

−(−X +RootOf( Z3 − 2))(X2 +RootOf( Z3 − 2)X +RootOf( Z3 − 2)2)

>b:=RootOf(X^2+a*X+a^2)

RootOf( Z2 +RootOf( Z3 − 2)Z +RootOf( Z3 − 2)2)

> factor(X^3-2, {a, b})
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(−X +RootOf( Z2 +RootOf( Z3 − 2) Z +RootOf( Z3 − 2)2))

(X+RootOf( Z2+RootOf( Z3−2) Z+RootOf( Z3−2)2)+RootOf( Z3−2))(−X+RootOf( Z3−2))

Using a, b the output is (−X + b)(X + a + b)(−X + a) (which is X3 − 2 – use command

>simplify to the product). It is easy to check that a = 3
√

2 and b = ε 3
√

2, where ε = −1+i
√

3
2

is a 3rd root of 1.

5.14. Check that the fields you constructed in Ex. 5.1 really are splitting fields of the given
polynomials f .

5.15. Find the degree of the splitting field over the rational numbers for polynomials f in
Ex. 4.20.

5.16. Find the least number of zeros of the polynomial f(X), which generate its splitting
field over Q:

(a) f(X) = X5 − 2; (b) f(X) = X5 − 5X + 12; (c) f(X) = X5 −X + 1.
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6

Automorphism groups of fields. Galois groups

Let L be a field. An automorphism of L is a bijective function σ : L→ L such that

(a) σ(x+ y) = σ(x) + σ(y)
(b) σ(xy) = σ(x)σ(y)

for arbitrary x, y ∈ L. If L ⊇ K is a field extension, then an automorphism σ : L → L is
called K-automorphism if

(c) σ(x) = x for every x ∈ K.

T.6.1 All K-automorphisms of L form a group with respect to the composition of automor-
phisms.

The group of all K-automorphisms of L is denoted by G(L/K) and called the Galois
group of L over K1. If G is an arbitrary group, which consists of automorphisms of L (e.g.
G = G(L/K), where L ⊇ K), then we define

LG = {x ∈ L : ∀σ∈G σ(x) = x}.

It is easy to check that LG is a subfield of L. Sometimes, we want to construct some elements
of the field LG. Two most usual constructions are given by the trace (denoted TrG) and
the norm (denoted NrG) with respect to G:

TrG(α) =
∑
σ∈G

σ(α), and NrG(α) =
∏
σ∈G

σ(α), (6.1)

since clearly TrG(α),NrG(α) ∈ LG for α ∈ L. Notice that TrG(α + β) = TrG(α) + TrG(β)
and NrG(αβ) = NrG(α)NrG(β) for α, β ∈ L. The norm and the trace are often denoted by
TrL/LG and NrL/LG .

1 Sometimes, the group of all K-automorphisms of L is called Galois group only if L ⊇ K is a
Galois extension (see its definition in Chap. 9). We prefer the present convention for pedagogical
reasons (in particular, to decrease the number of notions and notations).



T.6.2 If G is a group of automorphisms of L (finite or infinite ), then LG is a subfield of
L and [L : LG] = |G|.

Almost all exercises will concentrate around this important theorem whose part claiming
the inequality [L : LG] ≤ |G| is often called Artin’s Lemma. The theorem is a consequence
of the following result:

T.6.3 Dedekind’s Lemma. If σ1, σ2, . . . , σn are different automorphisms of a field L and
the equality a1σ1(x) + a2σ2(x) + . . . + anσn(x) = 0, where ai ∈ L, holds for every x ∈ L,
then a1 = a2 = . . . = an = 0.

Dedekind’s Lemma can be also formulated as a statement saying that different automor-
phisms of a field L are linearly independent over L (e.g. in the vector space over L consisting
of all the functions f : L → L). By the Galois group over K of an equation f(X) = 0 or
the polynomial f(X), where f(X) ∈ K[X], we mean the Galois group of any splitting field
Kf over K. Instead of the notation G(Kf/K), sometimes we denote it by Gf (when K is
clear from the context) or Gf (K).

If Kf = K(α1, . . . , αn), where αi, i = 1, . . . , n are all zeros of f(X) = 0 and σ ∈ G(Kf/K),
then σ(αi) is also a zero of f(X) = 0 (see Ex. 6.1). We write σ(αi) = ασ(i), that is, we use the
same symbol σ in order to denote the permutation σ : {1, . . . , n} → {1, . . . , n} of the indices
1, . . . , n of the zeros of f(X) corresponding to σ. It is also an easy exercise (see Ex. 6.3) to
show that the permutations σ of 1, . . . , n corresponding to the automorphisms in the Galois
group G(Kf/K) form a subgroup of the symmetric group Sn (this subgroup depends of
course on the numbering of the zeros of f(X) = 0). We shall denote any permutation group
corresponding to f(X) = 0 by Gal(Kf/K) or Galf or Galf (K). In fact, Galois worked with
his groups just in this way considering them as permutations groups. Since this notational
distinction is not usual, we shall refer to “permutation (Galois) group” each time we want
to consider the Galois group of a polynomial as a permutation group of its zeros. The Galois
group G(Kf/K) acts on the set Xn = {1, . . . , n} when the zeros α1, . . . , αn of f(X) are
ordered in some way and the action of σ ∈ G(Kf/K) is defined by σ(i) = j if and only if
σ(αi) = αj . We shall apply the general terminology concerning actions of groups on sets as
presented in the Appendix (see A.8).

EXERCISES 6

6.1. Let L ⊇ K be a field extension.

(a) Show that if α ∈ L is a zero of f ∈ K[X] and σ ∈ G(L/K), then σ(α) is also a zero of f .

(b) Show that if L = K(α1, . . . , αr) and two automorphisms σ, τ ∈ G(L/K) are equal for
every generator αi (that is, σ(αi) = τ(αi) for each i), then σ = τ (that is, σ(α) = τ(α) for
every α ∈ L).

30



6.2. Find the Galois groups G = G(L/K) for the following extensions L ⊇ K:

(a) L = Q(
√

2), K = Q; (d) L = Q(
√

2,
√

3), K = Q;

(b) L = Q( 3
√

2), K = Q; (e) L = F2(X), K = F2(X2);

(c) L = Q( 4
√

2), K = Q; (f) L = F5(X), K = F5(X4).

6.3. (a) Show that any automorphism of any field restricts to the identity on its prime field.
In particular, the identity is the only automorphism of a prime field (that is, Q or Fp).

(b) Let K be a field of characteristic p 6= 0. Show that σ(x) = xp, x ∈ K is an automorphism
of K.

(c) Use (a) and (b) in order to prove Fermat’s Little Theorem: If a is an integer and p a
prime number, then p divides ap − a.

6.4. Show that the field of the real numbers R has no non-trivial automorphisms.

6.5. Show that if [L : K] < ∞, then the order of the Galois group G(L/K) divides the
degree [L : K].

6.6. (a) Show that if σ is a K-automorphism of the field K(X), then σ(X) = aX+b
cX+d , where

a, b, c, d ∈ K and ad− bc 6= 0.

(b) Show that all functions on K(X) of the form defined in (a) form the group of all auto-
morphism of K(X) over K (the functions of this form are often called Möbius functions
by analogy with the case K = R).

(c) Show that the group of automorphism of K(X) over K is isomorphic to the quotient
of the matrix group GL2(K) of all nonsingular (2 × 2)-matrices by the subgroup of scalar
matrices aI, where a ∈ K, a 6= 0 and I is the (2× 2) identity matrix.

6.7. Let L = F2(X) and let G be the group of all F2-automorphisms of L (see Ex. 6.6). Find
LG.

6.8. Let L = F3(X) and let G be the group of all automorphisms of L such that σ(X) =
aX + b, where a, b ∈ F3 and a 6= 0. Find LG.

6.9. (a) Let L = R(X,Y ) and G = {σ1, σ2}, where σ1 is the identity and σ2 is defined by
σ2(X) = −X, σ2(Y ) = Y . Find LG.

(b) Prove with the help of (a) that if f(X,Y ) ∈ R(X,Y ) is such that f(−X,Y ) = −f(X,Y ),
then

∫
f(sinx, cosx)dx =

∫
g(t)dt for a function g ∈ R(t) and t = cosx.

6.10. (a) Let L = R(X,Y ) and G = {σ1, σ2}, where σ1 is the identity and σ2 is defined by
σ2(X) = −X, σ2(Y ) = −Y . Find LG.

(b) Let f(X,Y ) ∈ R(X,Y ) and f(−X,−Y ) = f(X,Y ). Using (a) show how to express the
integral

∫
f(sinx, cosx)dx as an integral of a rational function.
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6.11. Let L = Q(X,Y ) and G = {σ1, σ2, σ3, σ4} be the group of automorphisms of L defined
by the table:

X Y
σ1 X Y
σ2 −X Y
σ3 X −Y
σ4 −X −Y

Find LG.

6.12. Let L = Q(X) and G =< σ >, where σ(X) = X + 1. Find LG.

6.13. (a) Let L = K(X,Y ) and G =< σ1, σ2 >, where σ1 is the identity and σ2(X) =
Y, σ2(Y ) = X. Find LG.

(b) Let L = K(X1, . . . , Xn) and G = Sn, where for σ ∈ Sn, σ(Xi) = Xσ(i). Show that LG =
K(s1, . . . , sn), where si are the elementary symmetric polynomials of X1, . . . , Xn, that is,
s1 =

∑
1≤i≤nXi, s2 =

∑
1≤i<j≤nXiXj , s3 =

∑
1≤i<j<k≤nXiXjXk, . . ., sn = X1X2 · · ·Xn.

6.14. Is it true that if [L : K1] 6= ∞ and [L : K2] 6= ∞, then [L : K1 ∩ K2] 6= ∞, where
K1,K2 are subfields of the field L?

USING COMPUTERS 6

There is not an evident general procedure to find the automorphism group of a given field
extension L ⊃ K. In some cases, it is possible to describe such a group using Ex. 6.1 when
the extension is represented as L = K(α) and the minimal polynomial f(X) of α over K
is given. Then each automorphism is uniquely determines by the image of α and such an
image is a zero of the polynomial f(X) in L. For example, take K = Q( 4

√
2). Then we define

>alias(a=RootOf(X^4-2))

a

>factor(X^4-2,a)

(X − a)(X + a)(X2 + a2)

Thus f(X) = X4 − 2 has two zeros ±a in K = Q(a), where a = 4
√

2 and there are two
automorphisms σ(a) = a (the identity) and σ(a) = −a.

Take f(X) = X3 − 7X + 7 and define K = Q(a), where a is a zero of f(X). Thus:
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>alias(a=RootOf(X^3-7X+7))

a

>factor(X^3-7X+7,a)

(−X − 14 + 4a+ 3a2)(X − 14 + 5a+ 3a2)(−X + a)

Thus the zeros of f(X) in K are a,−14+4a+3a2, 14−5a−3a2 and there are 3 automorphisms
σ0(a) = a, σ1(a) = −14 + 4a+ 3a2, σ2(a) = 14− 5a− 3a2. We can check that σ2

1(a) = σ2(a)
(that is, σ2

1 = σ2 (which is evident, since G(K/Q) = {σ0, σ1, σ2} is a cyclic group of order
3). In Maple, this can be done in the following way:

σ:=a -> -14+4*a+3*a^2

a→ −14 + 4a+ 3a2

simplify(σ(σ(a)))

14− 5a− 3a2

Thus σ2
1(a) = σ2(a).

Let us consider one more example. Let K = Q(i) and let f(X) = X4 − 2, so that L =
K( 4
√

2) = Q(i, 4
√

2). We find all automorphisms of L over K defining:

>alias(c=RootOf(X^2+1))

a

>alias(d=RootOf(X^4-2))

b

>factor(X^4-2,{c,d})

(−X + cd)(X + cd)(X + d)(−X + d)

Thus, we have 4 automorphisms of L = Q(i, 4
√

2) over K = Q(i) given by σ(d) = ±d,±cd,
where c = i, d = 4

√
2.

6.15. Find the orders of the Galois groups G = G(K/Q) and find all automorphisms of the
field K when:
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(a) K = Q(a), a is a zero of f(X) = X6 − 2X3 − 1;

(b) K = Q(a), a is a zero of f(X) = X8 − 2X4 + 4;

(c) K = Q(a), a is a zero of f(X) = X12 − 10X6 + 1.
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7

Normal extensions

An extension L ⊇ K is normal if every irreducible polynomial f(X) ∈ K[X], which has
one zero in L has all its zeros in L (that is, L contains a splitting field of f(X)).

T.7.1 A finite extension L ⊇ K is normal if and only if L is a splitting field of a polynomial
with coefficients in K.

N is called the normal closure of L ⊇ K if N ⊇ L is a field extension such that N ⊇ K is
normal and if N ⊇ N ′ ⊇ L, where N ′ is a normal extension of K, then N ′ = N .

T.7.2 Let L = K(α1, . . . , αn) be a finite extension. Then the normal closure of L ⊇ K is
unique up to a K-isomorphism. More exactly, every normal closure of L ⊇ K is a splitting
field over K of f = f1 · · · fn, where fi is the minimal polynomial of αi over K.

EXERCISES 7

7.1. Which of the following extensions L ⊃ K are normal:

(a) L = Q( 4
√

2), K = Q; (f) L = Q( 4
√

2), K = Q(
√

2);

(b) L = Q( 3
√

2), K = Q; (g) L = Q( 4
√

2, i), K = Q;

(c) L = Q(
√

2,
√

3), K = Q; (h) L = Q(X), K = Q(X3);
(d) L = C, K = R; (i) L = C(X), K = C(X3);

(e) L = Q( 3
√

2, i), K = Q; (j) L = F3(X), K = F3(X2).

7.2. Find the normal closure of the following field extensions L ⊃ K:

(a) L = Q( 4
√

2), K = Q; (d) L = Q(X), K = Q(X3);

(b) L = Q(
√

2, 3
√

2), K = Q; (e) L = Q(X), K = Q(X4);
(c) L = Q(ε), ε5 = 1, ε 6= 1, K = Q; (f) L = F3(X), K = F3(X4).



7.3. Let L ⊇M ⊇ K be field extensions.

(a) Let L ⊇M and M ⊇ K be normal extensions. Is L ⊇ K normal?
(b) Let L ⊇ K be normal. Is L ⊇M normal?
(c) Let L ⊇ K be normal. Is M ⊇ K normal?

7.4. (a) Let L ⊇ K be a normal extension and α, β ∈ L two zeros of an irreducible polynomial
with coefficients in K. Show that there is an automorphism σ ∈ G(L/K) such that σ(α) = β.

(b) Show that if L is a finite normal extension of K and τ : M → M ′ is a K-isomorphism
of M with a subfield M ′ of L containing K, then there is an automorphism σ ∈ G(L/K)
whose restriction to M is equal to τ (in particular, every automorphism of M over K has
an extension to an automorphism of L over K).

7.5. Let L ⊇M ⊇ K be field extensions.

(a) Show that if M ⊇ K is normal and σ ∈ G(L/K), then σM = M .

(b) Show that if L ⊇ K is normal, then M ⊇ K is normal if and only if σM = M for each
σ ∈ G(L/K).

7.6. Let L ⊇ K and M1,M2 be two fields between K and L. Prove that

(a) if M1 ⊇ K and M2 ⊇ K are normal, then M1M2 ⊇ K and M1 ∩M2 ⊇ K are normal;

(b) if M1 ⊇ K is normal, then M1M2 ⊇M2 is normal.

7.7. Let L ⊇ K be a field extension and α, β ∈ L. Show that if K(α) ⊇ K and K(β) ⊇ K
are normal extensions and K(α) ∩K(β) = K, then [K(α, β) : K] = [K(α) : K][K(β) : K].

7.8. Let K ⊂ L be a normal extension and let f(X) be a monic polynomial irreducible over
K but reducible over L. Show that for every two monic irreducible factors fi(X) and fj(X)
of f(X) in L[X], there is an automorphism σij : L → L such that σij(fi(X)) = fj(X) (σij
maps the coefficients of fi(X) onto the corresponding coefficients of fj(X)). In particular,
all irreducible factors of f(X) in L[X] have the same degree.

7.9. An irreducible polynomial f ∈ K[X] is called normal if a splitting field Kf of f over
K can be obtained extending K by only one of the zeros of f , that is, Kf = K(α), where
f(α) = 0.

(a) Show that an irreducible polynomial f ∈ K[X] is normal if and only if its splitting field
over K has degree equal to the degree of f(X).

(b) Show that the binomials Xn − 2 over Q are not normal when n > 2.
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USING COMPUTERS 7

In the exercises below you can use the command >galois(f(X)), which gives the Galois
group of the polynomial f(X) over Q and the factorization of f(X) over the extension of Q
by a zero of f(X) using >factor(f(X),a).

7.10. For the given polynomial f(X) and its zero a find the degree over Q of the normal
closure L of K = Q(a) and the minimal number of zeros of f(X), which generate L over Q:

(a) f(X) = X6 − 2X3 − 1; (d) f(X) = X6 + 3X2 + 3;
(b) f(X) = X6 −X3 + 1; (e) f(X) = X7 −X + 1;
(c) f(X) = X6 + 2X3 − 2; (f) f(X) = X7 + 7X3 + 7X2 + 7X − 1.

7.11. Decide whether the polynomial f(X) is normal over Q (see Ex. 7.9):

(a) f(X) = X5 −X4 − 4X3 + 3X2 + 3X − 1;

(b) f(X) = X5 − 5X + 12;

(c) f(X) = X7 +X6 − 12X5 − 7X4 + 28X3 + 14X2 − 9X + 1;

(d) f(X) = X8 − 72X6 + 180X4 − 144X2 + 36 (see [D]).
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8

Separable extensions

An irreducible polynomial f ∈ K[X] is called separable over K if it has no multiple zeros
(in any extension L ⊇ K – see T.5.3). We say that α ∈ L ⊇ K is a separable element
over K if it is algebraic and its minimal polynomial over K is separable. We say that L ⊇ K
is a separable extension if every element of L is separable over K. A field K is called
perfect if every algebraic extension of it is separable (that is, every irreducible polynomial
in K[X] is separable).

T.8.1 (a) All fields of characteristic 0 and all finite fields are perfect.

(b) If char (K) = p, then an irreducible polynomial f ∈ K[X] is not separable if and only if
f ′ ≡ 0, which is equivalent to f(X) = g(Xp), where g ∈ K[X].

We say that γ ∈ L is a primitive element (sometimes called field primitive element)
of the extension L ⊇ K if L = K(γ) (see a remark after the proof of the theorem below for
a comment concerning this terminology).

T.8.2 Primitive element theorem. If L = K(α1, . . . , αn), where α1, . . . , αn are algebraic
and all with at most one exception are separable over K, then there is a primitive element
of L over K. In particular, every finite separable extension has a primitive element.

Sometimes we say that a field extension K ⊆ L is simple if it has a primitive element, that
is, there is γ ∈ L such that L = K(γ).

EXERCISES 8

8.1. (a) Show that F2(X) is not separable over the field F2(X2).

(b) For every prime number p give an example of a non separable extension of a suitable
field of characteristic p.



(c) Motivate that the field extension in (a) is normal.

8.2. Let K ⊂ L be a quadratic field extension. Show that L = K(α), where α2 = a ∈ K
unless characteristic of K is 2 and L is separable over K. Show that then, we have L = K(α),
where α2 = α + a for some a ∈ K. Motivate that K ⊂ L is not separable if and only if
characteristic of K is 2 and L = K(α), where α2 = a ∈ K.

8.3. Let K be a field of finite characteristic p.

(a) Let α ∈ L ⊇ K, where L is a finite extension of K. Show that α is separable over K if
and only if K(αp) = K(α).

(b) Show that K ⊆ L is separable if and only if KLp = L (see Ex. 2.12(c)).

(c) Show that K is perfect if and only if Kp = K.

(d) Show that if L is an algebraically closed field and K its subfield such that [L : K] <∞,
then L is a Galois extension of K (see also Ex. 11.9).

8.4. (a) Show that L = K(α1, . . . , αn) ⊇ K is separable if and only if the elements α1, . . . , αn
of L are separable over K.

(b) Show that the normal closure of a finite separable extension L ⊇ K (see p. 35) is a
separable extension of K.

8.5. Let L ⊇ K be a field extension. Show that all elements α ∈ L separable over K form a
subfield Ls between K and L.

Remark. The degree [Ls : K] is called the separable degree of L over K and is denoted by
[L : K]s (if [L : K] <∞, then this means that [L : K]s divides [L : K] and [L : K]s = [L : K]
when L ⊇ K is separable).

8.6. Let L ⊇ K and char (K) = p. Show that for each α ∈ L there exists an exponent pr

such that αp
r

is separable over K (that is, αp
r ∈ Ls, where Ls is defined in Ex. 8.5).

8.7. (a) Let N ⊇ L ⊇ K, where N is a finite normal extension of K. Show that the number
of different restrictions σ|L, where σ ∈ G(N : K) equals [L : K]s (see Ex. 8.5).

(b) Let K ⊆ L be a finite field extension and let N be an algebraically closed field (see the
definition on p. 18). Let τ : K → N be an embedding of fields. Show that [L : K]s is equal
to the number of different embeddings σ : L→ N whose restriction to K equals τ .

8.8. Let L be a finite extension of K and let L ⊇M ⊇ K. Show that the extension L ⊇ K
is separable if and only if the extensions L ⊇M and M ⊇ K are separable.

8.9. Let L be a finite extension of K and L ⊇ M ⊇ K. Show that [L : K]s = [L : M ]s[M :
K]s (see Ex. 8.5).
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8.10. Find a primitive element of L ⊇ K when

(a) L = Q(
√

2,
√

3), K = Q; (d) L = R(X,Y ), K = R(X2, Y 2);

(b) L = Q(
√

2− i,
√

3 + i), K = Q; (e) L = Q(X,Y ), K = Q(X + Y,XY );

(c) L = Q(
√

2 +
√

3,
√

2 + i,
√

3− i), K = Q; (f) L = Q(
√

2, 3
√

2), K = Q.

8.11. Show that if L = F2(X,Y ), K = F2(X2, Y 2), then the extension L ⊃ K is not simple,
that is, one can not find γ ∈ L such that L = K(γ).

8.12. (a) Let K ⊂ L = K(γ) be a finite field extension and let M be a field such that
K ⊆M ⊆ L. Show that M is generated over K by the coefficients of the minimal polynomial
of γ over M .

(b) Show that the extension L ⊇ K is simple and algebraic if and only if the number of
fields between K and L is finite.

8.13. Give an example of a finite extension L ⊇ K such that the number of fields between
K and L is infinite.

8.14. Let L ⊇ Q be a finite and normal extension of odd degree. Show that L ⊆ R.

8.15. Let K ⊆ L be an extension of finite fields.

(a) Motivate that L = K(γ) for any generator of the cyclic group L∗ (see Ex. 5.7).

(b) Is it true that L = K(γ) implies that γ is a generator of the group L∗?

Remark. It follows from (a) that any generator γ of the cyclic group L∗ is a (field) primitive
element of the extension K ⊆ L. In the theory of finite fields, such generators are also called
primitive elements of this extension. In order to avoid misunderstandings, we shall use a
longer term group primitive elements (see [R], p.214).

(c) Let K = F3 and L = F3n . Find the numbers of group primitive and field primitive
elements in L for n = 2, 3, 4.

8.16. Let M1,M2 be two fields between K and L. Prove that if M1 and M2 are separable
extensions of K, then also M1M2 and M1 ∩M2 are separable extensions of K.

USING COMPUTERS 8

The proof of T.8.2 is effective if the zeros of the minimal polynomials of α, β such that
L = K(α, β) are known (and K is infinite). Then it is possible to find c ∈ K such that
γ = α + cβ is a primitive element of L over K (see the proof of T.8.2 on p. 105). Another
possibility is to try to guess γ and check that L = K(γ) = K(α, β). This can be done
if we have the minimal polynomial of γ and we are able to define L, for example, using
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the command RootOf. For example, we want to check that Q( 3
√

2, 3
√

3) = Q( 3
√

2 + 3
√

5).
In some way (say, using Maple), we find the minimal polynomial of 3

√
2 + 3
√

5, which is
f(X) = X9 − 15X6 − 87X3 − 125. Then we define:

>f:=X->X^9-15X^6-87X^3-125

>alias(c=RootOf(f(X))

We can denote >r:=
3
√

2+ 3
√

5 and check >simplify(f(r)), which gives 0. We can also check
that c is just r compering >\evalf(r) and >\evalf(c) (note that f has only one real zero).
Now we take

>factor(X^3-2,c)

− 1

10125
(−225X2−545X−175Xc4 +10Xc7−209c2−130c5 +7c8)(45X−109c−35c4 +2c7)

which shows that 3
√

2 = 1
45 (109c+35c4−2c7) ∈ Q(c) and similarly for 3

√
3. ThusQ( 3

√
2, 3
√

3) ⊆
Q( 3
√

2 + 3
√

3), and the inverse inclusion is evident. But Maple can be successfully used in a
similar way in order to prove that other elements than those chosen in the proof of T.8.2
are primitive.

8.17. Find a primitive element c of L ⊇ K when:

(a) K = Q, L = Q(
√

2, 3
√

2) (see Ex. 8.10(f)); (c) K = Q( 3
√

2), L = K( 3
√

3, 3
√

5);

(b) K = Q, L = Q( 3
√

3, 5
√

5) ; (d) K = Q( 4
√

2), L = K( 5
√

2, 6
√

2).
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9

Galois extensions

A field extension L ⊇ K is called Galois if it is normal and separable.

T.9.1 Let L ⊇ K be a finite field extension and G(L/K) its Galois group. Then the following
conditions are equivalent:

(a) [L : K] = |G(L/K)|;

(b) LG(L/K) = K;

(c) There is a group G of K-automorphisms of L such that K = LG and then, G = G(L/K);

(d) L ⊇ K is normal and separable;

(e) L is a splitting field of a separable polynomial over K.

If L ⊇ K is a field extension, F the set of all fields between K and L and G the set of all
subgroups to G(L/K), then we define two functions:

f : G → F and g : F → G

in the following way:
f(H) = LH = {x ∈ L : ∀σ∈Hσ(x) = x}

and
g(M) = G(L/M) = {σ ∈ G(L/K) : ∀x∈Mσ(x) = x}.

T.9.2 The main theorem of Galois theory. If L ⊇ K is a finite Galois extension,
then f and g are the inverse anti-automorphisms between partially ordered by inclusion
sets F of all fields between K and L and the set G of all subgroups of G(L/K), that is,
f ◦ g = idF , g ◦ f = idG and f(H1) ⊇ f(H2) if H1 ⊆ H2, and g(M1) ⊇ g(M2) if M1 ⊆M2.

Sometimes both the last theorem and the following one are called the main theorem of Galois
theory:



T.9.3 Let L ⊇ K be a Galois extension and M a field between K and L.

(a) The extension L ⊇M is a Galois extension.

(b) The extension M ⊇ K is a Galois extension if and only if G(L/M) is normal in G(L/K).
If this holds, then G(M/K) ∼= G(L/K)/G(L/M).

EXERCISES 9

9.1. Which of the following extensions L ⊇ K are Galois?

(a) K = Q, L = Q( 3
√

2); (e) K = Q(X2), L = Q(X);

(b) K = Q, L = Q( 4
√

2); (f) K = Fp(X2), L = Fp(X), p a prime number;

(c) K = Q(
√

2), L = Q( 4
√

2); (g) K = F2(X2 +X), L = F2(X);

(d) K = Q(i), L = Q(i, 4
√

2); (h) K = R(X3), L = R(X).

9.2. Find all subgroups of the Galois group G(L/K) of the splitting field L of the polynomial
f as well as all corresponding subfields M between K and L when

(a) K = Q, f(X) = (X2 − 2)(X2 − 5); (e) K = Q(i), f(X) = X4 − 2;
(b) K = Q, f(X) = (X4 − 1)(X2 − 5); (f) K = Q, f(X) = X3 − 5;
(c) K = Q, f(X) = X5 − 1; (g) K = Q, f(X) = X4 +X2 − 1;
(d) K = Q, f(X) = X4 + 1; (h) K = Q(i), f(X) = X3 − 1.

9.3. (a) Let f(X) ∈ K[X] be a polynomial of degree n over a field K and let Kf =
K(α1, . . . , αn) be a splitting field of f(X) over K, where αi are all zeros of f(X) in Kf . Show
that the permutations σ of the indices i of the zeros αi corresponding to the automorphisms
σ ∈ G(L/K) according to σ(αi) = ασ(i) form a subgroup of Sn.

(b) Give a description of the Galois group G(Kf/K) as a permutation subgroup of Sn
(n = deg f) for polynomials f(X) in Ex. 9.2.

9.4. (a) Let f(X) ∈ K[X] be a polynomial and f(X) = f1(X) · · · fk(X) its factorization
in K[X] into a product of irreducible polynomials fi(X). Show that the permutation group
Gal(Kf/K) consists of permutations, which have k orbits on the set {1, . . . , n}.

(b) Show that the permutation group Gal(Kf/K) in (a) is transitive (that is, for each pair
i, j ∈ {1, . . . , n}, there is σ ∈ Gal(Kf/K) such that σ(i) = j) if and only if the polynomial
f(X) is irreducible in K[X].

(c) Show that if the Galois group Gal(Kf/K) of a polynomial f(X) ∈ K[X] acts on Xn =
{1, . . . , n} with k orbits, then f(X) is a product of k irreducible polynomials in K[X].

9.5. Show that the extension L ⊇ K is Galois, find the Galois group G(L/K), all its sub-
groups and the corresponding subfields between K and L when
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(a) K = Q, L = Q(
√

2, i); (d) K = R(X2 + 1
X2 ), L = R(X);

(b) K = Q, L = Q( 3
√

2, ε), ε3 = 1, ε 6= 1; (e) K = R(X2, Y 2), L = R(X,Y );

(c) K = Q, L = Q( 4
√

2, i); (f) K = R(X2 + Y 2, XY ), L = R(X,Y ).

9.6. Is it true that if L ⊇ M and M ⊇ K are Galois extensions, then L ⊇ K is a Galois
extension?

9.7. Let G be the automorphism group of the field F3(X) consisting of all the automorphisms
X → aX + b, where a 6= 0 (see Ex. 6.8). Find all subgroups of G and the corresponding
subfields between the field F3(X)G corresponding to G and F3(X).

9.8. Let L ⊇ K be a Galois extension and M a field between K and L. Show that [M :
K] = |G(L/K)|/|G(L/M)|.

9.9. Let L ⊇ K be a Galois extension and M a field between K and L.

(a) Show that G(L/M) is a normal subgroup of H(L/M) = {σ ∈ G(L/K)|σ(M) = M}.

(b) Prove that the number of different fields between K and L, which are K-isomorphic to
M equals

[M : K]

|G(M/K)|
=
|G(L/K)|
|H(L/M)|

.

(c) Show that M ⊇ K is Galois if and only if every automorphism σ ∈ G(L/K) restricted
to M maps M on M , that is, H(L/M) = G(L/M).

(d) Let N (G(L/M)) be the normaliser of the group G(L/M) in G(L/K) (see p. 227). Show
that H(L/M) = N (G(L/M)) and G(M/K) = N (G(L/M))/G(L/M).

(e) Let σ ∈ G(L/M). Show that G(L/σ(M)) = σG(L/M)σ−1.

9.10. Let L ⊇ K be a Galois extension with Galois group G(L/K) = {σ1, . . . , σn}. Let
α ∈ L and let G(L/K)α be the orbit of α under the action of G(L/K), that is, the set of all
different images σi(α) for σi ∈ G(L/K). Let Gα = {σ ∈ G(L/K) | σ(α) = α} = G(L/K(α)).
Show that

(a) | G(L/K)α |= |G(L/K)|
|Gα| = [K(α) : K];

(b) The minimal polynomial of α over K is

fα(X) =
∏

σα∈G(L/K)α

(X − σα);

(c) Let
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Fα(X) =
∏

σ∈G(L/K)

(X − σα).

Show that Fα(X) = fα(X)|Gα|.

9.11. Let K ⊆ L be a Galois extension and H a subgroup of the Galois group G(L/K).

(a) Show that TrH : L→ LH is a surjective linear mapping (see (6.1)).

(b) Let α1, . . . , αn be a basis of L over K. Show that LH = K(TrH (α1 ), . . . ,TrH (αn)).

9.12. Let L ⊇ K be finite fields and let |K| = q.

(a) Show that L ⊇ K is a Galois extension.

(b) Show that the Galois group G(L/K) is cyclic and generated by the automorphism
σ(x) = xq (called the Frobenius automorphism of L over K).

(c) Find NrL/K (x ) for x ∈ L and show that every element of K is a norm of an element of
L (see (6.1)).

9.13. Let L = F2(α), where α is a zero of the polynomial X4 + X + 1 ∈ F2[X]. Show that
G(L/F2) contains exactly one subgroup H of order 2 and find β ∈ L such that LH = F2(β).

9.14. Let M1 ⊇ K and M2 ⊇ K be finite Galois extensions and L a field, which contains
both M1 and M2. Show that

(a) M1M2 ⊇ K and M1 ∩M2 ⊇ K are Galois extensions;

(b) G(M1M2/M2) ∼= G(M1/(M1 ∩M2));

(c) G(M1M2/K) ∼= G(M1/K)×G(M2/K) if M1 ∩M2 = K.

(d) If there is an isomorphism of M1 and M2 over K (that is, there is an isomorphism
τ : M1 →M2 which is the identity on K), then the Galois groups G(L/M1) and G(L/M2) are
conjugated in G(L/K) (that is, there is σ ∈ G(L/K) such that G(L/M1) = σG(L/M2)σ−1).

9.15. Construct an extension L ⊃ Q whose Galois group is

(a) C2; (b) C3; (c) C4;
(d) C5; (e) C2 × C2 (f) C2 × C4;
(g) C2 × C2 × C2; (h) C3 × C3; (i) D4 (the symmetry group of a square);
(j) S3; (k) S4; (l) A4.

Remark. The inverse Galois problem asks whether every finite group is (isomorphic
to) the Galois group of some Galois extension of the rational numbers Q. This problem is
still unsolved even if for infinitely many finite groups G, it is possible to construct suitable
Galois extensions K ⊃ Q having G as its Galois group. For example, all abelian groups, and
even all solvable (see Chapter 13) groups have this property. Also the symmetric groups Sn
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and alternate groups An can be realized as Galois groups over the rational numbers (see
Ex. 13.4(c) and Ex. 15.12 for Sn and [MM], 9.2 for An). Notice that every finite group can
be realized as the group of all automorphisms of a finite algebraic extension K ⊃ Q (see
[KollarETCXXX]).

More generally, the same problem can be formulated for other fields K and the corresponding
question whether a given finite group can be realized as the Galois group (or an automor-
phism group) of a suitable field extension of K has an answer in some cases and remains
open in many other (see the presentations of the inverse Galois problem in e.g. [MM]).

(l) Using Ex. 13.4(c) and A.9.3 show that for every finite group G there exists a Galois
extension of number fields whose Galois group is isomorphic to G.

9.16. Prove that every cyclic group is a Galois group of a Galois extension L ⊇ Q.

9.17. Is it true that L ⊃ M ⊃ K, where [L : K] < ∞ and |G(L/K)| = 1, implies
|G(M/K)| = 1?

9.18. Let L ⊇ K be a Galois extension and M1,M2 two fields between K and L. Let
G(L/M1) = H1, G(L/M2) = H2. Find G(L/M1M2) and G(L/M1 ∩M2).

9.19. Let L ⊇ K be a Galois extension with an abelian Galois group G(L/K). Let f be the
minimal polynomial of α ∈ L over K. Show that f is normal over K (that is, f has all its
zeros in K(α) – see Ex. 7.9).

9.20. Let K ⊆ L be a Galois extension and let N be a field containing L. Let M be any
field such that K ⊆M ⊆ N .

(a) Show that LM ⊇ M is a Galois extension and the natural mapping of σ ∈ G(LM/M)
onto its restriction to L is an injection of G(LM/M) into G(L/K).

(b) Consider G(LM/M) as a subgroup of G(L/K) using the restriction in (a) and show that
LG(LM/M) = L ∩M (so [LM : M ] = [L : L ∩M ]).

(c) Motivate that G(LM/M) = G(L/K) if and only if L ∩M = K.

Remark. The property of Galois extensions given by (a) and (b) is often called the theorem
on natural irrationalities.

9.21. Let K ⊆ L be a Galois extension of number fields and assume that K is a real field,
that is, K ⊆ R. Show that either L is also real or L contains a subfield M such that
[L : M ] = 2 and M is real.

9.22. Let K ⊆ L be a Galois extension with Galois group G(L/K) = {σ1, . . . , σn}. Show
that if α ∈ L has n different images σi(α), then L = K(α), that is, the element α is primitive
for the extension K ⊆ L.
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9.23. Let K be a field of characteristic different from 2 and f(X) ∈ K[X] be a sepa-
rable polynomial of degree n. Denote by α1, . . . , αn the zeros of the polynomial f(X)
in its splitting field L = K(α1, . . . , αn) with (permutation) Galois group Gal(L/K). Let
∆(f) =

∏
1≤i<j≤n(αi − αj)2 be the discriminant of f(X) (see p. 258).

(a) Show that ∆(f) ∈ K.

(b) Show that K(
√
∆(f)) is the fixed field of the subgroup Gal0(L/K) of Gal(L/K) con-

sisting of all even permutations, in particular, all permutations in Gal(L/K) are even if and
only if ∆(f) is a square in K.

9.24. Let K be a field of characteristic p such that f(X) = Xp−X+ 1 has not a zero in K.
Show that if α is a zero of f(X) in its splitting field L over K, then all other zeros of this
polynomial are α+ i for i = 1, . . . , p− 1 and L = K(α). Deduce that L is a Galois extension
of K, f(X) is irreducible over K, [L : K] = p and that G(L/K) is a cyclic group of order p
(see also Ex. 11.8).

USING COMPUTERS 9

f K ⊂ L is a Galois field extension, then a description of its Galois group G(L/K) is easiest
if L is represented as a simple extension L = K(a) and the minimal polynomial f(X) of
a over K is known. Then it is possible to factorize f(X) over L (using >factor(f(X),a)

where a is defined by >alias(a=RootOf(f(X)))) and define all automorphisms σ of L over
K sending a onto all zeros of f(X) in L (which can be obtained from the factorization of
f(X) over L). If L = K(α1, . . . , αk) for αi ∈ L (in Maple it is easier to denote the zeros by,
say, ai), then as we know from T.7.2, the field L is a splitting field of the polynomial f(X),
which is the product of the minimal polynomials fi(X) of αi. In a particular case when

[L : K] =
∏k
i=1 deg fi(X), every automorphism is uniquely given by a mapping of every αi

on a fixed zero of fi(X). If L is obtained in several steps as a splitting field of a polynomial
f(X), then it is also possible to describe this field by gradually adjoining its zeros as in the
following example:

>a:=RootOf(X^4-2)

a := RootOf( Z4 − 2)

factor(X^4-2,a)

−(X2 +RootOf( Z4 − 2)2)(X +RootOf( Z4 − 2))(−X +RootOf( Z4 − 2))

so Q(a) is not a splitting field. We continue and adjoin another zero:

>b := RootOf(X^2+RootOf(_Z^4-2)^2, a)
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b := RootOf( Z2 +RootOf( Z4 − 2)2, RootOf( Z4 − 2))

>factor(X^4-2, {a, b})

(−X +RootOf( Z4 − 2))(−X +RootOf( Z2 +RootOf( Z4 − 2)2, RootOf( Z4 − 2)))

(X +RootOf( Z2 +RootOf( Z4 − 2)2, RootOf( Z4 − 2)))(X +RootOf( Z4 − 2))

which using a, b can be rewritten as X4 − 2 = (−X + a)(−X + b)(X + b)(X + a). Thus
Q(a, b) is a splitting field of X4 − 2.

9.25. Describe the Galois groups of the polynomials in Ex. 7.11(a),(c)(d) using a chosen
zero generating the splitting field.

9.26. Show that the polynomials f(X) are normal, list all automorphisms of their splitting
fields K and describe the Galois groups when

(a) f(X) = X3−3X+1; (b) f(X) = X6−X3+1; (c) f(X) = X6+3X5+6X4+3X3+9X+9.

9.27. Find the orders of the Galois groups of the following polynomials and determine the
minimal number of zeros of each polynomial which generate its splitting field:

(a) f(X) = X5 − 5X + 12; (b) f(X) = X5 + 20X + 16; (c) f(X) = X5 −X + 1.
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10

Cyclotomic extensions

This chapter can be considered as an illustration of the general theory of Galois extensions
in a special case, which plays a central role in number theory. If ε ∈ C is a primitive n−th
root of 1, that is, εn = 1 and εk 6= 1, when 0 < k < n (for example, ε = e

2πi
n ), then the field

Q(ε) is called the n-th cyclotomic field.

T.10.1 (a) The degree [Q(ε) : Q] = ϕ(n), where ε is a primitive n-th root of unity and ϕ is
the Euler function.

(b) Each automorphism σ in the Galois group G(Q(ε)/Q) is given by σk(ε) = εk, where
k ∈ {1, . . . , n} and gcd(k, n) = 1. The mapping σk 7→ k (mod n) gives an isomorphism
G(Q(ε)/Q) ∼= (Z/nZ)∗.

The cyclotomic fields can be defined over arbitrary fields K. If n a positive integer, we denote
by Cn(K) the splitting field of the polynomial Xn − 1 over K and by Gn(K) the group of
all n−th roots of 1 in Cn(K), that is, the group of all solutions in Cn(K) of the equation
Xn − 1 = 0. We call Cn(K) the n−th cyclotomic field over K. If K has characteristic p
dividing n, then Xn − 1 = (X

n
p − 1)p, so the splitting field of Xn − 1 is the same as the

splitting field of X
n
p − 1, so investigating the cyclotomic fields over K, we can assume that

the characteristic of K does not divide n. We always assume this in the exercises below.
A consequence of this assumption is that the equation Xn − 1 has n different zeros (its
derivative nXn−1 is relatively prime to it – see T.5.3). Thus the group Gn(K) has order
n and is cyclic (see Ex. 5.7). The primitive n−th roots of 1 over K are the generators of
the group Gn(K). If ε is one of them, then all others are given by εj , where 0 < j < n
and gcd(j, n) = 1 (see A.2.2). Thus the number of such generators is the value of the Euler
function ϕ(n) (see p. 256). The n−th cyclotomic polynomial over K is the polynomial

Φn,K(X) =
∏

0<k<n,
gcd(k,n)=1

(X − εk).

If K = Q, then Φn,K(X) is usually denoted by Φn(X).



T.10.2 Let K be a field whose characteristic does not divide n.

(a) We have:

Xn − 1 =
∏
d|n

Φd,K(X) and Φn,K(X) =
∏
d|n

(Xd − 1)µ(nd ),

where µ denotes the Möbius function (see Ex. 5.6).

(b) The cyclotomic polynomials Φn,K(x) are monic and their coefficients are integer multiples
of the unity of K.

(c) All irreducible factors of Φn,K(x) are of the same degree.

(d) If K = Q, then Φn(X) = Φn,Q(x) is irreducible over Q.

EXERCISES 10

10.1. Find the cyclotomic polynomials Φn(X) for n = 1, 2, . . . , 10.

10.2. The kernel r(n) of an integer n > 1 is the product of all different prime numbers
dividing n. Show the following:

(a) Φp(X) = Xp−1 + · · ·+X + 1, where p is a prime,

(b) Φn(X) = Φr(n)(X
n
r(n) ) when n > 1,

(c) Φpn(X) = Φn(Xp)/Φn(X), where p is a prime not dividing n,

Explain how to use (a), (b), (c) in order to compute the cyclotomic polynomials Φn(X).
Compute Φ20(X) and Φ105(X).

10.3. Show the following identities:

(a) Φn(X) = Φk(X
n
k ), where k is any divisor of n such that r(k) = r(n) (see the definition

of r(k) in Ex. 10.2).

(b) If r, s are relatively prime positive integers,then

Φrs(X) =
∏
d|r

(Φs(X
d))µ( rd )

10.4. Show that Φ2m(X) = Φm(−X), when m > 1 is an odd integer.

10.5. Let m,n be to relatively prime positive integers.

(a) Show that Q(εmn) = Q(εm)Q(εn) and Q(εm) ∩Q(εn) = Q.

52



(b) Show that Φn(X) is irreducible over Q(εm).

(c) What can be said about Q(εm)Q(εn) and Q(εm) ∩Q(εn) when m,n are not necessarily
relatively prime?

10.6. Find η such that Q(η) is the maximal real subfield of the n−th cyclotomic field Q(εn)
(n > 2) and motivate that [Q(εn) : Q(η)] = 2.

10.7. Let K = Q(εp) be p−th cyclotomic field, where p is a prime number. According to
T.10.1, the group G(K/Q) is isomorphic to (Z/pZ)∗.

(a) Show that the group (Z/pZ)∗ is cyclic (of order p− 1).

(b) Show that for each divisor d of p − 1 there exists exactly one M ⊆ K such that [M :
Q] = d.

(c) Let σ ∈ G(K/Q) = (Z/pZ)∗ generate this Galois group and let σ(εp) = εgp, where g
generates the cyclic group (Z/pZ)∗. Show that if d is a divisor of p−1 and p−1 = dm, then
Gd = {σ0, σm, . . . , σ(d−1)m} is the (unique) subgroup of G(K/Q) of order d and KGd =
Q(θd), where

θd = εp + σm(εp) + · · ·+ σ(d−1)m(εp)

Remark. The elements θd for d dividing p− 1 are called Gaussian periods.

10.8. Find all quadratic subfields (that is, K with [K : Q] = 2) in the following cyclotomic
fields:

(a) Q(ε8); (b) Q(ε5); (c) Q(ε7).

10.9. Using Gaussian periods (see Ex. 10.6) find the description of all subfields of the cy-
clotomic fields K = Q(εp) for

(a) p = 5, (b) p = 7, (c) p = 17.

In each case, find explicitly the corresponding Gaussian periods.

10.10. Let p > 2 be a prime. Show that the only quadratic subfield M of K = Q(εp) is
M = Q(

√
p) if p = 1 (mod 4) and M = Q(

√
−p) if p = 3 (mod 4).

Remark. This result can be obtained using (quadratic) Gauss sums (see [L], Chap.VI, §3).
The result shows that quadratic fields Q(

√
±p) are subfields of cyclotomic fields. This is true

for all quadratic fields, and in still more generality, for all finite abelian Galois extension
of Q. In fact, the Kronecker-Weber theorem says that every finite abelian extension of the
rational numbers Q is a subfield of a cyclotomic field (see [XXX]).

10.11. Find and factorize the cyclotomic polynomials:
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(a1) Φ7,F2
(X); (a2) Φ18,F7

(X); (a3) Φ26,F3
(X).

(b) Show that the orders of irreducible factors of Φn,Fp(X) are equal to the order of p in the
group Z∗n if p - n.

10.12. (a) Let d, n be positive integers and d | n. Show that if a prime p divides Φd(x) and
Φn(x) for an integer x, then p | n;

(b) Show that if a prime p divides Φn(x) for an integer x, then p | n or p = 1 (mod n);

(c) Show that Φ1(0) = −1 and Φn(0) = 1 when n > 1;

(d) Let n be a positive integer. Show that there exists infinitely many primes p with p = 1
(mod n).

Remark. This is a special case of the famous Dirichlet’s theorem about primes in
arithmetic progressions, which says that in any arithmetical progression ak + b, where
a, b are relatively prime integers and k = 1, 2, . . ., there are infinitely prime numbers. The
last part of this exercise says that there exists infinitely many primes in the progression
nk + 1 (a = n, b = 1). For a proof of the Dirichlet’s theorem in its general version see
[SCoursArith].

10.13. (a) Prove that for any finite abelian group there is a positive integer n and a surjective
homomorphism ϕ : (Z/nZ)∗ → G.

(b) Show that every finite abelian group G is a Galois group G(K/Q) for a number field K.
See the Remark after Ex. 9.15.

10.14. (a) Let L be a splitting field of a polynomial Xn − a (a ∈ K, a 6= 0) over a field K
whose characteristic does not divide n (see Ex. 5.10). Show that the Galois group G(L/K)
contains a normal subgroup H isomorphic to a subgroup of Zn such that the quotient G/H
is isomorphic to a subgroup of Z∗n. What is the maximal possible order of G(L/K)?

(b) Show that the Galois group G(L/K) in (a) is isomorphic to a subgroup of the group of

matrices

(
a b
0 1

)
, where a ∈ Z∗n, b ∈ Zn (a subgroup of the group GL2(Zn) of all invertible

(2× 2)-matrices over the ring Zn).

(c) Give a description of the Galois groups over Q of the irreducible binomials Xp−a, where
a ∈ Q and p is a prime number.

(d) Give a description of the Galois group over C(X) of the binomial Tn −X.

10.15. Let εk = e
2πi
k for k = 1, 2, . . ..

(a) Show that the group of all roots of 1 in K = Q(εm) is εkm, k = 1, . . . ,m when m is even
or ±εkm, k = 1, . . . ,m when m is odd.

(b) Show that Q(εm) = Q(εn), where n ≥ m, if and only if m = n or n = 2m and m is odd.

(c) Show that Q(εm) ⊆ Q(εn) if and only if m | n or m is even, n is odd and m
2 | n.
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10.16. Find the orders of the Galois groups of the following binomials over the field Q:

(a) X4 + 1; (b) X4 − 3; (c) X6 + 3; (d) X6 − 3;
(e) X6 + 4; (f) X8 + 1; (g) X8 + 2; (h) X8 − 2.

USING COMPUTERS 10

It is not difficult to compute the cyclotomic polynomials over the rational numbers, but in
Maple, we get Φn,Q(X) using the command >cyclotomic(n,x) preceded by the command
>with(numtheory), which loads several commands related to number theory. Below, we
suggest some numerical experiments.

10.17. Look at the coefficients of the cyclotomic polynomials Φn,Q(X) and find the first n
for which there is a coefficient of >cyclotomic(n,x) whose absolute value is bigger than 1.
What could be an explanation that such a coefficient finally appears?

10.18. (a) Study the orders of the Galois groups of irreducible binomials X6 − a for some
set of integer values of a. What is the size of this group for all possible values of a?

(b) Do the same for binomials X7 − a, X8 − a and X9 − a.
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11

Galois modules

If G is an arbitrary group and A an abelian group, then A is called a G-module if to every
a ∈ A and σ ∈ G corresponds an element σ(a) ∈ A in such a way that σ(a+b) = σ(a)+σ(b),
(σσ′)(a) = σ(σ′(a)) and e(a) = a (a, b ∈ A, σ, σ′ ∈ G, e is the unity in G). If K ⊆ L is a
Galois extension with G = G(L/K), then both L+ and L∗ can be considered as G-modules,
where the action G is given by (σ, x) 7→ σ(x) for σ ∈ G and x ∈ L+ or x ∈ L∗. These two G-
modules play a very important role in many applications of Galois theory in algebra, number
theory and algebraic geometry. For the general terminology concerning G-modules and more
examples see A.7 (in particular A.7.4). In particular, we explain there the notion of the
group ring K[G] of a finite group G = {σ1 = 1, σ2, . . . , σn} over a field (or a commutative
ring) K, whose elements are sums a1σ1 + a2σ2 + · · ·+ anσn, where ai ∈ K. Any G-module
A can be considered as a module over this ring and conversely (for details see A.7.4).

In this chapter, we gather some results on field extensions, which are concerned with
G(L/K)-module structures related to L. The first is the normal basis theorem, which ex-
plains the structure of L+ as a Galois module. Hilbert’s Theorem 90 (which has number
90 in Hilbert’s treatise on algebraic number theory published in 1895) gives an informa-
tion about the multiplicative group of L considered as a module over G(L/K). Hilbert’s
theorem and the closely connected to it so called Noether’s equations showed the way
to the general definitions of the cohomology groups and found a natural place in their
context. We apply Hilbert’s Theorem 90 (or rather a consequence of it) to abelian Kummer
theory concerned with important class of Galois extensions whose elementary description
follows a pattern, which is typical in much deeper Class Field Theory – a fundamental part
of algebraic number theory of abelian Galois extensions.

T.11.1 Let K ⊆ L be a Galois extension and G(L/K) = {σ1 = 1, σ2, . . . , σn} its Galois
group. Then the following properties of the extension K ⊆ L hold and are equivalent:

(a) There exists α ∈ L such that σ1(α), σ2(α), . . . , σn(α) is a basis of L over K.

(b) L+ is a cyclic K[G]−module, that is, there is α ∈ L such that L+ = K[G]α for some
α ∈ L.



Any basis σ1(α) = α, σ2(α), . . . , σn(α) of L over K is called normal. Also an element α
defining such a basis as well as its minimal polynomial are called normal1. Thus the last
theorem says that every finite Galois extension has a normal basis.

T.11.2 Hilbert’s Theorem 90. Let L ⊇ K be a cyclic extension of degree n and let σ be
a generator of the Galois group G = G(L/K). If α ∈ L, then

(a) NrG(α) = 1 if and only there is β ∈ L such that α = β
σ(β) .

(b) TrG(α) = 0 if and only if there is β ∈ L such that α = β − σ(β).

One of the applications of Hilbert’s Theorem 90 (in the multiplicative version (a)) is a
possibility to describe cyclic extensions over a field which contains sufficiently many roots
of unity:

T.11.3 Let K be a field containing n different n-th roots of unity. If L is a cyclic extension
of K of degree n, then there exists α ∈ L such that L = K(α) and αn ∈ K.

For the case of characteristic of K dividing the degree of a cyclic extension see Ex. 11.8.

Remark 11.1 The last result T.11.3 is often called Lagrange’s theorem. It was proved by
Lagrange about one century earlier than Hilbert’s Theorem 90. It is possible to use Hilbert’s
result in its proof, which gives a simplification of the argument, so Lagrange’s theorem is
often considered as an application of Hilbert’s Theorem 90. The simplification is obtained
when one notes that Nr(ε) = εn = 1, so that there exists α ∈ L such that ε = α

σ(α) by

T.11.2 (a). However, it is useful to define α explicitly for practical reasons (even if this
could be deduced from the proof of Hilbert’s Theorem 90) - see Ex. 11.6.

Remark 11.2 Hilbert’s theorem 90 is a specialization to cyclic groups of a more general
result on cohomology groups. If G is a group and A is a G−module, then the first
cohomology group H1(G,A) is the group of functions (with respect to the usual addition
of functions) f : G → A such that f(σσ′) = f(σ) + σ(f(σ′)) called 1-cycles modulo
1-boundaries, which are 1-cocyles of the form: f(σ) = a − σ(a) for some a ∈ A. In
multiplicative notations, the 1-cocyles are f : G→ A such that f(σσ′) = f(σ)σ(f(σ′)) and
the 1-boundaries f(σ) = a

σ(a) for some a ∈ A.

If we write f(σ) = ασ, then we recognize that in the proofs of T.11.2, we considered 1-
cocycles f : G → K∗ (T.11.2 (a)) and f : G → K+ (T.11.2(b)) with suitable choices
of α. The conditions defining 1-cocyle aσσ′ = ασσ(ασ′) are often called Noether’s equa-
tions and Hilbert’s Theorem 90 can be considered as a statement about solutions of these
equations.

Using the notion of the first cohomology group, the statements of Hilbert’s Theorem 90 are
simply the claims that H1(G,K∗) = 1 and H1(G,K+) = 1 (every 1-cocyle is 1-coboundary).

1 This creates a conflict with the historically older use of the notion normal polynomial, which we
introduced in Ex. 7.9. Usually it is possible to easily recognize which notion is discussed.
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In fact, the same arguments as those given in the proof of T.11.2 show that for any finite
automorphism group G of K these two groups are trivial. The cohomology groups Hn(G,A)
are defined in a natural way for all integer n and the groups Hn(G,K+) = 1 for all n > 0,
while Hn(G,K∗) are very interesting groups related to the field K.

As an illustration and application of some of the results in this chapter, we shall consider a
class of field extensions which are splitting fields of arbitrary families of binomials Xm − a
where a ∈ K and m is fixed. We exclude the case a = 1, that is, the case of cyclotomic fields,
considered in chapter 10 assuming that the field K contains m different m-th roots of 1.
This theory is known as (abelian) Kummer theory. Notice that the condition concerning
roots of 1 simply says that the ground field K has characteristic 0 or its characteristic is
relatively prime to m (see Ex. 5.10 (b)).

The exponent of any group G is the least positive integer m such that σm = 1 for all
σ ∈ G. A Galois extension K ⊆ L is called of exponent m if the exponent of its Galois group
divides m. A Galois extension K ⊆ L of exponent m is called a Kummer extension if it is
abelian (that is, its Galois group is abelian) and the field K contains m different m-th roots
of 1. The simplest example is a splitting field of a polynomial Xm−a over such a field K. It
is L = K(α), where α is any fixed zero of this polynomial (see Ex. 5.10). The Galois group
G(L/K) is abelian and σm = 1 for every automorphism σ ∈ G(L/K) (see Ex. 9.20). A zero
α of Xm− a will be denoted by m

√
a. Even if this symbol may denote any of the m different

zeros ηα, where η is m-th root of 1, the field K( m
√
a) is uniquely defined, since the factor η

belongs to K. We denote by K∗m the subgroup of the multiplicative group K∗ = K \ {0}
consisting of all m−th powers of nonzero elements in K.

The fundamental facts about Kummer extensions of exponent m are contained in the fol-
lowing theorem:

T.11.4 Let K be a field containing m different m-th roots of 1.

(a) If K ⊆ L is a Kummer extension of exponent m, then every subextension of fields
M ⊆ N , where K ⊆M ⊆ N ⊆ L is also a Kummer extension.

(b) All Kummer extensions of K of exponent m are exactly the splitting fields of sets of
binomial polynomials Xm − a for some a ∈ K. In particular, all finite Kummer extensions
of K are L = K( m

√
a1, . . . , m

√
ar) for some elements a1, . . . , ar ∈ K.

(c) There is a one-to-one correspondence between the isomorphism classes of finite Kummer
extensions of K of exponent m and the subgroups A of K∗ containing K∗m such that the
index [A : K∗m] is finite. In this correspondence, to a Kummer extension L of K corresponds
the subgroup A of K∗ consisting of all a ∈ K such that a = αm for some α ∈ L, and to a
subgroup A of K∗ corresponds any splitting field over K of all binomials Xm− a for a ∈ A.
Moreover,

|G(L/K)| = [L : K] = [A : K∗m]. (11.1)
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EXERCISES 11

11.1. Construct a normal basis for each of the following field extensions:

(a) Q(i) over Q; (c) Q(ε), ε5 = 1, ε 6= 1 over Q;

(b) Q(
√

2,
√

3) over Q; (d) F2(γ), γ3 + γ2 + 1 = 0 over F2.

11.2. (a) Show that in a quadratic Galois extension K ⊂ L an element α ∈ L is normal if
and only if α 6∈ K and Tr(α) 6= 0 (see (6.1)).

(b) Show that in a cubic Galois extension K ⊂ L, where K is a real number field, an element
α ∈ L is normal if and only if α 6∈ K and Tr(α) 6= 0. An open question: Can K in general
be replaced by an arbitrary field?

11.3. (a) Let K ⊆ L be a Galois extension and let α ∈ L be a normal element. Show that
L = K(α), that is, a normal element is field primitive. Is the converse true?

(b) Let K ⊆ L be finite fields. Is it true that the group primitive elements (that is, the
generators of the cyclic group L∗) are normal? Is the converse true? (see Ex. 8.15).

11.4. (a) Let X,Y, Z be a Pythagorean triple, that is, an integer solution of the equation
X2 + Y 2 = Z2 with positive and relatively prime X,Y, Z. Consider the complex number
α = x + yi ∈ Q(i), where x = X/Z and y = Y/Z and notice that Nr(α) = 1 in Q(i). Use
this observation together with Hilbert’s Theorem 90 in order to find a formula for X,Y, Z.

(b) Find in a similar way a formula for integer solutions of the equation X2 + 2Y 2 = Z2.

11.5. (a) Let K be a field containing n different n-th roots of 1. Using Kummer theory
(T.11.4) show that if Xn − a,Xn − b are irreducible polynomials in K[X], then K(n

√
a) =

K(n
√
b) if and only if there is r such that 0 < r < n, gcd(r, n) = 1 and ba−r ∈ K∗n.

(b) Give a description of all quadratic extensions of the rational numbers Q using (a).

11.6. (a) Motivate that E = Q(
√
−3) is the least number field containing the 3rd roots of

1, and show that every cubic Galois extension L of E there is α ∈ E such that L = E( 3
√
α).

Show also that one can always choose α ∈ Z[ε], where ε = 1+
√
−3

2 , that is, α = a + bε,
a, b ∈ Z.

(b) Show that there is a one-to-one correspondence between cyclic cubic extensions K ⊃ Q
and the cyclic cubic extensions L = EK of E such that L ⊃ Q is Galois with cyclic Galois
group Z6. Show that two two cyclic cubic extensions K1 and K2 of Q are isomorphic if and
only if the extensions L1 = EK1 and L2 = EK2 are isomorphic over E.

(c) Show that a cubic extension L = E( 3
√
α) of E (α ∈ E), is a Galois extension of Q if and

only if Nr(α) = αᾱ ∈ Q∗3 or αNr(α) ∈ Q∗3. In the first case the Galois group G(L/Q) is
the cyclic group Z6, and in the second, it is the symmetric group S3.
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(d) Motivate that α = ff̄2, where f ∈ Z[ε] satisfies the condition Nr(α) = αᾱ ∈ Q∗3 in (c).
Show that Q(γ), where γ = 3

√
α+ 3
√
ᾱ, is a Galois cubic extension of Q and find the minimal

polynomial of γ over Q. Give a few examples of cyclic cubic extensions K ⊃ Q.

11.7. (a) Let E = Q(i). Show that for every cyclic quartic Galois extension L of E there
is α ∈ E such that L = E( 4

√
α). Show also that one can always choose α ∈ Z[i], that is,

α = a+ bi, a, b ∈ Z.

(b) Show that there is a one-to-one correspondence between pairs of cyclic quartic extensions
K1 ⊃ Q, K2 ⊃ Q, where K1 is a real and K2 is non-real, and the cyclic quartic extensions
L = EK1 = EK2 of E such that L ⊃ Q is Galois with Galois group Z2×Z4. Show that two
cyclic quartic extensions K1 and K2 of Q are isomorphic if and only if both are real or both
are non-real and the extensions L1 = EK1 and L2 = EK2 are isomorphic over E.

(c) Show that a quartic extension L = E( 4
√
α) of E (α ∈ E), is a Galois extension of Q if

and only if Nr(α) = αᾱ ∈ Q∗4 or α2Nr(α) ∈ Q∗4. In the first case the Galois group G(L/Q)
is the group Z2 × Z4, and in the second, it is the dihedral group D4 (the symmetry group
of a square).

(d) Motivate that α = ff̄3g2, where f ∈ Z[i] and g ∈ Q∗ satisfies the condition Nr(α) =
αᾱ ∈ Q∗4 from (c). Show that Q(γ), where γ = 4

√
α + 4
√
ᾱ, 4
√
α 4
√
ᾱ = Nr(f )|g |, is a cyclic

quartic extension of Q (real if g > 0, non-real if g < 0) and find the minimal polynomial of
γ over Q. Give a few examples of cyclic quartic extensions K ⊃ Q.

11.8. Let K be a field of prime characteristic p and let L be a Galois field extension of K
of degree p. Show that L = K(α), where α is a zero of a polynomial Xp −X − a for some
a ∈ K (compare Ex. 9.24).

Remark. The polynomial Xp −X − a over a field K of characteristic p is often called an
Artin-Schreier polynomial, and K ⊂ L is called an Artin-Schreier extension. The
description of cyclic Galois extensions of degree p given in the exercise above is called Artin-
Schreier theorem. Such extensions play an important role, for example, in the Kummer
theory and in the study of radical extensions over fields of characteristic p (see Chap. 13 for
characteristic 0). See also Ex. XXX.

11.9. Let K ⊂ L be a finite field extension and L an algebraically closed field. Show that
[L : K] = 2.

Remark. This is a part of the Artin-Schreier theorem, which says that that not only an
algebraically closed field of finite degree > 1 over its subfield has in fact degree 2, but also
that K must be a real field (that is, −1 is not a sum of squares in K), which is really closed
(that is, there is no bigger real field containing it) and L = K(i), where i2 = −1. For a proof
of this last part of the Artin-Schreier theorem see [Lang,xxx]. The best known example of
this situation is the extension R ⊂ C.
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USING COMPUTERS 11

11.10. Use Ex. 11.6, respectively Ex. 11.7, in order to write Maple procedures, which list
cubic, respectively quartic, polynomials with integer coefficients whose Galois groups are
cyclic of order 3, respectively 4.
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12

Solvable groups

As a preparation for the next chapter in which we discuss solvability of equations by radicals,
we need som knowledge about solvable groups.

A group G is called solvable if there exists a chain of groups:

G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e}

such that Gi+1 is normal in Gi and the quotients Gi/Gi+1 are abelian for i = 0, 1, . . . , n−1.

T.12.1 (a) If G is solvable and H is a subgroup of G, then H is solvable.

(b) If N is a normal subgroup of G and G is solvable, then the quotient group G/N is
solvable.

(c) If N is a solvable normal subgroup of G such that the quotient group G/N is solvable,
then G is solvable.

We look at several examples of solvable and some non-solvable groups in exercises below.
In particular, we look at solvable and non-solvable subgroups of the permutation groups.
By the permutation group Sn, we mean the group of all bijective functions on a set X with
n elements. Usually, we choose X = {1, 2, . . . , n}, but sometimes other choices are more
suitable. The following result is usually used in the proof that among algebraic equations of
degrees at least 5, there are equations not solvable by radicals:

T.12.2 The symmetric group Sn is not solvable when n ≥ 5.

EXERCISES 12

12.1. Show that the following groups are solvable:



(a) Every abelian group G.

(b) The group G = S3 (this group may be considered as the group of all symmetries of an
equilateral triangle – see (c)).

(c) The group G = S4 (this group may be considered as the group of all symmetries of a
regular tetrahedron).

(d) The dihedral group Dn of all symmetries of a regular polygon with n sides for n = 3, 4, . . .
(for definition of Dn, see the Remark after Ex. 12.4).

(e) The group H∗(Z) of quaternion units ±1,±i,±j,±k, where i2 = j2 = −1, ij = k and
ji = −ij.

Remark. According to the famous Feit-Thompson Theorem (proved by Walter Feit and
John G. Thompson in 1962 and conjectured by William Burnside in 1911), every finite
group of odd order is solvable. As a rather long exercise, one can prove that every group of
order less than 60 is solvable. The least non-solvable group is the group A5 (of order 60) of
all even permutations of numbers 1, 2, 3, 4, 5 (see Ex. 12.2).

12.2. The aim of this exercise is to show that every alternate group An, where n ≥ 5 is not
solvable.

(a) Let G be a subgroup of the group An, where n ≥ 5 and N a normal subgroup of G such
that G/N is abelian. Show that if G contains every cycle (a, b, c), then also N contains every
such cycle.

(b) Deduce from (a) that the group An for n ≥ 5 is not solvable.

(c) Why the symmetric groups Sn, n ≥ 5 are not solvable?

12.3. (a) Show that a group G is solvable if and only if there exists a chain of groups:

G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e}

such that Gi+1 is normal in Gi and the quotient group Gi/Gi+1 is cyclic of prime order for
i = 0, 1, . . . , n− 1.

(b) Show that a solvable group whose order is not a prime number contains a nontrivial
normal subgroup (a normal subgroup different from the identity and the whole group).

12.4. Denote by Gn the set of all functions ϕa,b : Z/nZ → Z/nZ, where ϕa,b(x) = ax + b,
a, b ∈ Z/nZ, a ∈ (Z/nZ)∗ and by Tn all translations ϕ1,b(x) = x+ b.

(a) Motivate that the functions ϕa,b(x) are bijections on the set {0, 1, . . . , n−1} and as such
can be considered as permutations belonging to the group Sn of all permutations of this set
(with n elements).

(b) Show that Gn is a subgroup of Sn of order nϕ(n), where ϕ(n) is the Euler function.
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(c) Define Φ : Gn → (Z/nZ)∗ such that Φ(ϕa,b) = a. Show that Φ is a surjective group
homomorphism, whose kernel is Tn. Motivate that Gn is solvable.

(d) Let p be a prime number. Show that Gp is transitive on the set {0, 1, . . . , p− 1} and that
every ϕa,b ∈ Gn, ϕa,b 6= ϕ1,0, has at most one fix point x ∈ Z/pZ.

(e) If p is a prime number prove that Gp has exactly one subgroup of order p – the subgroup
Tp consisting of all translations ϕ1,b, b = 0, 1, . . . , p − 1, which is generated by ϕ1,1. Show
that Tp contains all elements of order p in Gp.

(f) Show that Gn is isomorphic to the group consisting of the matrices

(
a b
0 1

)
,

where a ∈ (Z/nZ)∗, b ∈ Z/nZ with respect to matrix multiplication. Notice that the deter-
minant:

det : Gn → (Z/nZ)∗

is a surjective group homomorphism (in (b) was denoted by Φ) and that the kernel of this
homomorphism is the subgroup isomorphic to Tn and consisting of matrices with a = 1.
Check that the group Gn acts on the set of the column vectors [x, 1]t, x ∈ Z/nZ (that is,
maps by matrix multiplication a vector of this type on a vector of this type again) and,
when n = p is a prime, then every matrix has at most one fix vector [x, 1]t (compare to (e)).

Ramark. The subgroup of Gn (n > 2) consisting of matrices with a = ±1 is called the
dihedral group (of order 2n). It is often denoted by Dn.

12.5. Let G be a transitive subgroup of the symmetric group Sp on a set X with p elements.
Show that the following conditions are equivalent:

(a) G is solvable;

(b) Each different from identity element of G fixes at most one element of X;

(c) The group G is conjugated to a subgroup of Gp containing Tp (for notations see Ex. 12.4).

In order to prove (a)–(c) show the following two facts:

(d) The order of any transitive group G on a set X with p elements is divisible by p.

(e) If H is a subgroup of a transitive group G on a set X with p elements, then H is also
transitive on X or every element of H acts as the identity on X.

12.6. Show that every p−group, that is, a group whose order is a power of a prime, is
solvable.

Remark. A famous result proved by William Burnside in 1904 says that if the order of a
finite group is divisible by at most two prime numbers, then the group is solvable.
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13

Solvability of equations

Throughout this chapter, we assume that all fields have characteristic 0. A field extension
L ⊇ K is called radical if there is a chain of fields

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L (13.1)

such that Ki = Ki−1(αi), where αrii ∈ Ki−1 and ri are positive integers for i = 1, . . . , n− 1.
We say that an equation f(X) = 0, f ∈ K[X] is solvable by radicals over K if the splitting
field Kf of f(X) over K is contained in a radical extension L ⊇ K. In general, we say that
an extension K ⊆ L is solvable (by radicals) if L is a subfield of a radical extension of K
(so f(X) = 0 is solvable by radicals over K says that Kf is a solvable extension of K). We
say that an equation f(X) = 0, f ∈ K[X], where K is a subfield of the real numbers R, is
solvable by real radicals if the splitting field of f(X) over K is contained in a radical
extension L ⊇ K such that L ⊂ R.

T.13.1 An equation f(X) = 0, f ∈ K[X] is solvable by radicals if and only if the Galois
group of f over K is solvable.

The general equation of degree n over K is

f(X) =

n∏
i=1

(X −Xi) = Xn − s1X
n−1 + s2X

n−2 + . . .+ (−1)nsn = 0,

where si are the elementary symmetric functions of X1, X2, . . . , Xn, that is, s1 =
∑
Xi, s2 =∑

XiXj , . . . , sn = X1X2 . . . Xn.

T.13.2 The Galois group over K(s1, s2, . . . , sn) of the general equation f(X) = 0 of n-th
degree is Sn, so f(X) = 0 is not solvable by radicals when n ≥ 5.

This result is a consequence of T.13.1 taking into account that the symmetric groups Sn are
not solvable for n ≥ 5. It is not difficult to construct rational polynomials f(X) of degree



5 having the symmetric group S5 as its Galois group. According to the same result, the
equations f(X) = 0 are not solvable by radicals (see several exercises below).

Another famous result is concerned with a surprising phenomenon related to irreducible
(rational) cubic polynomials (and also, polynomials of higher degrees) – even if such a
polynomial has real coefficients and 3 real zeros, the formulae expressing these zeros (like
Cardano’s formulae (1.5) in Chapter 1) can not contain only real radicals. This follows from
the following fact:

T.13.3 (Casus irredicibilis) Let f(X) be an irreducible polynomial having 3 real zeros
and coefficients in a real number field K. Then f(X) is not solvable by real radicals over the
field K.

EXERCISES 13

13.1. Show that L ⊃ Q is a radical extensions when:

(a) L = Q(
5
√

1 +
√

3); (b) L = Q(
3
√

1−
√

5,
7
√√

2 +
√

3).

13.2. Argue that the following equations are solvable by radicals over Q (without solving
these equations):

(a) X4 − 4X2 − 21 = 0; (b) X6 − 2X3 − 2 = 0.

13.3. Show that in the definition of an equation solvable by radicals, we can always assume
that in the chain (13.1) the degrees ri of the consecutive extensions Ki−1 ⊂ Ki are prime
numbers.

13.4. Let p be a prime number and K a real number field.

(a) Prove Weber’s theorem: If f ∈ K[X] is an irreducible polynomial of degree p with p− 2
real and 2 complex non-real zeros, then its Galois group is Sp.

(b) Show that the equation X5− p2X− p = 0, p a prime number, is not solvable by radicals
over Q.

(c) Show that the polynomial f(X) = (X2 + 4)(X − 2)(X − 4) · · · (X − 2(p − 2)) + 2 is
irreducible and has exactly p− 2 real zeros (hence its Galois group is Sp according to (a)).

13.5. For every n ≥ 5 give an example of a polynomial equation f(X) = 0 over Q whose
degree is n and which is not solvable by radicals.

13.6. The aim of this exercise is a direct proof (using only the definition of solvability by
radicals, but without Galois theory and the relation between solvable equations and solvable
groups) that any polynomial equation f(X) = 0, where f(X) ∈ Q[X] is irreducible and has

68



3 real and 2 non-real (conjugated) complex roots is not solvable by radicals over Q. Let
f(X) be such a polynomial and assume that there is a chain of fields

Q = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

such that Ki = Ki−1(αi), where αrii ∈ Ki−1, the exponents ri are prime numbers (see Ex.
13.3) for i = 1, . . . , n− 1 and the splitting field of f(X) over Q is contained in L. Of course,
the polynomial f(X) has a factorization over Kn = L. Choose the least i < n such that
f(X) is irreducible in Ki−1 but reducible in Ki. In the exercise, we want to show that this
is impossible, that is, f(X) must be still irreducible over Ki. This contradiction shows that
f(X) = 0 can not be solvable by radicals.

(a) Using Nagell’s Lemma (see Ex. 4.2) show that [Ki : Ki−1] = 5, where Ki = Ki−1(αi),
α5
i = ai ∈ Ki−1.

(b) Show that f(X) is irreducible over Ki.

13.7. Motivate that every equation f(X) = 0 of degree deg(f) ≤ 4, where f ∈ K[X], is
solvable by radicals.

13.8. Show that the equation f(X) = 0 is solvable in radicals over K if and only if the
equation f(Xn) = 0 is solvable by radicals over K (n ≥ 1 a natural number).

13.9. Prove Galois’ theorem: An irreducible polynomial equation of prime degree p over a
number field is solvable by radicals if and only if its splitting field is generated by any two
of its zeros.

(a) Let f(X) be a polynomial of degree p over a number field K and let L be its splitting
field over K. Show that L is generated by two of the zeros of f(X) if and only if each
non-trivial automorphism in G(L/K) has at most one fixed point as a permutation of the
zeros of f(X). Motivate that the group G(L/K) is transitive (see Ex. 6.2).

(b) Prove Galois’ theorem considering G(L/K) as a subgroup of Sp (see p. 30) and using
Ex. 12.5.

13.10. Let f(X) ∈ K[X] be an irreducible polynomial of prime degree p > 2 over a real
number field K (that is, K ⊂ R). Using Galois’ Theorem (see Ex. 13.9) show that if the
equation f(X) = 0 is solvable by radicals, then f(X) has exactly one or p real zeros. Notice
that this result gives an alternative solution of Ex. 13.4.

13.11. Let f(X) be an irreducible polynomial of degree 5 over the rational numbers and
∆(f) its discriminant (see p. 258).

(a) Show that if ∆(f) < 0, then the equation f(X) = 0 is not solvable by radicals.

(b) Show that there are both solvable and unsolvable equations f(X) = 0 over K with
∆(f) > 0.
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13.12. Show that the general cubic equation f(X) = X3 − s1X
2 + s2X − s3 = 0 over

the field K = Q(ε, s1, s2, s3), where ε3 = 1, ε 6= 1, is solvable by radicals constructing a
suitable chain of fields (13.1) between K0 = K and L = K(X1, X2, X2) (s1 = X1 +X2 +X3,
s2 = X1X2 +X2X3 +X3X1, s3 = X1X2X3).

13.13. Show that if an equation f(X) = 0, f ∈ K[X], where K is a subfield of the real
numbers R, is solvable by real radicals, then the degree of its splitting field L ⊆ R over K
is a power of 2.

13.14. Show that the field of complex numbers is algebraically closed in the following steps:

(a) If K is a Galois extension of R and the degree [K : R] is odd, then K = R.

(b) If K is a quadratic extension of R, then K = C, while there are no quadratic extensions
of the field C.

(c) If K is a Galois extension of C (a splitting field of an irreducible polynomial over C),
then there is a field containing it, which is a Galois extension over R. Using (a) and (b) show
that this field containing K is equal C (so K = C).
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14

Geometric constructions

Let X be an arbitrary set of points in the plane containing (0, 0) and (1, 0).

• A line is defined by X if it goes through two points belonging to X.

• A circle is defined by X if its center belongs to X and its radius equals to the distance
between two points belonging to X.

We say that a point P = (a, b) can be directly constructed fromX by using a straightedge
and a compass (a straightedge-and-compass or ruler-and-compass construction) if P is an
intersection point of two lines or two circles or a line with a circle, which are defined by X.
Let X1 be the set of all points in the plane, which can be directly constructed from X = X0,
X2 the set of all points which can be directly constructed from X1, X3 the set of all points
which can be directly constructed from X2 ans so on. We say that a point P = (a, b) can be
constructed from X by a straightedge-and-compass construction if P ∈ X? =

⋃∞
i=0Xi

(that is, P ∈ Xi for some i ≥ 0). We say shortly that X∗ is the set of points constructible
from X.

One also defines real numbers constructible from X as such r ∈ R that |r| = the distance
between two points constructible from X.

Very often one takes X = {(0, 0), (1, 0)}. Those numbers which can be constructed from X =
{(0, 0), (1, 0)} will be denoted by K. The least number field which contains the coordinates of
(0, 0) and (1, 0) is of course Q. The constructible lines through (0, 0), (1, 0) and (0, 0), (0, 1)
(it is easy to see that the point (0, 1) is constructible from (0, 0) and (1, 0)) are, as usual,
called the axis.

T.14.1 Let K be the least subfield to R which contains the coordinates of all points belonging
to a given set of points X in the plane. A point P = (a, b) can be constructed from X by a
straightedge-and-compass construction if and only if there is a chain of fields:

K = K0 ⊂ K1 ⊂ . . . ⊂ Kn = L ⊂ R (∗)



such that a, b ∈ L and [Ki+1 : Ki] = 2 for i = 0, 1, . . . , n − 1. In particular, the set of
numbers which are constructible from X (like K when X = {(0, 0), (1, 0)}) is a field.

In practise, one uses this theorem when one wants to show that a point P = (a, b) is not
constructible – one shows that [K(a, b) : K] is not a power of 2. If one wants to show that
a point can be constructed one uses often the following theorem:

T.14.2 Let K be the least subfield of R which contains the coordinates of all points be-
longing to a point set X in the plane R2. A point P = (a, b) can be constructed from X
by a straightedge-and-compass construction if and only if one of the following equivalent
conditions hold:

(a) There exists a Galois extension L ⊇ K such that a, b ∈ L and [L : K] is a power of 2.

(b) There exists a Galois extension L ⊇ K such that a+ bi ∈ L and [L : K] is a power of 2.

In the following exercises, the terms “to construct” or “can be constructed” should be
understood as constructed by using a straightedge and a compass. We always start from a
set X, which contains (0, 0) and (1, 0).

EXERCISES 14

14.1. Show that the following geometric constructions are impossible:

(a) to construct a cube of volume 2 when a cube of volume 1 is given, that is, to construct
a segment of length 3

√
2 when a segment of length 1 is given (“doubling of a cube”);

(b) to construct the angle 20◦ when the angle 60◦ is given (“trisection of an angle”);

(c) to construct a square of area π when a disk of area π (that is, of radius 1) is given
(“squaring of a circle”).

14.2. Let X be a set of points in the plane. Prove that P = (a, b) can be constructed from
X if and only if its coordinates can be constructed from X.

14.3. (a) Is it possible to construct a disk whose area is equal to the sum of the areas of two
given disks?

(b) Is it possible to construct a sphere whose volume is equal to the sum of the volumes of
two given spheres?

14.4. Is it possible to construct a square whose area is equal to the area of a given triangle?

14.5. Is it possible to construct a cube whose volume is equal to the volume of a regular
tetrahedron whose sides are equal to 1?
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14.6. Prove the following theorem of Gauss: A regular polygon with n sides is con-
structible (by straightedge-and-compass construction) when a segment of length 1 is given
if and only if n = 2r, r ≥ 2 or n = 2rp1p2 . . . ps, r ≥ 0, s ≥ 1 and pi are different Fermat
primes (p is a Fermat prime when p = 22t + 1, t ≥ 0):

(a) If k|n and a regular polygon with n sides is constructible, then a regular polygon with
k sides is constructible;

(b) If n = kl, where k and l are relatively prime, then a regular polygon with n sides is
constructible if and only if regular polygons with k sides and l sides are constructible;

(c) If n = 2r, r ≥ 2, then a regular polygon with n sides is constructible;

(d) If n = p2, where p is an odd prime, then a regular polygon with n sides is not con-
structible;

(e) If n = p, where p is an odd prime, then a regular polygon with n sides is constructible
if and only if p is a Fermat prime.

14.7. Construct a regular polygon with n sides when (0, 0) and (1, 0) are given if

(a) n = 5; (b) n = 15; (c) n = 20.

14.8. Which of the following angles α can be constructed when (0, 0) and (1, 0) are given:

(a) α = 1◦; (b) α = 3◦; (c) α = 5◦.

14.9. Give an example of an angle α which is not constructible when (0, 0) and (1, 0) are
given, but which can be trisected when this angle is given (an angle is given if three different
points (0, 0), (1, 0) and (a, b) are given defining the rays from (0, 0) through (1, 0) and (a, b)).
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15

Computing Galois groups

In earlier chapters, we had several opportunities of finding Galois groups of specific poly-
nomials. In general, computing the Galois group of a given polynomial over a given field is
numerically complicated when the degree of the polynomial is already modestly high. For
polynomials of (very) low degrees it is possible to specify some numerical invariants, which
tell us about the isomorphism type of the Galois group depending on the values of these
invariants. For arbitrary polynomials there is a variety of numerical methods, which for not
too high degrees make the computational task possible to implement in more or less effective
way. There are several computer packages in which Galois groups of irreducible polynomials
up to varying degrees can be computed, notably, Maple, GP/Pari, Sage and Magma.

Let K be a field and F (X1, . . . , Xn) ∈ K(X1, . . . , Xn) a rational function in n vari-
ables X1, . . . , Xn. The symmetric group Sn acts as an automorphism group of the field
K(X1, . . . , Xn) when for σ ∈ Sn:

σF (X1, . . . , Xn) = F (Xσ(1), . . . , Xσ(n))

and σ is a permutation of {1, . . . , n}. Let G be a subgroup of Sn. We denote by GF the
stabilizer of F in G, that is, GF = {σ ∈ G | σF = F}.

T.15.1 (a) Let G be a subgroup of Sn. Then for every subgroup H of G there exists a
polynomial F ∈ K[X1, . . . , Xn] such that H = GF .

(b) Let G = σ1GF ∪ · · · ∪ σmGF be the presentation of G as a union of different left cosets
with respect to GF . Then σiF (X1, . . . , Xn) for i = 1, . . . ,m are all different images of F
under the permutations belonging to G.

Let f(X) ∈ K[X] be a polynomial of degree n and L = Kf = K(α1, . . . , αn) its splitting
field over K, where αi are all the zeros of f(X) in L taken in an arbitrarily fixed order.
Assume that Gal(Kf/K) ⊆ G, where the Galos group of f(X) over K is considered as a
group of permutations of {1, . . . , n} in the usual way: σ(αi) = ασ(i) (this means that we use
the same symbol σ to denote the permutation σ ∈ Gal(Kf/K) of the zeros of f(X) in Kf



and the corresponding permutation on the set of the indices of these zeros). From now on,
we assume that F (X1, . . . , Xn) is a polynomial.

By a general polynomial with respect to a subgroup G ⊆ Sn and F (X1, . . . , Xn) ∈
K[X1, . . . , Xn], we mean the polynomial:

rG,F (T ) =

m∏
i=1

(T − (σiF )(X1, . . . , Xn)), (15.1)

where the product is over a set σi, i = 1, . . . ,m, of representants of all left cosets of GF in G.
Of course, σiF does not depend on the choice of a representant of σiGF , since σiτF = σiF ,
when τ ∈ GF . We usually omit G in rG,F ∈ K[X1, . . . , Xn, T ], when G = Sn. If G = Sn and
F (X1, . . . , Xn) = X1, then rG,F (T ) is the general polynomial of degree n as defined on p.
67.

Let f(X) ∈ K[X] be a polynomial with the zeros α1, . . . , αn in a field extension of K. By a
resolvent polynomial of f(X) with respect to a subgroup G ⊆ Sn and F (X1, . . . , Xn) ∈
K[X1, . . . , Xn], we mean the polynomial

rG,F (f)(T ) =

m∏
i=1

(T − (σiF )(α1, . . . , αn)). (15.2)

The values (σiF )(α1, . . . , αn)) are obtained by a homomorphism of K[X1, . . . , Xn] onto
K[α1, . . . , αn] sending Xi onto αi. Notice that these values need not be different. They
generate over K a subfield of Kf , which plays an important role in studies of the Galois
group Gal(Kf/K), in particular, through the following result:

T.15.2 Let f(X) ∈ K[X], F (X1, . . . , Xn) ∈ K[X1, . . . , Xn] and assume that Gal(Kf/K) ⊆
G, where G is a subgroup of Sn. Then:

(a) The resolvent polynomial rG,F (f) has its coefficients in K;

(b) If all the zeros of rG,F (f) are different, then Gal(Kf/K) is conjugated in G to a subgroup
of GF if and only if at least one of the zeros of rG,F (f) belongs to K.

Even if the assumptions above are not satisfied, the splitting field of the resolvent rG,F (f) in
Kf and the degrees of irreducible factors of the resolvent very often give information about
the Galois group Gal(Kf/K) (see the exercises below).

Remark 15.1 If in T.15.2, we have K = Q, F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] and f(X) ∈
Z[X] has the highest coefficient 1, then rG,F (f)(T ) is a polynomial with integer coefficients.
A proof of this property can be given in broader context of integers in arbitrary (number)
fields but, unfortunately, we can not present it here (troszke rozwinac, czy potrzebne?).

There exists a general algorithmic procedure for finding the isomorphism type of the Galois
group Gal(Kf/K), which uses T.15.2 and was already known to Galois. Unfortunately,
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the value of this procedure for practical computations is rather limited. We describe it for
two reasons. First of all, it shows that the Galois group of any polynomial can be found
if the zeros of it are known (over number fields, it is often sufficient to know the zeros
with appropriate precision). On the other hand, we will use it in the proof of Dedekind’s
Theorem (T.15.4), which gives a very good method for computing of Galois groups in many
situations.

Consider a field k and let K = k(Y1, . . . , Yn) be the field of rational functions of Yi. In the
field K(X1, . . . , Xn) of rational functions of Xi take the polynomial

F (X1, . . . , Xn) = X1Y1 + · · ·+XnYn.

Let f(X) ∈ k[X] and let kf = k(α1, . . . , αn) be a splitting field of f(X) over k. Then
Kf = kf (Y1, . . . , Yn) is a splitting field of f(X) ∈ K[X] over K and Gal(Kf/K) ∼= Gal(kf/k)
(see Ex. 15.9). In the notations of T.15.2, choose G = Sn. It is clear that GF ⊂ Sn
consists of only the identity permutation. The resolvent of f(X) with respect to G = Sn
and F (X1, . . . , Xn) is:

rG,F (f)(T ) =
∏
σ∈Sn

(T − (ασ(1)Y1 + · · ·+ ασ(n)Yn))

This polynomial has degree n! and is a product of irreducible polynomials ri(T, Y1, . . . , Yn)
in k[T, Y1, . . . , Yn]:

rG,F (f)(T ) = r1(T, Y1, . . . , Yn) · · · rt(T, Y1, . . . , Yn). (15.3)

The polynomials ri are called Galois resolvents of f(X). We will assume that r1 is the
polynomial having θ = α1Y1 + · · ·+ αnYn as its zero.

T.15.3 The Galois group Gal(kf/k) is isomorphic to any group Gri of those permuta-
tions of Y1, . . . , Yn which map ri(X,Y1, . . . , Yn) onto itself for i = 1, . . . , t. Moreover, all
ri(T, Y1, . . . , Yn) have the same degree [kf : k] with respect to T and they have a common
splitting field Kf = kf (Y1, . . . , Yn) over K = k(Y1, . . . , Yn).

Another, often very effective technique for description of the Galois groups of polynomials, in
particular, over number fields, uses a result proved by Dedekind. This is also a very general
method, but in the case of number fields there is usually a lot of arithmetical information,
which can be used in order to determine the Galois groups. Therefore, we formulate a special
case of Dedekind’s theorem in the case of the integers Z.

Let ϕ : R → R∗ be a ring homomorphism mapping an integral domain R into an integral
domain R∗. Let K and K∗ be fields of quotients of R and R∗, respectively. Let f ∈ R[X]
be separable (that is, without multiple zeros). Denote by f∗ the image of f under the
homomorphism extending ϕ to R[X] by applying ϕ to the coefficients of the polynomials
in R[X]. Such an extension is sometimes called reduction modulo ϕ, since the simplest
example is the homomorphism ϕ : Z→ Fp of reduction modulo a prime p.

77



T.15.4 (Dedekind) (a) Let f ∈ R[X] be a separable monic polynomial and assume that
its image f∗ ∈ R∗[X] is also separable and deg(f) = deg(f∗) = n. Then the Galois group of
f∗ over K∗ has an embedding into the Galois group of f over K.

(b) Let in (a), R = Z, R∗ = Fp and let ϕ : Z→ Fp be the reduction modulo a prime number
p. If f ∈ Z[X] and

f∗ = f∗1 · · · f∗k ,

where f∗i are irreducible over Fp, then Gal(Qf/Q) considered as a permutation subgroup of
Sn contains a permutation which is a product of cycles of length deg(fi

∗) for i = 1, . . . , k.

Usual proofs of the first part of this theorem use the relation between Galois groups and the
Galois resolvents of f and f∗. Even if it is possible to give a proof relying on the properties
of rings, we choose the ”old fashioned” proof using Galois’ resolvents (see T.15.3). A proof
in the modern language can be found in [L], Chap.VII, §2.

EXERCISES 15

15.1. Consider f(X) = X3 + pX + q ∈ K[X] with zeros α1, α2, α3 in some extension of the
field K, where char(K) 6= 2. Let ∆ = ∆(f) = (α1−α2)2(α2−α3)2(α3−α1)2 = −4p3−27q2

be the discriminant of f(X) (see Ex. 1.3).

(a) Show that Kf = K(α1, α2, α3) = K(
√
∆, α1) and if f(X) is irreducible in K[X], then

its Galois group is isomorphic to C3 or S3 depending on
√
∆ ∈ K or

√
∆ /∈ K.

(b) In the notations of T.15.2, choose G = S3 and F (X1, X2, X3) = (X1 − X2)(X2 −
X3)(X3 − X1). Show that GF = A3 and rG,F (f) = X2 − ∆(f). Assume that f(X) is
irreducible over K and deduce the description of the Galois group of f(X) in (a) from
T.15.2.

15.2. (a) LetK be a field of characteristic different from 2, L = K(X1, . . . , Xn), F (X1, . . . , Xn) =∏
1≤i<j≤n(Xi −Xj) and G = Sn. Show that rG,F (T ) = T 2 − F 2 and GF = An.

(b) Let f(X) ∈ K[X] be an irreducible polynomial with zeros α1, . . . , αn in an extension of K
and ∆(f) =

∏
1≤i<j≤n(αi−αj)2 its discriminant (see Ex. 9.23). Use (a) and T.15.2 in order

to show that the Galois group Gal(Kf/K) is contained in An if and only if
√
∆(f) ∈ K.

15.3. Let f(X) = X4 + pX2 + qX + r, where p, q, r ∈ K and char(K) 6= 2, 3. Show that
f(X) = X4 + pX2 + qX + r = (X2 + aX + b)(X2 + a′X + b′) for a, b, a′, b′ in some field
containing K, if and only if a2 is a zero of the polynomial

r(f)(T ) = T 3 + 2pT 2 + (p2 − 4r)T − q2
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Remark. The polynomial r(f)(T ) = T 3 + 2pT 2 + (p2 − 4r)T − q2 is usually called the
resolvent of f(X) = X4 + pX2 + qX + r and, in fact, it is a resolvent in the context of
the general definition of this notion in (15.2) (see Ex. 15.5). This exercise gives a somewhat
different method of solving quartic equations than the method described in Chap. 1 on p.
4: It is possible to factorize the polynomial f(X) by solving the cubic equation r(f)(T ) = 0
(this gives a, a′, b, b′). The zeros of f(X) are the zeros of the two quadratic factors of f(X).

15.4. Denote by α1, α2, α3, α4 the zeros of a separable polynomial f(X) = X4+pX2+qX+r
in its splitting field Kf over K.

(a) Show that the zeros of its resolvent r(f)(T ) (see Ex. 15.3) are (α1+α4)2, (α2+α4)2, (α3+
α4)2.

(b) Show that the discriminants of the polynomials f and r(f) are equal (see Ex. 15.2 and
p. 258). In particular, if a quartic polynomial f(X) is separable, then its resolvent r(f)(X)
is also separable.

(c) Show that the splitting field Kf of f can be obtained from the splitting field Kr(f) of
its resolvent r(f) over K by adjunction of one arbitrary solution of the equation f(X) = 0,
that is,

Kf = K(α1, α2, α3, α4) = Kr(f)(αi),

where i = 1, 2, 3, 4.

15.5. (a) Let K be a field of characteristic different from 2 and F (X1, X2, X3, X4) = 1
2 ((X1+

X2)2 + (X3 +X4)2) ∈ K[X1, X2, X3, X4]. Show that GF = D4 = V4∪{(1, 3, 2, 4), (1, 4, 2, 3),
(1, 2), (3, 4)}, where V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} if G = S4 and GF = V4

if G = A4. Motivate that rG,F (T ) is the same for both G = S4 and G = A4.

(b) Let f(X) = X4 + pX2 + qX + r and let α1, α2, α3, α4 be the zeros of f(X) in its
splitting field Kf over K. Motivate that the resolvent defined in Ex. 15.3 equals the resolvent
rG,F (f)(T ) = r(f)(T ) = T 3 + 2pT 2 + (p2 − 4r)T − q2.

Remark. Very often one meets a somewhat simpler choice F (X1, X2, X3, X4) = X1X2 +
X3X4 for which GF = D4 (when G = S4). The choice of F in the text of the exercise is
adjusted to the “ad hoc” resolvent obtained in a natural way from factorization of a quartic
polynomial as a product of two quadrics in Ex. 15.3. The coefficients of rG,F (f) for the
“simpler” choice of F are: rG,F (f)(T ) = T 3 − pT 2 − 4rT + 4pr − q2

15.6. (a) Assume that f(X) = X4 + pX2 + qX + r is irreducible over K. Let

∆ = ∆(f) = ∆(r(f)) = −4p3q2 − 27q4 + 16p4r − 128p2r2 + 144pq2r + 256r3

be the discriminant of f and r(f) (see Ex 15.4(b)) and δ = p2− 4r. Using Ex. 15.4 (with or
without Ex. 15.5) show that
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G(Kf/K) =


S4 if [Kr(f) : K] = 6,
A4 if [Kr(f) : K] = 3,
D4 if [Kr(f) : K] = 2 and f is irreducible over Kr(f),
C4 if [Kr(f) : K] = 2 and f is reducible over Kr(f),
V4 if [Kr(f) : K] = 1.

(b) Show that:

G(KF /K) =



S4 when r(f) does not have zeros in K and
√
∆ 6∈ K,

A4 when r(f) does not have zeros in K and
√
∆ ∈ K,

D4 when r(f) has only one zero β ∈ K and
√
β∆ 6∈ K

if β 6= 0 and
√
δ∆ 6∈ K if β = 0,

C4 when r(f) has only one zero β ∈ K and
√
β∆ ∈ K

if β 6= 0 and
√
δ∆ ∈ K if β = 0,

V4 when r(f) has all its zeros in K.

In each case give an example of a polynomial f over Q with the corresponding Galois group.

15.7. Let f(X) = X4 + pX2 + qX + r be reducible in K but without zeros in K. Then

G(Kf/K) =

{
V4 when r(f) has only one zero in K
C2 when r(f) has all its zeros in K

15.8. (a) Show that the resolvent r(f) of f(X) = X4 + pX2 + r has always one of the zeros
in K and it has all three zeros in K if and only if

√
r ∈ K (K a field of characteristic 6= 2).

Check also that the discriminant of f(X) (and r(f) – see Ex. 15.4(b)) is

∆ = ∆(f) = 16r(p2 − 4r)2,

so K(
√
∆) = K(

√
r).

(b) Show that if f(X) = X4 + pX2 + r is irreducible in K[X], where K is a field of
characteristic different from 2, then

G(Kf/K) =

V4 if r is a square in K,
C4 if r is not a square in K and r(p2 − 4r) is a square in K,
D4 if r and r(p2 − 4r) are not squares in K.

15.9. Show that the splitting fields of irreducible trinomials X4 + qX + r over Q may give
all possible types of Galois groups which appear in Ex. 15.6, that is, S4, A4, D4, C4 and V4.

15.10. (a) Let K = k(Y1, . . . , Yn) be the field of rational functions of Yi over a field k. Let
k′ be a finite Galois extension of k. Show that K ′ = k′(Y1, . . . , Yn) is a Galois extension K
and Gal(K ′/K) ∼= Gal(k′/k).
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(b) Compute the resolvent rG,F (f) in (15.3) when n = 2, k = Q and f(X) = X2 + pX + q
has zeros α1, α2. When rG,F (f) is irreducible?

15.11. Using Dedekind’s Theorem T.15.4 show that the Galois groups over Q of the given
polynomials are

(a) S5 for f(X) = X5 +X2 + 1; (b) S5 for f(X) = X5 −X − 1;
(c) A5 for f(X) = X5 + 20X + 16; (d) A5 for f(X) = X5 − 55X + 88.

15.12. (a) Using Dedekind’s Theorem T.15.4 show that for every n the symmetric group
Sn is the Galois group of a field extension of Q.

(b) Construct polynomials in Z[X] with Galois groups S6 and S8.
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16

Supplementary problems

In this chapter, we give

16.1. (a) Consider K = Q(
√

1 + 3
√

2). Show that α =
√

1 + 3
√

2 is a zero of f(X) = X6 −
3X4 + 3X2 − 3, [K : Q] = 6 and K does not contain any quadratic extension of Q.

(b) Let K = Q(
3
√

1 +
√

3). Show that K does not contain a cubic extension but contains a
quadratic extension of Q.

16.2. (a) Call a number field (that is, a subfield of the complex numbers) normal if it is
normal over the rational numbers. Show that two isomorphic normal subfields of the complex
numbers are equal.

(b) Show that for every n > 2 there exists n isomorphic but different subfields of the complex
numbers.

16.3. Write down multiplication tables for given finite field defining it as a splitting field of
f(X) over K if

(a) f(X) = X2 +X + 1 and K = F2; (b) f(X) = X3 + 2X + 1 and K = F3;

16.4. Show that there exists a polynomial in Z[X] of degree 6 whose Galois group is A5.

Hint. Take a Galois extension of Q with group A5 and consider the fix field of a subgroup
of order 10 in A5.

16.5. Show that over a finite field every irreducible polynomial is normal (see Ex. 7.9 for
the definition of normal polynomial).

16.6. Find the order of the Galois group of X10 − 5 over Q. (F20).

16.7. Let K ⊆ L be a finite Galois field extension. Show that if a prime number p divides
[L : K], then there is a subfield M of L containing K such that [L : M ] = p.



16.8. (a) Let α =
√

2 +
√

3 + · · · +
√
n (n ≥ 2). Show that [Q : Q] = 2π(n), where π(n)

denotes the number of primes less or equal n.

(b) Find a primitive element of Q(
√

2,
√

3,
√

5) over Q.

(c) Using (a) show that α =
√

2+
√

3+ · · ·+
√
n is a primitive element of Q(

√
2,
√

3, . . . ,
√
n)

over Q.

(d) Assume that [K(
√
a1, . . . ,

√
an) : K] = 2n. Show that K(

√
a1, . . . ,

√
an) = K(

√
a1 +

. . .+
√
an).

(e) Show that Q(
√
p1, . . . ,

√
pn) = 2n when p1, . . . , pn are different prime numbers.

16.9. Let k be a field of characteristic, L = k(X1, . . . , Xn) and K = k(s1, . . . , sn), where
si are the elementary symmetric polynomials of the variables X1, . . . , Xn. Show that α =
X1 + 2X2 + · · ·+ nXn is a primitive element of the extension K ⊂ L.

16.10. Let f(X)be an irreducible polynomial of degree 4 with two real and two nonreal
zeros. Show that the Galois group of f(X) is either D4 or S4.

16.11. Show that Q(εm, εn) = Q(εm + εn), where εm, εn are m-th and n-th primitive rooth
of 1.

16.12. Let F be a finite field of characteristic p. Find the following degrees:

(a) [F(X) : F(Xp)]; (b) [F(X,Y ) : F(Xp, Y p)].

16.13. (prel) (a) Show that a polynomial X2n+1 − a, a ∈ Q, never is normal.

(b) Show that a polynomial X4 − a, a ∈ Q is normal if and only if a = b2, b ∈ Q.

(c) If a polynomial Xn − a, a ∈ Q which is irreducible over Q is normal then n = 2k or
n = 2k3l, whee k > 0.

16.14. Show that if f(X) is a polynomial of odd degree whose reduction modulo one prime
p is a product of a first degree polynomial by an irreducible polynomial, and for another
prime q its reduction is a product of a quadratic polynomial by an irreducible polynomial,
then the Galois group of f(X) over Q is the symmetric group Sn.

16.15. Find Galois groups of the Taylor polynomials Tn(X) =
∑n
i=0

Xi

i! for n > 0. (Tsche?)

16.16. Let K = Q( n
√
a) where a is a positive integer be such that [K : Q] = n. Show that

if M is a subfield of K and [M : Q] = d, then E = Q( d
√
a).

16.17. Show that C(X) is a Galois extension of C(Xn +X−n), n ≥ 1. Find the degree and
the Galois group of this extension (the Galois group is the dihedral group Dn generated by

σ(X) = −X and τ(X) = εX, where ε = e
2πi
n – see also Ex. 12.4).
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16.18. Let F be a finite field with q = pn elements. Show that F(X) is a Galois extension
of F(Xq −X). Find the degree and give a description of the Galois group.

16.19. (Verma) Let F be a finite field with q elements and let G = G(F(X)/F) be the group
of all Möbius transformations over F(see Ex. 6.6). Show that

(a) |G| = q3 − q.

(b) F(X)G = F(Y ), where Y = (Xq
2
−X)q+1

(Xq−X)q2+1
.

(c) If H1 is the subgroup of G consisting of σ(X) = aX + b, a, b ∈ F, a 6= 0, then F(X)H1 =
F((Xq −X)q−1).

(d) If H2 is the subgroup of G consisting of σ(X) = X+b, b ∈ F, then F(X)H2 = F(Xq−X).

(d) Find all subfields of F(X) containing F(X)G when F has 2 or 3 elements.

16.20. Show that a finite group is solvable if and only if every nontrivial subgroup H of G
contains a normal subgroup N such that H/N is a notrivial abelian group.

16.21. Let K ⊆ L be a Galois extension and let G(L/K) = G. Show that if G contains a
subgroup H such that H does not contain any normal subgroups of G other than the unit
subgroup, then there is a polynomial of degree |H| for which the field L is a splitting field.

16.22. (a) Let K be an algebraically closed field (see p. 18) containing a finite field Fp. Show
that the algebraic closure Fp of Fp in K (see p. 25) is equal to the union

⋃∞
n=1 Fpn . Show

also that Fp =
⋃∞
n=1 Fpn! .

16.23. Let F be a finite field and F ⊂ K ⊂ F, where K is a field and F an algebraic closure
of F (see p. 25). Show that if K is not finite, then the order of each nontrivial automorphism
σ ∈ A(K/F) is not finite.

16.24. Let L be an algebraically closed field and K a subfield of L such that [L : K] > 1 is
finite. Show that the characteristic of L is 0, [L : K] = 2 and L = K(i), where i2 = −1.

16.25. Let K ⊆ L be a Galois extension and G = G(L/K) its Galois group. Show that if
L is finite, then both functions TrG : L → K and NrG : L → K are surjective. Give an
example showing that this is not true for NrG when L is infinite (see p. 29 and Ex. 9.11).

16.26. Show that the field K = Q(α), where α =
√

(2 +
√

2)(3 +
√

3) is Galois and show

that the Galois group G(K/Q) is the quaternion group of order 8 (see Ex. 12.1(e)).

16.27. Let K ⊆ L be a Galois extension. Show that L is a splitting field of normal polyno-
mials over K (see the definition of a normal polynomial in Ex. 7.9).
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16.28. Assume that an irreducible polynomial f(X) = anX
n + · · ·+ a1X + a0 ∈ Q[X] has

a zero of absolute value 1. Show that the degree of f(X) is even and the polynomial is
symmetric, that is, ai = an−i for i = 0, 1, . . . , n.

16.29. Let K be a field of characteristic different from 2.

(a) Motivate that if the group of roots of 1 in K is finite, then its order is even.

(b) Show that the group of roots of 1 in a number field K of finite degree over Q is finite.

(c) Find the groups of roots of 1 in the quadratic fields Q(
√
d) and in the biquadratic fields

Q(
√
d1,
√
d2) (d, d1, d2 6= 1 square-free integers not equal 1 and d1 6= d2).

16.30. Show that if K is a field and X a variable, then there is infinitely many fields M
such that K ⊆M ⊆ K(X).

16.31. (a) Find the degree of the extension K(X1, . . . , Xn) ⊇ K(Xd1
1 , . . . , Xdn

n ), where
X1, . . . , Xn are variables and d1, . . . , dn are positive integers (K any field).(Bergman,Verma)

(b) Let K be a field and let k, l,m, n be nonnegative integers such that kn− lm 6= 0. Find
the degree [K(X,Y ) : K(XkY l, XmY n)], where X,Y are variables.

(c) Choose in (a), K = C. Show that the extension K(XkY l, XmY n) ⊆ K(X,Y ) is Galois
and describe its Galois group.

16.32. Let K ⊆ L be a field extension and M1,M2 two subfields containing K and contained
in L.

(a) Let M1,M2 both have one of the properties: separable, normal, Galois over K. What
can be said about the same property of M1M2 and M1 ∩M2 over K?

(b) Let L have one of the properties: separable, normal, Galois over both M1 and M2. What
can be said about the same property of L over M1M2 and M1 ∩M2?

16.33. (George M. Bergman gbergmanmath.berkeley.edu) Let K ⊆ L be an algebraic field
extension and let f(X) ∈ L[X]. Show that there exists a nonzero polynomial g(X) ∈ L[X]
such that f(X)g(X) ∈ K[X].

16.34. Let K ⊆ L bea finite field extension. Show that K(X) ⊆ L(X) is also finite and
[L : K] = [L(X) : K(X)].

16.35. Let Li ⊇ K, i = 1, 2, be finite field extensions. Show that there exists a normal
extension L of K such that Li ⊆ L for i = 1, 2. If Li ⊇ K are separable, then there exists a
Galois extension L of K containing both.

16.36. Let ε be a zero of the polynomial f(X) = X25−1
X5−1 . Motivate that K = Q(ε) is the

splitting field of f(X) over Q and find all subfields of K (a primitive element for each such
subfield expressed as a polynomial of ε).
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16.37. Let f(X) ∈ K[X] be a nonzero polynomial. Show that for every positive integer d
there exists g(X) ∈ K[X] such that f(X) divides g(Xd).

16.38. (Calcut) Let n > 2 be a natural number and k an integer such that gcd(k, n) = 1.
Then, we have:

(a) [Q(cos 2kπ
n ) : Q] = ϕ(n)

2 ;

(b) [Q(sin 2kπ
n ) : Q] =


ϕ(n) if 4 - n;
ϕ(n)

2 if n ≡ 0 (mod 8);
ϕ(n)

4 if n ≡ 4 (mod 8), n > 4;

(c) [Q(tan 2kπ
n ) : Q] =


ϕ(n) if 4 - n;
ϕ(n)

4 if n ≡ 0 (mod 8);
ϕ(n)

2 if n ≡ 4 (mod 8), n > 4.

16.39. Let G be a group and let G′ denote the commutator subgroup of G (see p. 230).

(a) Show that a finite group G is solvable if and only if for each subgroup H 6= 1 of G, we
have H ′ 6= H.

(b) Show that if H is a normal subgroup of a solvable group G, then H ′ is also normal in G.

Remark. Notice that this exercise shows that in the definition of solvable group it is possible
to choose a chain G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e} such that Gi+1 is normal in Gi and
Gi/Gi+1 is abelian in such a way that Gi+1 is normal in G (and not only in in Gi) for
i = 0, 1, . . . , n− 1.

16.40. (a) Let K be a field and f(X) = Xn + pX + q ∈ K[X] a trinomial such that q 6= 0.
Show that the splitting field of f(X) over K is the same as the splitting field of the trinomial

g(X) = Xn + tX + t, where t = pn

qn−1 .

(b) Show that the Galois group of an irreducible trinomial g(X) = X3 + tX + t is cyclic

of order 3 if and only if there is a ∈ K such that t = −a
2+27

4 (notice that the discriminant
∆(g(X)) = −4t3 − 27t2).

(c) Let x1 = x be a zero of an irreducible trinomial g(X) (in (b)) in its splitting field. Show
that the two other zeros are:

x2 =
6x2 − 9x− ax− a2 − 27

2a
, x3 = −6x2 − 9x+ ax− a2 − 27

2a
.

(d) Let r(X) ∈ K[X] be such that x2 = r(x). Motivate that f(r(X)) = f(X)g(X) for some
polynomial g(X) ∈ K[X]. Find g(X).

16.41. The normal core of a subgroup H in a group G is the biggest subgroup of H which
is normal in G.
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(a) Show that the normal core of H in G is

HG =
⋂
g∈G

gHg−1.

(b) Let K ⊆ M ⊆ L be field extensions such that L is a Galois extension of K and let
H = G(L/M), so that M = LH . Show that the normal closure M∗ of M in L is the fixed
field of the normal core HG.

16.42. Let K ⊆ L be a Galois extension of degree n. Show that L is not a splitting field of
a polynomial of degree less than n if and only if the core of each subgroup of G(L/K) is
nontrivial.

16.43. Let G be a group and K a field. Assume that G is a Galois group of a Galois
extension of K and call the Galois index of G over K the least degree of the polynomials
with coefficients in K whose splitting field has G as its Galois group.

Show that the Galois index of G over K is equal to the minimal index of subgroups of G
whose core is trivial.

16.44. What are the degrees of irreducible polynomials whose splitting field over Q has
Galois group S4? Answer the same question for S5.

16.45. Let K ⊆ L be a Galois extension of degree n whose Galois group G(L/K) is abelian.
What is the degree of irreducible polynomials in K[X] having L as its splitting field? Answer
the same question when G(L/K) is the quaternion group (of order 8 – see Ex. 12.1(e)).

16.46. Let K ⊆ L be a separable field extension and let N be a normal closure of K ⊆ L.
Show that the group G(N/L) does not contain nontrivial normal subgroups of the group
G(L/K). Notice that K ⊆ N is a Galois extension by Ex. 8.4(b).

Remark. Another way of expressing the situation in the exercise is to say that the core of
G(N/L) in G(N/K) is trivial (see Ex. 16.41).

16.47. Find the orders of the Galois groups for the following polynomials:

(a) X6 − 3X2 + 6; (b) X6 + 5X2 − 10; (c) X6 + 3X3 + 3; (d) X6 − 7X2 + 7.

16.48. Let K ⊆ L be a Galois extension and let σ ∈ G(L/K) be an involution of L (that
is, an element of order 2 i G(L/K)). Show that K ⊆ Lσ is Galois if and only if σ is in the
center of G(L/K).

(b) Let K = Q and L ⊂ C in (a). Explain when L0 = L∩R is Galois over Q (see Ex. 9.21).

16.49. Let K ⊆ L be a field extension and α, β ∈ L be elements such that αm, βn ∈ K for
some positive integers m,n. Find conditions assuring that K(α, β) = K(αβ). What can be
said about K(α, β) = K(α+ β)?
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16.50. Let f(X) be a polynomial of degree n over a field K whose Galois group is Sn. Show
that any splitting field of f(X) over K can not be generated by less than n− 1 of its zeros.
Is it true that if f(X) has the Galois group An over K, then its splitting field can not be
generated by less than n− 2 of its zeros?

16.51. Let N ⊃ L be a normal closure of a finite separable field extension L ⊃ K. Show
that G(N/K) is not abelian if L ⊃ K is not normal.

16.52 (XXXBerg, 22.11(b)). Let f(X) be an irreducible polynomial of prime degree p
over a field K and let M be a subfield of a splitting field of f(X) over K. Show that f(X) is
still irreducible over M if and only if p does not divide [M : K]. (Suggestion: use Ex. 4.2(a)
and Ex. 5.3.)

16.53. Let G = G(L/K) be the Galois group of a Galois field extension K ⊆ L and let G′

be the commutator subgroup of G (see p. 230). Show that LG
′ ⊇ K is an abelian Galois

extension of K (that is, LG
′

is a Galois extension of K and the Galois group G(LG
′
/K) is

an abelian group). Show also that for every Galois extension M ⊇ K such that G(M/K)
is abelian, we have M ⊆ LG

′
(thus LG

′
is the maximal abelian extension of K, which is

contained in L).

16.54. Let L be a splitting field of an irreducible polynomial f(X) ∈ K[X] and let f(α) = 0
for α ∈ L. If K ⊆M is a Galois extension, where M ⊆ L, then

(a) the polynomial f(X) is irreducible over M if and only if M ∩K(α) = K;

(b) all irreducible factors factors of f(X) in M [X] have the same degree (see Ex. 7.8) and
the number of them equals [M ∩K[α] : K].

16.55. Let K be field and f(X), g(X) ∈ K[X] two irreducible polynomials. Let L be a
splitting field of f(X)g(X) over K. Let α be a zero of f(X) and β a zero of g(X) in L.

(a) Show that f(X) is irreducible over K(β) if and only if g(X) is irreducible over K(α);

(b) Generalize (a): If f(X) = f1(X) · · · fr(X), where fi(X) are irreducible in K(β)[X], and
g(X) = g1(X) · · · gs(X), where gj(X) are irreducible in K(α)[X], then r = s. Moreover,
it is possible to number fi, gj in such a way that if αi ∈ L is a zero of fi(X) and βi ∈ L
is a zero of gi(X), then K(α, βi) is isomorphic to K(β, αi) for i = 1, . . . , r. Motivate that
deg f deg gi = deg g deg fi.

Remark. This correspondence between pairs of irreducible polynomials over fields was first
observed by Richard Dedekind (see [XXX]).

16.56. (a) Show that the number of roots of 1 in a finite extension field K of the rational
numbers is finite.

(b) Find all roots of 1 in a cyclotomic field Q(ε), where ε is a primitive n-th root of 1.
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16.57. Let K ⊂ L be a finite field extension and R a subring of L containing K. Show that
R is also a field.

16.58. Find all n such that for any given angle α, the angle α
n is constructible (by using a

straightedge and a compass).

16.59. Let K be an arbitrary field and let L = K(X) be the field of rational functions
over K. Show that the six functions X 7→ X, X 7→ 1 − X, X 7→ 1/X, X 7→ 1/(1 − X),
X 7→ X/(X − 1), X 7→ (X − 1)/X form an automorphism group G of L = K(X) over K,
which is isomorphic to S3. Show also that LG = K(g), where

g(X) =
(X2 −X + 1)3

X2(X − 1)2
.

Compare Ex. 6.7 and Ex. 16.19.

16.60. Let L be a splitting field of a polynomial f(X) of degree n with coefficients in a field
K. By Ex. 5.3, we know that [L : K] ≤ n!. Show that [L : K] always divides n!.

16.61. (a) Let K ⊆ L be a separable field extension and assume that there is n such that
[K(α) : K] ≤ n for every α ∈ L. Show that the extension K ⊆ L is finite and [L : K] ≤ n.

(b) Show that (a) need not be true when K ⊆ L is not separable.

16.62. Let L be a separable extension of K and [L : K] = n. Show that there are at most
2n−1 fields M such that K ⊆M ⊆ L.

16.63. Show that if L is a simple and algebraic extension of a fieldK, then every intermediate
field M between K and L also is simple over K (L need not be algebraic over K in which
case the claim is Lüroth’s theorem – see Ex. 4.10).

16.64. Let L = K(α, β) be a field extension such that α is algebraic and β is transcendent
over K. Show that the extension K ⊂ L is not simple.

16.65. Let K ⊂ M ⊂ L be three fields and let L be algebraic over K. Is it true that the
degree of α ∈ L over M divides the degree of α over K?

16.66. Let K ⊂ M ⊂ L be three fields and let L be algebraic over K. Show that [M : K]
and [M(α) : M ] are relatively prime for α ∈ L, then the minimal polynomial of α over M
has its coefficients in K.

16.67. Give an example of a polynomial f(X) ∈ Z[X] of degree n with n real zeros whose
Galois group over Q is Sn for n = 3, 4, 5.
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16.68. Let M1,M2 be two finte extensions of a field K contained in a field L. Show that
[M1M2 : K] = [M1 : K][M2 : K] implies that M1 ∩M2 = K.

16.69. Show that the multiplicative group K∗ of a field K is cyclic if and only if K is a
finite field.

16.70. Show that a finite extension over its prime subfield contains only finitely many roots
of 1.

16.71. Let K ⊆ L be a finite field extension. Show that K is perfect if and only if L is
perfect (see p. 39 and Ex. 8.3).

16.72. Show that the splitting field of the polynomial X4 − 7X2 + 3X + 1 is real and its
Galois group is A4.
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Proofs of the theorems

Theorems of Chapter 2

For the proof of Theorem T.2.1 see A.3.8.

Theorems of Chapter 3

For the proofs of the Theorems T.3.1 and T.3.2 see A.6.1 and A.6.2, respectively.

T.3.3 Gauss’s Lemma. A nonconstant polynomial with integer coefficients is reducible in
Z[X] if and only if it is reducible in Q[X]. More exactly, if f ∈ Z[X] and f = gh, where
g, h ∈ Q[X], then there are rational numbers r, s such that rg, sh ∈ Z[X] and rs = 1, so
f = (rg)(sh).

Proof. We start with a definition. A polynomial with integer coefficients f(X) is called
primitive if the greatest divisor of its coefficients is equal 1. The product of two primitive
polynomials f(X)g(X) is also primitive. In fact, if there is a prime number p dividing all
the coefficients of f(X)g(X) then we can take the reduction of the product modulo p. The
result will be a zero polynomial so that f̄(X)ḡ(X) = 0 in the ring Fp[X]. But a product
of two polynomials with coefficients in a field is zero only if one of the factors is 0. If, say,
f̄(X) = 0, then all the coefficients of f(X) are divisible by p, which is impossible (f(X) is
primitive). This proves that the product of primitive polynomials is primitive.

Note now that if f(X) is an arbitrary polynomial with rational coefficients, then f(X) =
c(f)f0(X), where f0(X) is primitive and c(f) is a rational number. In fact, we can find the
least positive integer l such that the coefficients of lf(X) are integers an then divide lf(X)
by the greatest common divisor k of its coefficients. This is f0(X). Thus defining c(f) = k

l ,
we have f(X) = c(f)f0(X). The rational number c(f) is called the contents of f(X).



Of course, if a polynomial f ∈ Z[X] is reducible in Z[X], then it is reducible in Q[X].
Conversely, suppose that f ∈ Z[X] and f = gh, where g, h ∈ Q[X]. We have g = c(g)g0 and
h = c(h)h0, where g0, h0 ∈ Z[X] are primitive polynomials. Hence f = c(g)c(h)g0h0. Let
c(g)c(h) = m

n , where m,n are relatively prime integers. Assume that n 6= 1 and choose a
prime p dividing n. Then the equality nf = mg0h0 shows that p divides the right hand side
and since p does not divide m, it must divide all the coefficients of the product g0h0. But
this is clearly impossible, since the product is a primitive polynomial. The conclusion is that
p can not exist and consequently n = 1. Hence, we have a decomposition f(X) = (mg0)(h0)
into a product of two integer polynomials. Now taking r = m

c(g) and s = 1
c(h) , we have two

rational numbers such that rg, sh ∈ Z[X] and rs = 1. 2

Theorems of Chapter 4

T.4.1 Let α ∈ L ⊇ K be algebraic over K.

(a) Any minimal polynomial of α over K is irreducible and divides every polynomial in K[X]
which has α as its zero.

(b) An irreducible polynomial f ∈ K[X] such that f(α) = 0 is a minimal polynomial of α
over K.

(c) All minimal polynomials of α over K can be obtained by multiplying one of them by
nonzero elements in K.

Proof. (a) Let p be a minimal polynomial of α over K. If p = p1p2, where deg(p1) < deg(p)
and deg(p2) < deg(p), then p(α) = 0 implies p1(α) = 0 or p2(α) = 0, which contradicts the
choice of p as a polynomial of the least possible degree having α as its zero.

(b) We have, f(X) = p(X)q(X) + r(X), where deg(r) < deg(p) or r = 0. f(α) = 0 and
p(α) = 0 imply that also r(α) = 0, so r must be the zero polynomial according to the
definition of p, that is, p | f .

(c) Let both p and p′ be minimal polynomials of α over K. According to (a), they divide
each other, so p′ = cp, where c is a nonzero element of K. 2

T.4.2 Simple extension theorem. (a) If α ∈ L ⊇ K is algebraic over K, then each
element in K(α) can be uniquely represented as a0 + a1α + · · · + an−1α

n−1, where ai ∈ K
and n is the degree of the minimal polynomial of α over K. Thus [K(α) : K] = n and
1, α, . . . , αn−1 is a basis of K(α) over K.

(b) If α ∈ L ⊇ K is transcendental over K, then K[α] ∼= K[X], where K[X] is the ring of
polynomials over K.
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Proof. Consider the ring homomorphism

ϕ : K[X] −→ K[α],

where ϕ(f(X)) = f(α). We have

Kerϕ = {f ∈ K[X] : ϕ(f) = f(α) = 0} = (p(X)),

since every polynomial having α as its zero is a multiple of p(X) by T.4.1 (b). It is clear that
the image of ϕ is the whole ring K[α]. By the Main Theorem on ring homomorphisms, we get
K[X]/(p(X)) ∼= K[α]. As we know, each class in K[X]/(p(X)) can be uniquely represented
by a polynomial

a0 + a1X + · · · an−1X
n−1, ai ∈ K,

so that each element in K[α] can be uniquely written as the image

a0 + a1α+ · · · an−1α
n−1, ai ∈ K,

of such a polynomial. Finally, we observe that K[α] is a field, since the polynomial p(X) is
irreducible (by an earlier theorem, K[X]/(p(X)) is a field if and only if p(x) is irreducible).

If α is transcendental, then it is clear that the kernel of the homomorphism ϕ is (0), since
by the definition of α, the equality ϕ(f(X)) = f(α) = 0 implies that f must be the zero
polynomial. Of course, ϕ is surjective. Thus ϕ is an isomorphism of the rings K[X] and
K[α]. Notice that the field of quotients of these rings K(X) and K(α) are also isomorphic.
2

T.4.3 Tower law. Let M ⊇ L and L ⊇ K be finite field extensions. Then M ⊇ K is a
finite extension and [M : K] = [M : L][L : K].

Proof. Let ei, i = 1, . . . , l, be a basis of L over K, and fj , j = 1, . . . ,m, a basis of M over
L. If x ∈ M , then there is a unique presentation x =

∑m
j=1 ljfj , where lj ∈ L. For each j

there is a unique presentation lj =
∑l
i=1 aijei, where aij ∈ K. Therefore,

x =

m∑
j=1

ljfj =

m∑
j=1

l∑
i=1

aijeifj

and the presentation of x as a linear combination of eifj with coefficients aij ∈ K is unique.
This shows that lm products eifj form a basis of M over K, that is, [M : K] = [M : L][L :
K]. 2

T.4.4 A field extension L ⊇ K is finite if and only if it is algebraic and finitely generated.
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Proof. Assume that L ⊇ K is a finite extension. Then there is a basis e1, . . . , en of L over
K, so L = K(e1, . . . , en), that is, L is finitely generated over K. Take x ∈ L and consider
the powers 1, x, x2, . . . , xn ∈ L. Since the number of these elements is n + 1, they must be
linearly dependent over K, that is, a0 +a1x+a2x

2 + · · ·+anxn = 0, where not all coefficients
ai ∈ K are equal to 0. Thus x is an algebraic element over K, that is, L is an algebraic
extension of K.

Assume now that L ⊇ K is algebraic and finitely generated. This means that L =
K(α1, α2, . . . , αr) and we have the following tower of fields:

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, . . . , αr).

For each i = 0, . . . , n−1, we have αi+1 algebraic overK, so it is algebraic overK(α1, α2, . . . , αi).
Hence the extension K(α1, α2, . . . , αi) ⊆ K(α1, α2, . . . , αi, αi+1) is finite. Consequently the
extension K ⊆ L is finite as its degree is the product of the degrees [K(α1, α2, . . . , αi, αi+1) :
K(α1, α2, . . . , αi)] 2

T.4.5 If K ⊆ M ⊆ L are field extensions such that M is algebraic over K and α ∈ L is
algebraic over M , then it is algebraic over K.

Proof. Let α be a zero of a polynomial f(X) = Xn + αn−1X
n−1 + · · ·+ α1X + α0, where

αi ∈M for i = 0, 1, . . . , n− 1. Consider the tower of field extensions:

K ⊆ K(α0, . . . , αn−1) ⊆ K(α0, . . . , αn−1, α).

Since the elements α0, . . . , αn−1 are algebraic over K, the first extension is finite by T.4.4.
Since α is algebraic over the field K(α0, . . . , αn−1), the second extension is finite by the
same theorem. Thus, the extension K(α0, . . . , αn−1, α) ⊇ K is finite by T.4.3, the element
α is algebraic over K by T.4.4

2

T.4.6 Let L ⊇ K. All elements in L algebraic over K form a field.

Proof. Let α, β ∈ L be two elements algebraic over K. Then the extensions K(α, β) ⊇
K(α) ⊇ K are finite. Hence according to theorem T.4.4 they are algebraic. But α ± β,
αβ ∈ K(α, β), and α/β ∈ L, when β 6= 0. Hence the set of algebraic elements in L is closed
with respect to the four arithmetical operations, that is, the elements of L algebraic over K
form a field. 2

Theorems of Chapter 5

T.5.1 (a) If f is an irreducible polynomial over K, then there exists a field L ⊇ K such
that L = K(α) and f(α) = 0.
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(b) If τ : K → K ′ is a field isomorphism, f an irreducible polynomial over K,L = K(α),
where f(α) = 0 and L′ = K ′(α′), where τ(f)(α′) = 0, then there is an isomorphism σ :
K(α)→ K ′(α′) such that in the diagram:

K(α)
σ
// K ′(α′)

K

OO

τ
// K ′

OO

,

we have σ(α) = α′ and σ|K = τ .

In particular, if K = K ′ and τ = id, then σ is an isomorphism over K (that is, the
isomorphism σ maps each element in K on itself ) of the two simple extensions of K by two
arbitrary roots of f(X) = 0.

Proof. (a) As we know from the proof of T.4.2, the quotient L = K[X]/(f(X)) is a field,
since f(X) is irreducible in K[X]. The class [X] = α is a solution in L of the equation
f(X) = 0 and L = K(α).

(b) The isomorphism τ : K → K ′ can be extended to an isomorphism of the polynomial
rings τ : K[X] → K ′[X] (just applying τ on K to the coefficients of the polynomials).
This isomorphisms maps the irreducible polynomial f(X) onto the irreducible polynomial
τ(f)(X) in K ′[X]. Thus we have an isomorphism of the the quotient rings:

τ∗ : K[X]/(f(X))→ K ′[X]/(τ(f)(X))

such that the class of [X] = α in the first ring maps onto the class of [X] = α′ in the second
one. Since K[X]/(f(X)) = K(α) and K ′[X]/(τ(f)(X)) = K ′(α′), σ = τ∗ is the required
extension of τ . 2

T.5.2 (a) Every polynomial f ∈ K[X] has a splitting field over K.

(b) If τ : K → K ′ is an isomorphism of fields, L is a splitting field of a polynomial f ∈ K[X]
and L′ is a splitting field of the polynomial τ(f) ∈ K ′[X], then there exists an isomorphism
σ : L→ L′

L
σ
// L′

K

OO

τ
// K ′

OO

which extends τ (that is σ|K = τ). In particular, if K = K ′ and τ = id, then two splitting
fields for f over K are K-isomorphic (that is, the isomorphism σ maps each element in K
on itself ).

97



Moreover, if f is separable, then there are exactly [L : K] different possibilities for σ when
τ is given.

Proof. (a) We apply induction with respect to the deg f = n and an arbitrary field K. If
deg f = 1, then of course L = K. If deg f > 1 and f1 is an irreducible factor of f , then
according to T.5.1 (a), there is a field L1 = K(α1) in which f1(X) = 0 has a solution
α1. Thus f(X) = (X − α1)g(X), where the deg g = deg f − 1 and the highest coefficients
a of f and g are the same. The polynomial g has a splitting field L over L1, that is,
g(X) = a(X − α2) · · · (X − αn) and L = L1(α2, . . . , αn), so L = K(α1, α2, . . . , αn) and
f(X) = a(X − α1)(X − α2) · · · (X − αn).

(b) Let L = K(α1, . . . , αn) and L′ = K(α′1, . . . , α
′
n), where f(X) = a(X − α1) · · · (X − αn),

a ∈ K, and τ(f)(X) = a′(X − α′1) · · · (X − α′n), a′ ∈ K ′.

We apply induction with respect to the degree [L : K] for arbitrary pairs of fields K and
L. If [L : K] = 1, then f(X) = a(X − α1)(X − α2) · · · (X − αn), αi ∈ K, so τ(f)(X) =
a(X − α′1)(X − α′2) · · · (X − α′n) and α′i ∈ K, that is, L′ = K ′. We take σ = τ.

Assume now that [L : K] > 1. Then there exists i such that αi 6∈ K. Ma may assume that
i = 1, so α1 is a solution to the equation f1(X) = 0, where f1(X) is an irreducible factor of
f(X) and deg f1 > 1. Let α′1 be a zero of τ(f1)(X), which is an irreducible factor of τ(f)(X).
According to T.5.1 (b), we have an extension σ1 of τ to an isomorphism of K(α1) onto
K(α′1). Now L is a splitting field of f over K(α1) and [L : K(α1)] = [L : K]/[K(α1) : K] <
[L : K]. According to the inductive assumption, there exists an isomorphism σ : L → L′,
which extends σ1. Of course, σ extends τ , since σ1 extends τ .

If f(X) is separable and α is a zero of f1(X) then σ(α) is a zero of τ(f1)(X), since 0 =
σ(f1(α)) = τ(f1)(σ(α)). Thus τ(f1)(X) has d different zeros, where d = deg f1. Hence we
can choose σ1 in exactly d different ways. Since f(X) is separable over K(α1), we can use
induction as above to the extension L of K(α1). Each choice of σ1 gives [L : K(α1)] = [L :
K]/[K(α1) : K] = [L : K]/d different choices of σ. Thus the total number of extensions σ of
τ equals d · [L : K]/d = [L : K].

When K = K ′ and τ = id, it is now evident that two splitting fields of f(X) over K are
isomorphic. 2

T.5.3 A polynomial f ∈ K[X] has no multiple zeros in any extension L ⊇ K if and only if
gcd(f, f ′) = 1.

Proof. Let α ∈ L be a multiple zero of f(X), that is, f(X) = (X−α)2q(X) (the multiplicity
of α is at least 2), where q(X) ∈ L[X]. Then f ′(X) = 2(X − α)q(X) + (X − α)2q′(X), so
f(α) = f ′(α) = 0. Hence gcd(f(X), f ′(X)) 6= 1 as it is divisible by X − α.

Conversely, let d = gcd(f, f ′) be not a constant polynomial and let α be a zero of d(X) in
some field containing K (here we use T.5.1). We have f(α) = f ′(α) = 0. Hence f(X) =
(X − α)q(X), so f ′(X) = q(X) + (X − a)q′(X). The last equality shows that q(α) = 0.
Hence q(X) = (X − α)q1(X) and f(X) = (X − α)2q1(X), that is, the polynomial f(X) has
multiple zeros. 2
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T.5.4 (a) The number of elements in a finite field is a power of a prime number.

(b) If p is a prime number and n ≥ 1, then the splitting field for Xpn −X over Fp is a finite
field with pn element.

(c) Two finite fields with the same number of elements are isomorphic. More exactly, every
finite field with pn element is a splitting field of Xpn −X over Fp.

Proof. (a) Let K be a finite field. The prime subfield of K is of course also finite, so let Fp for
a prime number p be the prime subfield contained in K (see Chapter 2). Let α1, . . . , αn be
a basis of K over Fp. Each element of K is uniquely represented as a1α1 + · · ·+anαn, where
ai ∈ Fp, so the number of elements of K equals the number of such linear combinations,
that is, it is equal pn.

(b) Let K be a splitting field of the polynomial Xq−X, where q = pn, over Fp. The existence
of K follows from T.5.2. Let

M = {α ∈ K | αq = α}

be the set of all solutions of the equation Xq = X in K. If α, α1, α2 ∈M , then

(α1 + α2)q = αq1 + αq2 = α1 + α2, (α1α2)q = αq1α
q
2 = α1α2,

and

(
1

α

)q
=

1

αq
=

1

α
if α 6= 0,

so the elements of M form a subfield of K. The subfield M is of course a splitting field of
the polynomial Xq −X over Fp, so by T.5.2 it is isomorphic to K. In particular, the fields
M and K have the same number of elements which equals q = pn, since all zeros of the
polynomial f(X) = Xq−X are different. In fact, we have f ′(X) = qXq−1−1 = −1, that is,
the polynomials f(X) and f ′(X) are relatively prime (see T.5.3). This proves that M = K,
so K is a field consisting of pn.

(c) Let K be any field with q = pn elements. Since all nonzero elements of K form a group
with respect to multiplication and the order of this group is q−1, we have αq−1 = 1 for each
nonzero α ∈ K. Hence all elements of K including 0 satisfy the equation Xq = X. Thus K
is the splitting field of the polynomial Xq −X over Fp. 2

T.5.5 For every field K there exists an algebraic closure K and two algebraic closures of
the same field K are K-isomorphic.

Proof. As a first step, we prove that for every field K, there exists a field K1 ⊇ K such
that every irreducible polynomial f(X) ∈ K[X] has a zero in K1.
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Let S denote the set of all irreducible polynomials f ∈ K[X]. For each f ∈ S, we take a
variable Xf and form the polynomial ring R = K[. . . Xf . . .] generated over K by all the
varaiables Xf . Consider the ideal I in this polynomial ring generated by all f(Xf ), where
f ∈ S. We claim that this ideal is proper, since 1 6∈ I. If this is not true, then there are
polynomials fi(Xfi) such that

1 = g1f1(Xf1) + · · ·+ grfr(Xfr )

for some polynomials gi ∈ R. The polynomials gi depend on some finite number of variables
Xf . Let M be an extension of K in which each polynomial f(Xfi) has a zero αi. Take a
ring homomorphism mapping each variable Xfi on αi and all remaining variables Xf on 0.
The equality above maps then onto 1 = 0, which is impossible. Hence 1 can not belong to
the ideal I.

Since I is a proper ideal, we have a maximal idealM containing I (see A.15.1) and we have
the natural surjection of the ring R onto its quotient R/M, which is a field K1 by A.4.4.
Notice now that the field K is mapped into the field K1, since the kernel of the surjection of
R onto K1 is zero when restricted to the field K (a field has only two ideals (0) and itself,
but in this case the kernel is (0), since 1 is not in the kernel – see A.4.6). Thus, we can
identify K with a subfield of K1. Moreover, every polynomial f(Xf ) has a zero in K1, since
the image of Xf is a zero of this polynomial (f(Xf ) equals zero in K1). This proves the first
assertion of our proof.

Now we repeat the process and construct a chain of fields

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · ·

such that each polynomial over K1 has a zero in K2, each polynomial over K2 has a zero in
K3 and so on. Define K =

⋃∞
i=0Ki. We claim that K is an algebraic closure of K.

In fact, if f(X) ∈ K is an irreducible polynomial, then the coefficients of f(X) are already
in some field Ki. Hence, this polynomial has a zero in Ki+1, that is, it has a zero in K.
As f(X) is irreducible in K[X] and has a zero in K, it has degree 1. Thus the field K is
algebraically closed, since the only irreducible polynomials over K have degree 1 (see p. 18).

Now we prove that two algebraic closures K and K ′ of the same field K are isomorphic.
Consider the set of all pairs (L,ϕ) such that L is a subfield of K containing K and ϕ an
injection of L into K ′ over K. This set is not empty, since we have the pair consisting of
K and the identity as ϕ. Such pairs are ordered when we declare a pair (L,ϕ) less or equal
(L′, ϕ′) when L ⊆ L′ and ϕ′ restricted to L is equal ϕ. If Y is a set of pairs (L,ϕ) such that
for two pairs (L1, ϕ1) and (L2, ϕ2), we have L1 ⊆ L2 or L2 ⊆ L1, then taking L0 =

⋃
L∈Y L

and defining ϕ0 on L0 so that its restriction to L is ϕ (for (L,ϕ) ∈ Y), we get an upper bound
of the set Y. Thus, we can apply Zorn’s Lemma (see A.14.1), which says that there exist a
maximal pair. Let (M,ϕ) be such a maximal pair and let M ′ = ϕ(M) be the corresponding
subfield of K ′. We want to prove that M = K and M ′ = K ′. If not, then there is α ∈ K such
that α 6∈M . The element α is algebraic over M (since it is algebraic over K), so let us take
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its minimal polynomial f(X) over M . Since f(X) ∈ M [X], we can take the image of this
polynomial applying ϕ to its coefficients. This polynomial, as a polynomial with coefficients
in M ′, has a zero α′ ∈ K ′. By T.5.1, there is an isomorphism ψ : M(α) → M ′(α′) which
restricted to M is equal to ϕ. Thus the pair (M,ϕ) is not maximal if α could be chosen
outside of M . This contradiction shows that M = K. Now the image ϕ(K) is an algebraically
closed subfield of K ′, which is algebraic over it. But this is only possible when K ′ = ϕ(K),
since an algebraically closed field has not nontrivial algebraic extensions. 2

Theorems of Chapter 6

T.6.1 All K-automorphisms of L form a group with respect to the composition of automor-
phisms.

Proof. If σ, τ ∈ G(L/K) are automorphisms of L over K, then one easily checks that their
composition στ also is an automorphism of L over K. The inverse σ−1 is an automorphism
of L over K, which also can be easily checked. 2

T.6.2 If G is a group of automorphisms of L (finite or infinite ), then LG is a subfield of
L and [L : LG] = |G|.

Proof. First we show that [L : LG] ≥ |G|. Let G = {σ1, . . . , σn}. Here G need not to be a
group – simply a set of different automorphisms of L. Assume that L has dimension m < n
over LG and let e1, . . . , em be a basis of L over LG. Consider the following system of m
homogeneous linear equations:

σ1(e1)x1 + · · ·+ σn(e1)xn = 0

...

σ1(ei)x1 + · · ·+ σn(ei)xn = 0

...

σ1(em)x1 + · · ·+ σn(em)xn = 0.

Since the number of equations m is less than the number of variables n, the system has a
nontrivial solution (x1, . . . , xn) ∈ Ln. Let x =

∑m
i=1 aiei, where ai ∈ LG, be an arbitrary

element of L. Multiply the i − th equation in the system by ai for i = 1, . . . ,m and notice
that for every j = 1, . . . , n, we have aiσj(ei) = σj(aiei), since ai ∈ LG. Then add all the
equations. The result is the following equality:

σ1(x)x1 + · · ·+ σn(x)xn = 0,

which holds for every x ∈ L. But it contradicts to the Dedekind’s Lemma, since (x1, . . . , xn) 6=
(0, . . . , 0). Hence [L : LG] ≥ |G|. Notice that the proof implies that the degree [L : LG] is
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always at least equal to the number of automorphisms in any set (not necessarily a group)
G. In particular, if there exists an infinite group of automorphisms of L, then the dimension
of L over LG is not finite.

Now we prove that [L : LG] ≤ |G|, when G is a finite group of automorphisms of L. Let
G = {σ1, . . . , σn} and assume that m = [L : LG] > |G| = n. Assume that e1, . . . , em is a
basis of L over LG and consider the homogeneous linear system:

x1σ
−1
1 (e1) + · · ·+ xmσ

−1
1 (em) = 0

...

x1σ
−1
i (e1) + · · ·+ xmσ

−1
i (em) = 0

...

x1σ
−1
n (e1) + · · ·+ xmσ

−1
n (em) = 0.

Since the number of equations n is less than the number of variables m, the system has a
nontrivial solution (x1, . . . , xm) ∈ Lm. Assume that x1 6= 0. Since the system is homoge-
neous, any multiple c∗ (x1, . . . , xm), where c ∈ L, is also a solution of the system. Therefore,
we can choose x1 arbitrarily in L. Let’s do it in such a way that

σ1(x1) + · · ·+ σn(x1) 6= 0.

Such a choice is possible by Dedekind’s Lemma (the sum to the left can not be 0 for all
x1 ∈ L). With this choice of x1, we map the i − th equation of the system (∗) by the
automorphism σi and we get:

σ1(x1)e1 + · · ·+ σ1(xm)em = 0

...

σi(x1)e1 + · · ·+ σi(xm)em = 0

...

σm(x1)e1 + · · ·+ σm(xm)em = 0.

Adding all the equations above, we get the following equality:

TrG(x1)e1 + · · ·+ TrG(xm)em = 0,

where TrG(x1) = σ1(x1) + · · ·+ σn(x1) 6= 0. This gives a contradiction, since e1, . . . , em are
linearly independent over LG and TrG(xi) ∈ LG. Hence [L : LG] ≤ |G|. 2

T.6.3 Dedekind’s Lemma. If σ1, σ2, . . . , σn are different automorphisms of a field L and
the equality a1σ1(x) + a2σ2(x) + . . . + anσn(x) = 0, where ai ∈ L, holds for every x ∈ L,
then a1 = a2 = . . . = an = 0.
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Proof. We prove the Lemma by induction on the number of automorphisms n. If n = 1,
then the equality a1σ1(x) = 0 for every x ∈ L, implies that a1σ1(1) = a1 = 0.

Assume now that the Lemma is true when the number of automorphisms is less than n > 1
and let

a1σ1(x) + a2σ2(x) + . . .+ anσn(x) = 0 (2)

for every x ∈ L, where ai ∈ L. Since the last equality holds for every x ∈ L, we may choose
an arbitrary α ∈ L and replace x by αx. Then we get:

a1σ1(α)σ1(x) + a2σ2(α)σ2(x) + . . .+ anσn(α)σn(x) = 0 (3)

Now we multiply the equality (2) by σn(α) and subtract from it the equality (3):

a1(σn(α)−σ1(α))σ1(x)+a2(σn(α)−σ2(α))σ2(x)+ . . .+an−1(σn(α)−σn−1(α))σn−1(x) = 0

Using the inductive assumption, we get that all the coefficients in the last equality are equal
to 0, that is, ai(σn(α)− σi(α)) = 0 for i = 1, . . . , n− 1. Since the automorphisms σ1, . . . , σn
are different, for every i = 1, . . . , n− 1 there is an element αi ∈ L such that σn(αi) 6= σ(αi).
Choosing α = αi, the equality ai(σn(α)−σi(α)) = 0 implies that ai = 0 for i = 1, . . . , n−1.
Now we go back to the equality (2), which gives anσn(x) = 0 for every x ∈ L. When x = 1,
we get an = 0 and the proof is complete. 2

Theorems of Chapter 7

T.7.1 A finite extension L ⊇ K is normal if and only if L is a splitting field of a polynomial
with coefficients in K.

Proof. Let L = K(α1, . . . , αn) and let fi be the minimal polynomial of αi over K for
i = 1, . . . , n. According to the definition of a normal extension, every polynomial fi splits
into linear factors in L. The same is true about the product f = f1 · · · fn, so L is a splitting
field of f over K, since it contains all its zeros and is generated over K by some of them:
α1, . . . , αn.

Conversely, assume that L is a splitting field of a polynomial f ∈ K[X]. Wa want to show
that if an irreducible polynomial g ∈ K[X] has a zero α ∈ L, then g splits in L into linear
factors. Let M be a splitting field of the polynomial g over L and let α′ be any zero of g in
M . We want to show that α′ ∈ L, which will show that g already splits in L. Consider the
following chain of field extensions:
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M

L(α) L(α′)

L

K(α) K(α′)

K

Since L is a splitting field of f over K, both L(α) and L(α′) are splitting fields of f over
K(α) and K(α′), respectively. Since K(α) ∼= K(α′), there is an isomorphism of the splitting
fields L(α) and L(α′) of f extending an isomorphism of K(α) and K(α′). Hence [L(α) :
K(α)] = [L(α′) : K(α′)]. Of course, [K(α) : K] = [K(α′) : K]. Thus

[L(α) : L] =
[L(α) : K]

[L : K]
=

[L(α) : K(α)][K(α) : K]

[L : K]
=

[L(α′) : K(α′)][K(α′) : K]

[L : K]
=

[L(α′) : K]

[L : K]
= [L(α′) : L].

But [L(α) : L] = 1, since α ∈ L, so [L(α′) : L] = 1, which means that L(α′) = L , that is,
α′ ∈ L. 2

T.7.2 Let L = K(α1, . . . , αn) be a finite extension. Then a normal closure to L ⊇ K is
unique up to a K-isomorphism. More exactly, every normal closure of L ⊇ K is a splitting
field over K of f = f1 · · · fn, where fi is the minimal polynomial of αi over K.

Proof. Let fi be the minimal polynomial of αi over K. If N is a normal closure of L ⊇ K,
then fi splits in N . Hence N contains a splitting field of fi. Let f = f1 · · · fn. Then N also
contains a splitting field of f . But this splitting field of f is normal, so N coincides with it.

2

Theorems of Chapter 8

T.8.1 (a) All fields of characteristic 0 and all finite fields are perfect.

(b) If char (K) = p, then an irreducible polynomial f ∈ K[X] is not separable if and only if
f ′ ≡ 0, which is equivalent to f(X) = g(Xp), where g ∈ K[X].
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Proof. (a) Let K be a field of characteristic 0 and let f(X) = anX
n+ · · ·+a1x+a0 ∈ K[X]

be an irreducible polynomial. Let gcd(f, f ′) = d. Since deg f > 0 and char(K) = 0, we have
f ′ 6= 0 (zero polynomial). We have d | f and deg d ≤ deg f ′ < deg f , so d must be a constant
polynomial as a divisor of an irreducible polynomial f . Hence d is a constant polynomial, so
by T.5.3, the polynomial f is separable.

Assume now that K is a finite field of characteristic p. First note that the function σ(x) = xp

is an automorphism of the field K (see Ex. 6.5 (b)) and since K is finite, we have σ(K) = K
(the number of elements in σ(K) and K is the same). This equality says that each element of
K is a p−th power. Let now f(X) be a minimal polynomial of an algebraic element over K in
an extension of this field. We want to show that f(X) is separable. If not, then according to
(b) below, there is a polynomial g ∈ K[X] such that f(X) = g(Xp) = bmX

pm+· · ·+b1Xp+b0
for same bi ∈ K. But all bi are p−powers in K, so we have bi = cpi for some ci ∈ K. Hence

f(X) = bmX
pm + · · ·+ b1X

p + b0 = cpmX
pm + · · ·+ cp1X

p + cp0 = (cmX
m + · · ·+ c1X + c0)p,

which shows that f(X) is not irreducible contrary to the assumption. Hence f(X) is sepa-
rable, which proves our claim concerning the finite field K.

(b) Assume that f ∈ K[X] is irreducible and not separable. Hence by T.5.3, we have
gcd(f, f ′) = d, where d is not a constant polynomial. Since d|f is irreducible, we have d = f
(up to a constant), so f |f ′. This is only possible when f ′ is identically equal to zero. Since
f ′(X) = nanX

n−1+· · ·+2a2X+a1, we get that the only nonzero coefficients ai in f(X) may
be those, which correspond to Xi for i divisible by p – if Xi has nonzero coefficient in f(X)
and p - i, then the coefficient of Xi−1 in the derivative is also nonzero, so the derivative is
nonzero. Hence f(X) is a polynomial in Xp, that is, f(X) = g(Xp) for some g(X) ∈ K[X].
Conversely, it is clear that an irreducible polynomial f(X) = g(Xp) is not separable, since
f ′(X) ≡ 0 so gcd(f, f ′) = f , which means that f(X) has multiple zeros in an extension of
K. 2

T.8.2 Primitive element theorem. If L = K(α1, . . . , αn), where α1, . . . , αn are algebraic
and all with possibly one exception are separable over K, then there is a primitive element
of L over K. In particular, every finite separable extension has a primitive element.

Proof. First we assume that K is an infinite field. It suffices if we show that if L = K(α, β),
then L = K(θ) for a suitable θ ∈ L. Let f and g be the minimal polynomials of α and β
over K and let

f(X) = (X − α1) . . . (X − αn),

g(X) = (X − β1) . . . (X − βm),

where α1 = α, β1 = β. According to the assumption all zeros of f or g are different (f or g
is separable polynomial). Assume that g is separable. Choose c ∈ K so that

αi + cβj 6= α1 + cβ1
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for all (i, j) 6= (1, 1). The existence of c follows from the fact that

αi + xβj = α1 + xβ1

holds for finitely many x ∈ K (less than mn ”bad” x). Define:

θ = α+ cβ

We have K(θ) ⊆ K(α, β). We want to show that K(α, β) ⊆ K(θ). It suffices if we show that
β ∈ K(θ), since then α = θ − cβ ∈ K(θ). Consider the polynomials:

f(θ − cX) and g(X).

These polynomials have coefficients in K(θ) and they have a common zero β, since

f(θ − cβ) = f(α) = 0 and g(β) = 0.

They do not have any other common zeros, since if f(θ−cβj) = 0 for some j, then θ−cβj = αi
for some i. Thus αi + cβj = θ = α+ cβ, which occurs only if i = j = 1. This shows that

GCD(f(θ − cX), g(X)) = X − β

But the greatest common divisor of two polynomials with coefficients in K(θ) is a polynomial
with coefficients in K(θ), so β ∈ K(θ).

If K is a finite field1, then L is a finite field as well and its multiplicative group of nonzero
elements is cyclic (see Ex. 5.7). Any generator of this group is a (field) primitive element of
L over K. 2

Theorems of Chapter 9

T.9.1 Let L ⊇ K be a finite field extension and G(L/K) its Galois group. Then the following
conditions are equivalent:

(a) [L : K] = |G(L/K)|;

(b) LG(L/K) = K;

(c) There is a group G of K-automorphisms of L such that K = LG and then, G = G(L/K);

(d) L ⊇ K is normal and separable;

(e) L is a splitting field of a separable polynomial over K.

Proof. (a)⇒ (b) We have the following chain of fields:

1 There exists a proof of the theorem on primitive element, which works for both finite and infinite
fields K. See [BR].
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K ⊆ LG(L/K) ⊆ L

and according to T.6.2, we get [L : LG(L/K)] = |G(L/K)|. Since also [L : K] = |G(L/K)|,
by T.4.3, we get [LG(L/K) : K] = [L : K]/[L : LG(L/K)] = 1, that is, LG(L/K) = K.

(b) ⇔ (c) is evident, since taking G = G(L/K), we get that (b) implies (c). The converse
follows if we note that G ⊆ G(L/K) gives K ⊆ LG(L/K) ⊆ LG ⊆ L. Since LG = K, we get
LG(L/K) = K, which gives (b). Moreover, if LG = K, then Artin’s Lemma T.6.2 and the
inclusion G ⊆ G(L/K) imply that G = G(L/K).

(b) ⇒ (d) We have to show that if f(X) ∈ K[X] is an irreducible polynomial such that
f(α) = 0 for some α ∈ L, then f(X) splits in L as a product of linear factors (normality)
and all solutions of the equation f(X) = 0 in L are different (separability).

Let G = {σ1, . . . , σn} and let X = {α1, . . . , αr} be the set of all diffrent images σi(α) for
i = 1, . . . , n. We assume that σ1 = id, so α1 = α. Notice that by the definition of X, if
αi ∈ X, then σ(αi) ∈ X for σ ∈ G, so every σ ∈ G gives a permutation of the elements of
X.

Consider the polynomial

g(X) = (X − α1) · · · (X − αr).

We claim that g(X) ∈ K[X]. In fact, the coefficients of this polynomial are α1 + · · · + αr,
α1α2 + · · · + αr−1αr, . . ., α1 · · ·αr (all fundamental symmetric expressions in α1, . . . , αr)
and every σ ∈ G permutes all the αi leaving the coefficients unchanged:

σ(α1 + · · ·+ αr) = σ(α1) + · · ·+ σ(αr) = α1 + · · ·+ αr

σ(α1α2 + · · ·+ αr−1αr) = σ(α1α2) + · · ·+ σ(αr−1αr) = α1α2 + · · ·+ αr−1αr

. . .

σ(α1 · · ·αr) = σ(α1) · · ·σ(αr) = α1 · · ·αr

Thus by (b), the coefficients of g(X) belong to LG(L/K) = K. Since f(X) is irreducible in
K[X], has a zero α, and g(X) is a polynomial in K[X] which also has a zero α, we get that
f(X) divides g(X). Hence all zeros of f(X) are in L and are different.

(d)⇒ (e) Let L = K(α1, . . . , αn) be finite, normal and separable. Let fi(X) be the minimal
polynomial of αi over K for i = 1, . . . , n. Then fi(X) is irreducible and has a zero in L, so
it is separable and has all its zeros in L. Thus f(X) = f1(X) · · · fn(X) is separable and L is
its splitting field over K.
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(e) ⇒ (a) Let L = K(α1, . . . , αn) be a splitting field of a separable polynomial f(X) =
a(X − α1) · · · (X − αn), a ∈ K. We use induction with respect to the degree [L : K]. If
[L : K] = 1, then of course, |G(L/K)| = 1. Assume that [L : K] > 1. Then there exists i such
that αi 6∈ K. We may assume that i = 1, so α = α1 is a solution to the equation f1(X) = 0,
where f1(X) is an irreducible factor of f(X) and deg f1 = d > 1. Since f is separable,
f1(X) = 0 has d different solutions in L. Let α′ be any of the solutions to f1(X) = 0 in L.
As we know, there is an isomorphism τ : K(α) → K(α′) such that τ(α) = α′ and τ is the
identity on K. The number of such τ is exactly d since τ(f1(α)) = f1(τ(α)) = 0, so there
are exactly d possibilities for τ(α) as solutions to the equation f1(X) = 0 in L.

We have the following field extensions:

L
σ

// L

K(α)

OO

τ
// K(α′)

OO

K

OO

id
// K

OO

Now consider f(X) as a separable polynomial with coefficients in K(α). Then L is its
splitting field. [L : K(α)] = [L : K]/[K(α) : K] < [L : K], so we can use the inductive
assumption. Each choice of τ gives [L : K(α)] = [L : K]/[K(α) : K] = [L : K]/d different
choices of σ. Thus the total number of extensions σ of id : K → K equals d · [L : K]/d =
[L : K]. 2

If L ⊇ K is a field extension, F the set of all fields between K and L and G the set of all
subgroups to G(L/K), then we define two functions:

f : G → F and g : F → G

in the following way:
f(H) = LH = {x ∈ L : ∀σ∈Hσ(x) = x}

and
g(M) = G(L/M) = {σ ∈ G(L/K) : ∀x∈Mσ(x) = x}.

T.9.2 The main theorem of Galois theory. If L ⊇ K is a finite Galois extension,
then f and g are the inverse anti-automorphisms between partially ordered by inclusion
sets F of all fields between K and L and the set G of all subgroups to G(L/K), that is,
f ◦ g = idF , g ◦ f = idG and f(H1) ⊇ f(H2) if H1 ⊆ H2, and g(M1) ⊇ g(M2) if M1 ⊆M2.

Proof. We show fg = idF and gf = idG , which says that f and g are mutually inverse
bijections. We have
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fg(M) = f(G(L/M)) = LG(L/M) = M

according to T.9.1 (b), since by T.9.3 (a) the extension L ⊇M is Galois. We have also

gf(H) = g(LH) = G(L/LH) = H,

where the last equality is a direct consequence of T.9.1 (c).

The last statement concerning inverting of inclusions follows immediately from the defini-
tions of f(H) and g(M). 2

T.9.3 Let K ⊆ L be a Galois extension and M a field between K and L.

(a) The extension L ⊇M is a Galois extension.

(b) The extension M ⊇ K is a Galois extension if and only if G(L/M) is normal in G(L/K).
If this holds, then G(M/K) ∼= G(L/K)/G(L/M).

Proof. (a) Since K ⊆ L is a Galois extension, it is a splitting field of a separable polynomial
f(X) ∈ K[X]. L is a splitting field of the same polynomial over M . Thus M ⊆ L is a Galois
extension.

(b) Let K ⊆M be a Galois extension and let σ ∈ G(L/K). We claim that the restriction of
σ to M belongs to the Galois group G(M/K). In fact, if α ∈ M and g(X) is the minimal
polynomial of α over K, then g(σ(α)) = σ(g(α)) = 0, so σ(α) ∈ M , since all solutions of
g(X) = 0 belong to M (since M is Galois over K, g(X) is irreducible in K and has one zero
α in M). Consider the group homomorphism

ϕ : G(L/K)→ G(M/K)

such that ϕ(σ) = σ|M . The kernel of this homomorphism consists of all automorphisms
σ ∈ G(L/K) which map onto the identity σ|M = idM , that is, the kernel is G(L/M). Thus
G(L/M) is a normal subgroup of G(L/K).

Conversely, assume that G(L/M) is a normal subgroup of G(L/K). Then for every σ ∈
G(L/K) and every τ ∈ G(L/M), we have σ−1τσ ∈ G(L/M). Let α ∈M . Then σ−1τσ(α) =
α, that is, τσ(α) = σ(α). Hence σ(α) ∈ M as an element fixed by all automorphisms
τ ∈ G(L/M) (remember that M ⊆ L is Galois by (a)). Hence, the homomorphism ϕ is
defined – it maps every K-automorphism of L onto its restriction to M . It follows from
Theorem T.5.2 (b) that ϕ is surjective, since every automorphism τ ∈ G(M/K) can be
extended to an automorphism σ ∈ G(L/K) (that is, σ restricted to M equals τ). According
to the main theorem on group homomorphisms, we have

G(L/K)

G(L/M)
∼= ϕ(G(L/K)) = G(M/K).

This gives:
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|G(M/K)| =
∣∣∣∣G(L/K)

G(L/M)

∣∣∣∣ =
|G(L/K)|
|G(L/M)|

=
[L : K]

[L : M ]
= [M : K],

that is, K ⊆M is a Galois extension. 2

Theorems of Chapter 10

T.10.1 (a) The degree [Q(ε) : Q] = ϕ(n), where ε is a primitive n−th root of unity and ϕ
is the Euler function.

(b) Each automorphism σ in the Galois group G(Q(ε)/Q) is given by σk(ε) = εk, where
k ∈ {1, . . . , n} and gcd(k, n) = 1. The mapping σk 7→ k (mod n) gives an isomorphism
G(Q(ε)/Q) ∼= (Z/nZ)∗.

Proof. (a) Let ε be any primitive n-th root of unity. Let f(X) be the minimal polynomial
of ε. Since εn = 1, the polynomial f(X) divides Xn − 1. Let Xn − 1 = f(X)q(X). Hence
the field Q(ε) is the splitting field of f(X) as well as of Xn − 1, since all zeros of these
polynomials are the powers εk for k = 0, 1, . . . , n − 1. The polynomial f(X) is monic, has
rational coefficients and divides Xn − 1. Hence, it has integer coefficients by Ex. 3.11. We
want to prove that the zeros of f(X) are exactly all ϕ(n) primitive n-th roots of unity εk,
where gcd(k, n) = 1.

First we show that every zero of f(X) is n−th primitive root of unity. Let εk be a zero
of f(X) in Q(ε). According to T.5.1, there is an automorphism σ of this field such that
σ(ε) = εk. The automorphism σ maps n−th roots of unity onto n−th roots of unity and
since the powers of ε are all such roots, so even all the powers of εk must be all of them.
Hence k must be relatively prime to n, so that εk is a primitive n−th root of unity. (This
argument shows that if a primitive n-th root of unity is a zero of an irreducible polynomial,
then all other zeros of this polynomial are also primitive n-th roots of unity.)

Now we prove that any primitive n−th root of unity is among the zeros of f(X). Let p be
an arbitrary prime relatively prime to n. We want to show that εp is also a zero of f(X).
If it is true, then it will follow that all εk for k relatively prime to n are zeros of f(X). In
fact, the exponent k = p1 · · · pr is a product of prime numbers, so starting with ε as a zero
of f(X), we get εp1 , εp1p2 , . . . as zeros of f(X). After r steps, we get εk as a zero of f(X).

Assume that εp is not a zero of f(X) and let g(X) be its minimal polynomial. Observe that
f(X) and g(Xp) have a common zero ε. Since f(X) is irreducible, it divides g(Xp). Let
g(Xp) = f(X)h(X), where h(X) is a monic integer polynomial.

Now we want to prove that f(X) and g(X) have a common zero. The zeros of both these poly-
nomials are n-th roots of 1, so if all these zeros are different, then Xn− 1 = f(X)g(X)q(X)
for some polynomial q(X) ∈ Z[X]. Reduce the equalities:
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Xn − 1 = f(X)g(X)q(X) and g(Xp) = f(X)h(X)

modulo p, that is, consider the images of all involved polynomials in Fp[X]. Since p - n,
the derivative nXn−1 of Xn − 1 is nonzero, so all zeros of this polynomial are different (see
T.5.3). Hence the zeros of f(X) and g(X) are also different when considered over Fp. But
the second equality says that g(X)p = f(X)h(X), since g(Xp) = g(X)p over Fp. Hence
the zeros of f(X) are among the zeros of g(X). This contradiction shows that f(X) and
g(X) have common zeros already over Q. Since both f and g are monic and irreducible
with common zero, they are equal. Hence f(ε) = 0 implies f(εp) = 0 for each p - n. As we
noted above, this implies that all ϕ(n) primitive n-th roots of 1 are the zeros of f(X), so
f(X) = Φn(X) proving that this polynomial is irreducible.

(b) Let ε be a primitive n-th root of unity. We already know that Φn(X) is the minimal
polynomial of ε and its zeros are εk for k such that gcd(k, n) = 1 and k ∈ {1, . . . , n− 1}. By
T.5.1, all automorphisms of Q(ε) are defined by the images of ε, that is, σk(ε) = εk for all
k as above. Now notice that σkσl(ε) = σk(σl(ε)) = σk(εl) = εkl = σkl(ε), where the index kl
(in σkl) is taken modulo n, since εkl = εkl (mod n) as εn = 1. Notice also that gcd(kl, n) = 1,
when gcd(k, n) = gcd(l, n) = 1. Thus the mapping ϕ : G(Q(ε)/Q) → (Z/nZ)∗, where
ϕ(σk) = k is a bijection and ϕ(σkσl) = ϕ(σkl) = kl (mod n) = ϕ(σk)ϕ(σl) is a group
isomorphism. 2

T.10.2 Let K be a field whose characteristic does not divide n.

(a) We have:

Xn − 1 =
∏
d|n

Φd,K(X) and Φn,K(X) =
∏
d|n

(Xd − 1)µ(nd ),

where µ denotes the Möbius function (see Ex. 5.6).

(b) The cyclotomic polynomials Φn,K(x) are monic and their coefficients are integer multiples
of the unity in K.

(c) All irreducible factors of Φn,K(X) are of the same degree.

(d) If K = Q, then Φn(X) = Φn,Q(X) is irreducible over Q.

Proof. (a) Since the characteristic of K does not divide n, the polynomial Xn − 1 has n
different zeros, as its derivative nXn−1 is relatively prime to it (see T.5.3). Every n−th root
of unity is a zero of exactly one polynomial Φd,K(X) for d | n. This proves the first identity
in (a).

The second identity follows immediately from the first one and A.10.3 if we choose
G = K(X)∗, the group of rational functions p(X)/q(X), where p(X), q(X) ∈ K[X] with
multiplication as group operation and f(n) = Xn − 1, g(n) = Φn,K(X).

(b) We prove the claim by induction. If n = 1, the Φ1,K(X) = X − 1 so (b) is true in this
case. Assume that it is true for all positive integers m < n. Hence the coefficients of the
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polynomial
∏
Φd,K(X), where d | n and d < n are all integer multiples of the unit in the

field K. According to (a), we have

Φn,K(X) =
Xn − 1∏

d<n,d|n Φd,K(X)

so the division algorithm shows that also the coefficients of Φn,K(X) are all integer multiples
of the unity in K.

It is easy to deduce (b) from Gauss’s Lemma (see T.3.3) when K = Q. In fact, since the
zeros of Φn,Q(X) are n-th roots of 1, it is a divisor of Xn − 1, which is a polynomial with
integer coefficients. According to Gauss’s Lemma, there exists a rational number r such that
rΦn,Q(X) has integer coefficients and divides Xn− 1. The polynomials Xn− 1 and Φn,Q(X)
are monic. Hence the polynomial rΦn,Q(X) is also monic (as an integer divisor of Xn − 1)
and r = 1. Thus Φn,Q(X) has integer coefficients.

(c) Let ε be any primitive n−th root of unity and let f(X) be its minimal polynomial over
K. Then K(ε) is the splitting field of f(X) as well as of the polynomial Xn − 1 whose all
zeros are in K(ε), since they are powers of ε. If η is any other primitive n−th root of unity,
then K(ε) = K(η), so the minimal polynomial of η over K has the same degree as the degree
of f(X) (see T.4.2).

(d) This was proved in T.10.1 (a). 2

Theorems of Chapter 11

T.11.1 Let K ⊆ L be a Galois extension and G(L/K) = {σ1 = 1, σ2, . . . , σn} its Galois
group. Then the following properties of the extension K ⊆ L hold and are equivalent:

(a) There exists α ∈ L such that σ1(α), σ2(α), . . . , σn(α) is a basis of L over K.

(b) L+ is a cyclic K[G]−module, that is, there is α ∈ L such that L+ = K[G]α for some
α ∈ L.

In order to prove the existence of normal bases, we need two auxiliary results:

Lemma 11.1. Let K ⊆ L be a Galois extension and G(L/K) = {σ1 = id, σ2, . . . , σn}. The
elements α1, . . . , αn ∈ L form a basis of L over K if and only if det[σi(αj)] 6= 0.

Proof. The given elements are linearly dependent if and only if there are elements
a1, . . . , an ∈ K not all equal to 0 such that a1α1 + · · · + anαn = 0. Letting all σi act
on this equality, we get
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a1σ1(α1) + · · ·+ anσ1(αn) = 0
a1σ2(α1) + · · ·+ anσ2(αn) = 0
...
a1σn(α1) + · · ·+ anσn(αn) = 0.

The above system of linear equations has a non-zero solution a1, . . . , an if and only if the
determinant of the coefficient matrix (consisting of σi(αj)) equals 0. 2

Lemma 11.2. Let f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] be a non-zero polynomial and let A be
an infinite subset of K. Then there exist a1, . . . , an ∈ A such that f(a1, . . . , an) 6= 0.

Proof. We use induction with respect to n. If n = 1, then some element of A is not a zero
of f(X), since the number of zeros of f(X) is finite. Assume that n > 1 and the statement
is true for polynomials whose number of variables is less than n. Write f(X1, . . . , Xn) as a
polynomial with respect to Xn with coefficients depending on X1, . . . , Xn−1, that is,

f(X1, . . . , Xn) = ak(X1, . . . , Xn−1)Xk
n + · · ·+ a1(X1, . . . , Xn−1)Xn + a0(X1, . . . , Xn−1)

Let a(X1, . . . , Xn−1) be the product of those ai(X1, . . . , Xn−1) for i = 0, 1, . . . , k, which
are non-zero. By the inductive assumption, we can find a1, . . . , an−1 ∈ A such that
a(a1, . . . , an−1) 6= 0. We consider then f(a1, . . . , an−1, Xn) which is a non-zero polynomial
in the variable Xn. Hence we can find an ∈ A such that f(a1, . . . , an−1, an) 6= 0 by the case
n = 1. Thus we have a1, . . . , an ∈ A satisfying our requirement.

Proof of NBT in the infinite case. Let e1, . . . , en be any basis of L over K and consider
n linear forms in the polynomial ring L[X1, . . . , Xn] given by:

Xσ1
= σ1(e1)X1 + · · ·+ σ1(en)Xn

Xσ2 = σ2(e1)X1 + · · ·+ σ2(en)Xn

... (∗)

Xσn = σn(e1)X1 + · · ·+ σn(en)Xn

Look at Xσi as functions of X1, . . . , Xn. Define f(X1, . . . , Xn) = det[Xσiσj ]. We claim that
this polynomial is non-zero. In fact, we can choose Xσ1

= 1, Xσ2
= 0, . . . , Xσn = 0 and

find the suitable values of X1, . . . , Xn solving the system (∗). Such a solution exists (and
is unique), since det[σi(ej)] 6= 0 (see Lemma 11.1). For these values of X1, . . . , Xn the
determinant defining f(X1, . . . , Xn) has elements 0 or 1 with exactly one 1 in each row and
each column. Thus the value of f(X1, . . . , Xn) is ±1, which implies that this is a non-zero
polynomial.

As K is an infinite subset of L, using Lemma 11.2, we choose a1, . . . , an ∈ K such that
f(a1, . . . , an) 6= 0 and define α = a1e1 + · · · + anen. Then by (∗) and the definition of
f(X1, . . . , Xn), we get

113



f(a1, . . . , an) = det[σiσj(α)] 6= 0.

Thus, σ1(α), . . . , σn(α) are linearly independent over K by Lemma 11.1, so these elements
form a normal basis of L over K. �

Proof of NBT in the finite case. Let K ⊆ L be a field extension of finite fields. Now
we want to prove the normal basis theorem in this case. As we know, the field L is a
cyclic Galois extension of K. In fact, the argument given below applies to any cyclic Galois
extension K ⊆ L (not necessarily finite), so it gives an alternative proof of the theorem in
this case.

Let G = G(L/K) = 〈σ〉 be the Galois group, where σ is any of its generators and [L :
K] = |G(L/K)| = n, so σ has order n. The field L can be considered as a module over
the polynomial ring K[X] when we define Xα = σ(α) for α ∈ L (see A.7). As all modules
over K[X] having finite dimension over K, the module L is a direct sum of modules of the
form K[X]/(f), where f is a nonzero polynomial in K[X] dividing the annihilator of L (see
A.7.3). Since σn = 1, we have (Xn−1)α = σn(α)−α = 0 for all α ∈ L, so Xn−1 belongs to
the annihilator of L. Thus the annihilator of L divides Xn−1 (see A.7.3). If the annihilator
is generated by a polynomial a0 +a1X+ · · ·+an−1X

n−1 ∈ K[X] of degree less than n, then

(a0 + a1X + · · ·+ an−1X
n−1)α = a0α+ a1σ(α) + · · ·+ an−1σ

n−1(α) = 0

for any α ∈ L. But according to Dedekind’s Lemma T.6.3, the automorphisms σ0 =
1, σ, . . . , σn−1 are linearly independent over L and consequently over K, so all ai = 0. Thus
Xn−1 must be the annihilator of L and L is isomorphic to K[X]/(Xn−1) as K[X]-module.
If ϕ : K[X]/(Xn − 1) → L is an isomorphism and ϕ(1) = α, then every element of L is of
the form

(a0 + a1X + · · ·+ an−1X
n−1)α = a0α+ a1σ(α) + · · ·+ an−1σ

n−1(α),

since every element of K[X]/(Xn − 1) is of the form (a0 + a1X + · · ·+ an−1X
n−1) · 1. Thus

α, σ(α), . . . , σn−1(α) form a basis of L over K, since the number of these elements is n and
they generate L over K. 2

T.11.2 Hilbert’s Theorem 90. Let L ⊇ K be a cyclic extension of degree n and let σ be
a generator of the Galois group G = G(L/K). If α ∈ L, then

(a) NrG(α) = 1 if and only there is β ∈ L such that α = β
σ(β) .

(b) TrG(α) = 0 if and only if there is β ∈ L such that α = β − σ(β).

Proof. (a) First recall that NrG(α) = ασ(α) · · ·σn−1 (α). Define

ασi = ασ(α) · · ·σi−1(α)
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for i = 1, . . . , n and observe that ασn = 1 and σ(ασi) = 1
αασi+1 . Since ασ = α 6= 0, by

Dedekind’s Lemma T.6.3, we can find x ∈ L such that

β = ασσ(x) + ασ2σ2(x) + · · ·+ ασn−1σn−1(x) + ασnσ
n(x) 6= 0.

Now observe that σ(β) = 1
αβ, which proves the result as σ(β) 6= 0.

(b) The proof is similar. Using Dedekind’s Lemma T.6.3, we can find x ∈ L such that
TrG(x ) = x + σ(x ) + · · ·+ σn−1 (x ) 6= 0 . Define

ασi = α+ σ(α) + · · ·+ σi−1(α)

for i = 1, . . . , n and observe that ασn = TrG(α) = 0 and σ(ασi) = ασi+1 − α. As in (a),
consider

γ = ασσ(x) + ασ2σ2(x) + · · ·+ ασn−1σn−1(x) + ασnσ
n(x)

and notice that σ(γ) = γ−TrG(x )α. Hence α = 1
TrG(x) (γ−σ(γ)). Now we choose β = γ

TrG(x)

and obtain α = β − σ(β). 2

T.11.3 Let K be a field containing n different n-th roots of unity. If L is a cyclic extension
of K of degree n, then there exists α ∈ L such that L = K(α) and αn ∈ K.

We give two proofs of this theorem. The first depends on Dedekind’s Lemma T.6.3. The
second is more direct, but needs a little more knowledge of linear algebra.

First proof. Let σ be a generator of the Galois group G(L/K). According to Dedekind’s
Lemma T.6.3, there exists x ∈ L such that

α = x+ εσ(x) + · · ·+ εn−1σn−1(x) 6= 0.

Notice now that σ(α) = εn−1α (this says that α is an eigenvector belonging to the eigenvalue
εn−1 = ε−1 of σ). Hence σi(α) = εi(n−1)αn for i = 1, . . . , n, which shows that the images
of α by all automorphisms of the Galois group are different. Hence, by Ex. 9.22, we have
L = K(α). Moreover, we have σ(αn) = (σ(α))n = (εn−1α)n = αn, so αn ∈ LG(L/K) = K. 2

Second proof. Let σ be a generator of the Galois group of L over K. Since σn = id, the
eigenvalues of σ as a linear mapping of L over K satisfy the equation Xn − 1 = 0. In fact,
if σ(α) = εα for α ∈ L,α 6= 0, then σn(α) = εnα, that is, εn = 1. But ε ∈ K, so we can
choose ε in K as a generator of the cyclic group of all solution of Xn − 1 = 0 and find
an eigenvector α ∈ L belonging to it. We have σi(α) = εiα for i = 1, . . . , n, so α is fixed
only by the identity automorphism of L over K (if i 6= n, then εiα 6= α). Hence L = K(α).
Moreover, σi(αn) = εinαn = αn. Thus, αn is fixed by all the elements of the Galois group
of L over K, that is, αn = a ∈ K. 2
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T.11.4 Let K be a field containing m different m-th roots of 1.

(a) If K ⊆ L is a Kummer extension of exponent m, then every subextension of fields
M ⊆ N , where K ⊆M ⊆ N ⊆ L is also a Kummer extension.

(b) All Kummer extensions of K of exponent m are exactly the splitting fields of sets of
binomial polynomials Xm − a for some a ∈ K. In particular, all finite Kummer extensions
of K are L = K( m

√
a1, . . . , m

√
ar) for some elements a1, . . . , ar ∈ K.

(c) There is a one-to-one correspondence between the isomorphism classes of finite Kummer
extensions of K of exponent m and the subgroups A of K∗ containing K∗m such that the
index [A : K∗m] is finite. In this correspondence, to a Kummer extension L of K corresponds
the subgroup A of K∗ consisting of all a ∈ K such that a = αm for some α ∈ L, and to a
subgroup A of K∗ corresponds any splitting field over K of all binomials Xm− a for a ∈ A.
Moreover,

|G(L/K)| = [L : K] = [A : K∗m]. (11.1)

Proof. (a) It is clear that the field M contains m different m-th roots of 1. Since the
Galois group G(L/K) is abelian, the Galois group G(N/M) is also abelian as the quotient
G(L/M)/G(L/N) (see T.9.3). Since every element of G(L/M) has order dividing m, the
same is true about the elements of the quotient, that is, the elements of G(M/N).

(b) Let L be a splitting field of a set of binomials Xm − a for a ∈ K. We shall prove that
L is a Kummer extension of K of exponent m. According to the assumptions, the field
K contains m different m-th roots of 1, so we have to prove that L is an abelian Galois
extension of K and σm = 1 for each σ ∈ G(L/K).

The extension K ⊆ L is normal as a splitting field of polynomials over K (see T.7.1) and
separable, since every polynomial Xm − a, where a ∈ K, a 6= 0, is separable. In fact, as we
noted earlier, such a binomial has m different zeros. Thus L is a Galois extension of K. Since
L is generated by the zeros of binomials Xm−a for a ∈ K, every automorphism σ ∈ G(L/K)
is uniquely defined by its action on the generators of this form. So let σ, τ ∈ G(L/K) and
let α, β ∈ L be such that αm = a, βmb, where a, b ∈ K. Then we have σ(α) = εα and
σ(β) = ηβ, where ε, η are m-th roots of 1. Hence στ(α) = σ(ηα) = εηα = τσ(α), which
shows that the group G(L/K) is abelian. Moreover, we have σm(α) = εmα = α, so σm = 1,
which implies that the order of each element of G(L/K) divides m.

Now we prove by induction with respect to the degree of L over K that every finite Kummer
extension of K of exponent m is a splitting field of a finite number of binomials Xm − a,
where a ∈ K. The claim is trivial for K (degree over K equal to 1). Assume that the claim
is true for fields of degree less than n and let L be a field of degree n > 1 over K. Let H
be a non-trivial cyclic subgroup of the Galois group G(L/K) such that G(L/K) = H ×H ′
for a subgroup H ′ of G(L/K), which may be trivial if G(L/K) is already cyclic. Such
subgroups H and H ′ exist by the fundamental theorem on abelian groups (see A.7.2). Let
M = LH and M ′ = LH

′
. We have G(M/K) = H ′ and G(M ′/K) = H (see Ex. 9.14). The

order of the cyclic group H divides m, since L is a Kummer extension of exponent m. By
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Hilbert’s Theorem 90, we have M ′ = K(α), where αm
′ ∈M for some divisor m′ of m. Hence

αm = a′ ∈ K and M ′ is a splitting field of Xm − a′. The degree of M over K is less than
the degree of L over K so using the inductive assumption, we get that M is a splitting field
of a finite number of binomials Xn − a, where a ∈ K. The whole extension L is a splitting
field of these binomials together with the binomial Xm − a′ whose zero is α.

(c) Let Fm denote all Kummer field extensions L of K of exponent m, and Am all subgroups
of K∗ containing K∗m. We have two functions:

f : Am → Fm and g : Fm → Am

such that f(A) = a splitting field of all binomials Xm − a for a ∈ A and g(L) = the group
of all a ∈ K∗ such that a = αm for some α ∈ L∗. We want to prove that f ◦ g and g ◦ f
are identities on Fm and Am, so f and g are bijective functions between these two sets (see
A.8.1).

If L ∈ Fm, then L is a splitting field of some set of binomials Xm − a with a ∈ K. The
group g(L) contains all these a ∈ K, so we certainly have f(g(L)) = L, since L is defined as
a splitting field of some Xn − a with a ∈ g(L) and for each a ∈ g(L), the field L contains
a splitting field of Xm − a. Thus the composition f ◦ g is the identity on Fm (so that g is
injective and f surjective - see A.8.1).

Let A be a subgroup of K∗ containing K∗m. Then, of course, A ⊆ g(f(A)), since each
element of A is an m-th power of an element of the field f(A) corresponding to A. But
A and g(f(A)) define the same field, that is, f(g(f(A))) = f(A) by what we already has
explained for L = f(A), so

[A : K∗m] = [g(f(A)) : K∗m] = [L : K]

by (11.1). Since A ⊆ g(f(A)), the last equalities imply g(f(A) = A, that is, the composition
g ◦ f is the identity on Fm (so that f is injective and g surjective - see A.8.1).

Let L be a Kummer extension of K defined by a subgroup A of K∗ containing K∗m. We
define a bilinear function

ϕ : G(L/K)×A→ C∗

in the following way. If (σ, a) ∈ G(L/K)×A, then there is α ∈ L such that a = αm. Hence
σ(α) = εα, where ε is m-th root of 1. Notice that ε is independent on the choice of a solution
of the equation Xm = a. In fact, if also βm = a, then β = ηα, where η ∈ K is an m-th root
of 1. Thus, we have σ(β) = σ(ηα) = ηεα = εβ. Now we define ϕ(σ, a) = ε = σ(α)/α. We
check that ϕ is bilinear. If αm = a, σ(α) = εα, βm = b, τ(β) = ηβ, then

ϕ(σ, ab) =
σ(αβ)

αβ
=
σ(α)

α

σ(β)

β
= ϕ(σ, a)ϕ(σ, b)
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and

ϕ(στ, a) = ετ =
σ(α)

α

τ(β)

β
= ϕ(σ, a)ϕ(τ, a).

The left kernel of ϕ are all σ ∈ G(L/K) such that ϕ(σ, a) = 1 for each a ∈ A, that is,
σ(α) = α for each solution of Xm − a = 0 when a ∈ A. But such α generate L, so σ is
the identity of G(L/K). The right kernel of ϕ are all a ∈ A such that ϕ(σ, a) = 1 for each
σ ∈ G(L/K). Hence σ(α) = α for each σ ∈ G(L/K), which means that α ∈ K, that is,
a = αm ∈ K∗m. Now by A.15.1, we get an isomorphism A/K∗m ∼= G(L/K)∗. In particular,
we have [A : K∗m] = |G(L/K)∗| = |G(L/K)| = [L : K]. 2

Theorems of Chapter 12

T.12.1 (a) If G is solvable and H is a subgroup of G, then H is solvable.

(b) If N is a normal subgroup of G and G is solvable, then the quotient group G/N is
solvable.

(c) If N is a solvable normal subgroup of G such that the quotient group G/N is solvable,
then G is solvable.

Proof. (a) If G is solvable, then there exists a chain

G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e}

such that Gi+1 is normal in Gi and the quotient group Gi/Gi+1 is abelian for i =
0, 1, . . . , n− 1. We claim that

H = G = G0 ∩H ⊃ G1 ∩H ⊃ . . . ⊃ Gn ∩H = {e} (12.2)

is the corresponding chain of subgroups of H. In fact, it is clear that the subgroup Gi+1∩H
is normal in Gi ∩H as Gi+1 is normal in Gi. The quotient (Gi ∩H)/(Gi+1 ∩H) is abelian,
since we have an embedding of pairs (Gi+1∩H,Gi∩H)→ (Gi+1, Gi) for i = 0, 1, . . . , n− 1,
which induces (see A.2.7) an injective homomorphism (Gi+1 ∩ H)/(Gi ∩ H) → Gi+1/Gi.
Thus (Gi+1 ∩ H)/(Gi ∩ H) is abelian, since it is isomorphic to a subgroup of the abelian
group Gi+1/Gi.

(b) Let (12.2) be a chain giving solvability of G and consider the following chain of subgroups
of G/N :

G/N = G0N/N ⊃ G1N/N ⊃ . . . ⊃ GnN/N = {e}.
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One checks immediately that Gi+1N/N is normal in GiN/N , since Gi+1 is normal in Gi for
i = 0, 1, . . . , n− 1. We have a mapping of pairs (Gi+1, Gi)→ (Gi+1N/N,GiN/N) such that
(g′, g) 7→ (g′N, gN) for g ∈ Gi+1, g

′ ∈ Gi (see A.2.7). Since the coset gN , g ∈ Gi is the
image of g ∈ Gi, it is clear that the mapping of the pairs induces a surjective homomorphism
Gi/Gi+1 → (Gi+1N/N)/(GiN/N). Hence, the quotient (Gi+1N/N)/(GiN/N) is abelian,
since Gi/Gi+1 is an abelian group.

(c) Let

N = N0 ⊃ N1 ⊃ . . . ⊃ Nk = {e}

and

G/N = G0/N ⊃ G1/N ⊃ . . . ⊃ Gl/N = {e}

be chains of subgroups of N and G/N , which existence follows from the assumption that
these groups are solvable. We use the fact that each subgroup of G/N is the image H/N of
a subgroup H of G containing N (see A.2.8), so

G = G0 ⊃ G1 ⊃ . . . ⊃ Gl = N = N0 ⊃ N1 ⊃ . . . ⊃ Nk = {e}

is a chain of subgroups of G such that each quotient Gi/Gi+1 for i = 0, 1, . . . , l − 1 and
Nj/Nj+1 for j = 0, 1, . . . , k − 1 is abelian. This shows that the group G is solvable. 2

T.12.2 The symmetric group Sn is not solvable when n ≥ 5.

Proof. We shall prove that the alternate group An consisting of the even permutations in Sn
is not solvable when n ≥ 5. By T.12.1 (a), it follows that the group Sn is also not solvable.
The group An contains each cycle (a, b, c), since such a permutation is even. In fact, we
have (a, b, c) = (a, b)(b, c), that is, a cycle of length 3 is a composition of two transpositions.
Assume that

G0 = An ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gk = {(1)}

is a chain such that each Gi+1 is normal in Gi and Gi/Gi+1 is abelian.

First, we show that if a subgroup G of An contains every cycle of length 3 and H is a normal
subgroup of G such that G/H is abelian, then H also contains each cycle of length 3. This
proves that An is not solvable, since An contains each cycle of length 3, so its subgroup G1

also contains every such cycle. Now the same is true about G2 and so on. All groups Gi
contain every cycle of length 3 and Gk can not consist of only the unit.

In order to prove the claim about G and H, we take an arbitrary cycle (a, b, c) of length 3.
Let x = (a, b, d) ∈ G and y = (c, e, a) ∈ G. We use the fact that the number of permuted
elements is at least 5, so we can choose c, d different from a, b, c. We have
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xyx−1y−1 = (a, b, d)(c, e, a)(d, b, a)(a, e, c) = (a, b, c).

But xyx−1y−1 ∈ H, since HxHy = HyHx (G/H is abelian by our assumption) gives
Hxy = Hyx, that is, Hxyx−1y−1 = H, so xyx−1y−1 ∈ H. Hence H contains arbitrary cycle
(a, b, c). 2

Theorems of Chapter 13

In the proof of T.13.1, we refer to a number of auxiliary results, which we prove below.

T.13.1 If char (K) = 0, then an equation f(X) = 0, f ∈ K[X] is solvable by radicals if
and only if the Galois group of f over K is solvable.

Proof. First we prove that if Kf is a solvable extension of K, then its Galois group G(Kf/K)
is solvable. Let Kf ⊆ L, where L is a radical extension of K. According to Lemma 13.1.3, we
can assume that L is a Galois extension of K. Thus we have a chain of fields K ⊆ Kf ⊆ L
in which L radical Galois extension of K. By Lemma 13.1.4, the group G(L/K) is solvable,
and since K ⊆ Kf is a Galois extension, its Galois group G(Kf/K) is a quotient of G(L/K).
Hence this group is also solvable.

Now we prove that if the Galois group G(Kf/K) is solvable, then the extension K ⊆ Kf

is solvable. Denote by L any Galois extension of K whose Galois group is solvable (in the
theorem, L = Kf ). Using induction with respect to the degree [L : K] > 1, we prove that
the extension L ⊃ K is solvable.

If [L : K] is a prime number, then the Galois group G(L/K) is cyclic, so it is, of corse,
solvable. Assume that [L : K] 6= 1 is not a prime number. Then the solvable group G(L/K)
contains a normal subgroup H such that |G(L/K)| > |H| > 1 (see Ex. 12.3). We have the
corresponding tower of extensions K ⊂ LH ⊂ L and both extensions LH ⊂ L and K ⊂ LH

are Galois with solvable Galois groups, since the first has a subgroup H of G(L/K) as its
Galois group, and the second, the quotient group G(L/K)/H. Both are solvable of orders
less than |G(L/K)| = [L : K]. By the inductive assumptions, there exist radical extensions
LH ⊂ L ⊆ L′ and K ⊂ LH ⊆ L′′. Hence by Lemma 13.1.2(b), K ⊆ L ⊆ L′L′′ is a radical
extension of K (where L′L′′ is taken in any field containing both L′ and L′′). 2

Lemma13.1.1 Let L be a splitting field of a polynomial Xn − a over a field K. Then the
Galois group G(L/K) is solvable.

Proof. By Ex. 5.10, we have L = K(ε, α), where α is a zero of Xn − a and ε generates the
group of all zeros of Xn − 1. Consider the chain of fields:

K ⊆ K(ε) ⊆ K(ε, α) = L
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and the corresponding chain of groups:

G(L/K) ⊇ G(L/K(ε)) ⊇ {id}.

Of course, the extension K(ε) ⊇ K is Galois as a splitting field of the polynomial Xn − 1
over K. Thus the Galois group G(L/K(ε)) is normal in G(L/K) and G(L/K)/G(L/K(ε)) ∼=
G(K(ε)/K). The last group is abelian. In fact, let σ be an automorphism of K(ε) over
K. Then σ(ε) = εi for some i (notice that εn = 1 gives σ(ε)n = 1). If now τ is another
automorphism of K(ε) over K and τ(ε) = εj , then σ(τ(ε)) = εij = τ(σ(ε)), that is, στ = τσ.

Now notice that the group G(L/K(ε)) is abelian. Let σ, τ ∈ G(L/K(ε)). Then σ(α) = εiα
and τ(α) = εjα, for some i, j. Thus σ(τ(α))) = εi+jα = τ(σ(α)), that is, στ = τσ. Hence
the group G(L/K) is solvable. 2

We say that L is a radical m-extension of K if

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

are such that Ki = Ki−1(αi), α
ri
i ∈ Ki−1 and ri ≤ m are natural numbers for i = 1, . . . , n.

Lemma13.1.2 Let K ⊆ L and K ⊆ L′ be field extensions.

(a) If σ : L→ L′ is a K−isomorphism and K ⊆ L is radical, then also K ⊆ L′ is radical.

(b) If L is a radical m-extension of K, and L′ is a radical m-extensions of K ′, where
K ⊆ K ′ ⊆ L, both L,L′ contained in a field M , then the compositum LL′ is a radical
m-extension of K.

Proof. (a) Let L = K(α1, . . . , αn), where

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

are such that Ki = Ki−1(αi), α
ri
i ∈ Ki−1 and ri are natural numbers for i = 1, . . . , n. Then

L′ = σ(L) = K(σ(α1), . . . , σ(αn)) and

K = K0 ⊆ σ(K1) ⊆ . . . ⊆ σ(Kn) = L′,

where σ(Ki) = σ(Ki−1)(σ(αi)), σ(αi)
ri ∈ σ(Ki−1), so L′ is a radical extension of K.

(b) Let L be as above and L′ = K ′(α′1, . . . , α
′
n), where

K ′ = K ′0 ⊆ K ′1 ⊆ . . . ⊆ K ′n = L′,

K ′i = K ′i−1(α′i), (α′i)
si ∈ K ′i−1 and si are natural numbers for i = 1, . . . ,m. Then

K = K ⊆ K(α1) ⊆ · · · ⊆ K(α1, . . . , αn) =

L ⊆ K(α1, . . . , αn, α
′
1) ⊆ · · · ⊆ K(α1, . . . , αn, α

′
1, . . . , α

′
m) = LL′

is a corresponding chain of extensions showing that LL′ is a radical extension of K. 2

121



Lemma13.1.3 Let L be a radical extension of a field K. Then the normal closure N of
L ⊇ K is also a radical extension of K. Moreover, if L is a radical m-extension of K, then
N is also a radical m-extension.

Proof. Let L = K(α1, . . . , αn), where

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

are such that Ki = Ki−1(αi), α
ri
i ∈ Ki−1 and ri ≤ m are natural numbers for i = 1, . . . , n.

Thus Ki = K(α1, . . . , αi) for i = 1, . . . , n. Let fi be the minimal polynomial of αi over K.
Of course, N is a splitting field of f = f1 · · · fn over K. Let βi be any zero of fi in N and let
τ : K(αi)→ K(βi) be the isomorphism over K such that τ(αi) = βi. Since N is a splitting
field of f over K(αi) and K(βi), there is an automorphism σ : N → N , which extends τ .
This automorphism maps L onto σ(L) which according to Lemma 13.1.2(a) is also a radical
m-extension of K. It is clear that N as a splitting field of f is the compositum of all the
fields σ(L) obtained for all the choices of τ . Thus N is a radical m-extension of K according
to Lemma 13.1.2(b). 2

Lemma13.1.4 Let L be a radical Galois extension of K. Then the Galois group G(L/K)
is solvable.

Proof. Let L = K(α1, . . . , αn), where

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L

are such that Ki = Ki−1(αi), α
ri
i ∈ Ki−1 and ri are natural numbers for i = 1, . . . , n. Thus

Ki = K(α1, . . . , αi) for i = 1, . . . , n. We prove the claim by induction on the number n of
root extensions between two arbitrary fields K and L.

If n = 1, then L = K(α1), where αr11 = a ∈ K. Denote r1 = r and consider the splitting field
K(α1, ε) of Xr−a over K, where εr = 1. By Lemma 13.1.1, the Galois group G(K(α1, ε)/K)
is solvable. Since K(α1) is Galois over K, its Galois group G(K(α1)/K) is solvable as a
quotient of the solvable Galois group G(K(α1, ε)/K). (Observe that K(α1) needs not be
a splitting field of Xr − a even if it is Galois and contains a zero of this polynomial – the
polynomial may be reducible. Take as an example X4 − 4 over the rational numbers and
L = Q(

√
2)).

Assume now that the claim is true when the number of elementary radical extensions between
two fields is less than n > 1. Consider the following chain of field extensions:

K = K0 ⊆ K1 ⊆ . . . ⊆ Kn = L
↓ ↓
K1(ε) ⊆ . . . ⊆ Kn(ε) = L(ε)

Then it is clear that L(ε) is a radical Galois extension of K and as well as of K1(ε). The num-
ber of elementary radical extensions between K1(ε) and L(ε) is n−1. Thus by the inductive
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assumption, the Galois group G(L(ε)/K1(ε)) is solvable. According to Lemma 13.1.1, the
Galois group G(K1(ε)/K) is solvable. Hence the Galois group G(L(ε)/K) is solvable since
its normal subgroup G(L(ε)/K1(ε)) and the quotient group G(L(ε)/K)/G(L(ε)/K1(ε)) ∼=
G(K1(ε)/K) are solvable. Now, we obtain that the Galois group G(L/K) is isomorphic to
G(L(ε)/K)/G(L(ε)/L) and as a quotient of a solvable group, is solvable. 2

Lemma13.1.5 Let L be a Galois extension of K with a cyclic Galois group G(L/K). Then
L is a solvable extension of K.

Proof. Let [L : K] = n and let K ′ = K(ε) be a splitting field of Xn − 1 over K. Then
L′ = L(ε) is a Galois extension of K ′ = K(ε) whose Galois group is cyclic as isomorphic to
a subgroup of the Galois group G(L/K) (of order n) according to Ex. 9.20. Moreover, the
field K ′ contains all roots of 1 of degree [L′ : K ′], since this degree divides n and all roots of
1 of degree n are in K ′. Thus according to T.11.3, K ′ ⊆ L′ is a radical extension. K ⊆ K ′
is also a radical extension. Hence K ⊆ L′ is a radical extension, so K ⊆ L is a solvable
extension. 2

T.13.2 The Galois group over K(s1, s2, . . . , sn) of the general equation f(X) = 0 of degree
n is Sn, so f(X) = 0 is not solvable by radicals when n ≥ 5.

Proof. It is clear that each elementary symmetric function si of X1, . . . , Xn is fixed by all
elements of σ ∈ Sn, that is, by all permutations σ(Xi) = Xσ(i). Hence we have the tower of
fields:

K(s1, s2, . . . , sn) ⊆ K(X1, X2, . . . , Xn)Sn ⊂ K(X1, X2, . . . , Xn).

We have [K(X1, X2, . . . , Xn) : K(X1, X2, . . . , Xn)Sn ] = |Sn| = n! and [K(X1, X2, . . . , Xn) :
K(s1, s2, . . . , sn)] ≤ n!, since the splitting field K(X1, X2, . . . , Xn) of the polynomial of
degree n

f(X) = Xn − s1X
n−1 + s2X

n−2 + . . .+ (−1)nsn = 0,

over the fieldK(s1, s2, . . . , sn) has at most degree n!, soK(X1, X2, . . . , Xn)Sn = K(X1, X2, . . . , Xn).
Thus, the Galois group of K(X1, X2, . . . , Xn) over K(s1, s2, . . . , sn) is Sn by Theorem T.9.1.
2

T.13.3 Casus irreducibilis. Let f(X) ∈ Q[X] be an irreducible polynomial of degree 3
whose all zeros x1, x2, x3 are real. Then the equation f(X) = 0 is not solvable by real
radicals, that is, the splitting field Qf = Q(x1, x2, x3) of f is not a subfield of a radical
extension Q ⊆ L such that L ⊂ R.

Proof. Assume to the contrary that there exists a radical extension:

K0 = Q ⊂ K1 ⊂ . . . ⊂ Kn = L ⊂ R

such that Ki = Ki−1(αi), α
ri
i ∈ Ki, ri are prime numbers for i = 1, . . . , n and Qf =

Q(x1, x2, x3) ⊂ L. Choose i ≥ 1 such that Ki−1 does not contain x1, x2, x3 while some of
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these numbers, say x1, belongs to Ki. Since Ki−1 ⊂ Ki−1(x1) ⊆ Ki and [Ki−1(x1) : Ki−1] =
3 divides [Ki : Ki−1] = ri, we have ri ≥ 3. The polynomial Xri − ai, where ai = αrii , is
irreducible over Ki−1 (since it has only one real zero αi, which does not belong to the real
field Ki−1), but it must be reducible in Ki−1(x1), since the degree of the field Ki = Ki−1(αi)
over Ki−1(x1) is less than ri. Thus Xri − ai has a zero in Ki−1(x1) and, as a consequence,
it splits in the splitting field Ki−1(x1, x2, x3) of f over Ki−1. But it gives a contradiction,
since the field Ki−1(x1, x2, x3) is real, but all the zeros of Xri − ai with the exception of αi
are non-real. 2

Theorems of Chapter 14

T.14.1 Let K be the least subfield to R which contains the coordinates of all points belonging
to a given set of points X in the plane. A point P = (a, b) can be constructed from X by a
straightedge-and-compass construction if and only if there is a chain of fields:

K = K0 ⊂ K1 ⊂ . . . ⊂ Kn = L ⊂ R (∗)

such that a, b ∈ L and [Ki+1 : Ki] = 2 for i = 0, 1, . . . , n − 1. In particular, the set of
numbers which are constructible from X (like K when X = {(0, 0), (1, 0)}) is a field.

We start with an auxiliary result:

Lemma14.1.1 Let K be the least number field containing the coordinates of all points
belonging to a point set X.

(a) Every number in K can be constructed from X by a straightedge-and-compass construc-
tion.

(b) The coordinates of any point which can be directly constructed from X are in a real field
L such that [L : K] ≤ 2.

(c) If a point has its coordinates in a real field L such that [L : K] ≤ 2, then it can be
constructed from X by a straightedge-and-compass construction.

Proof (a) A line which goes through two points with coordinates in the field K has an
equation ax + by + c = 0 with coefficients a, b, c in K. The coordinates of the intersection
point of two such lines (if they intersect) is defined by the solution of a linear equation system
consisting of two such equations. Thus the intersection point of the lines has its coordinates
in the same field K.

A circle whose center (p, q) has coordinates in K and whose radius equals to the distance d
between two points with coordinates in K has the equation (x − p)2 + (y − q)2 = d2. It is
clear that d2 ∈ K. The intersections points of such a circle with a line as above are given by
the solutions of the system:
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ax+ by + c = 0,

(x− p)2 + (y − q)2 = d2.

In order to solve such a system, we express y by x from the first equation (or conversely) and
put in the second equation. We get a quadratic equation with respect to x (or y) of the form
x2+Ax+B = 0, where the coefficients A,B ∈ K while the solutions x = −A/2±

√
A2/4−B

belong to the field L = K(
√
A2/4−B) whose degree over K is at most 2.

If we have two circles as above and we want to find their intersection points, then we have
to solve a system:

(x− p)2 + (y − q)2 = d2,

(x− p′)2 + (y − q′)2 = d′
2

for some p, q, p′, q′, d2, d′
2 ∈ K. We can do it, subtracting the two equations. Then we get

an equivalent system consisting of an equation of a line and an equation of a circle just as
in the previous case.

(b) First we show that the field K is the least set of numbers containing all the coordinates
of the points in X, which is closed with respect to addition, subtracting, multiplying and
division. Therefore the elements of K are the numbers obtained successively from the coor-
dinates of the points in X by these four arithmetical operations. Thus we have to show that
if a, b ∈ K are constructible, then also a± b, ab and a/b (provided b 6= 0) are constructible.
We may assume that a, b > 0. It is clear how to construct a± b when a, b are given. In order
to construct ab and b/a (a 6= 0), we can draw angles according to the figures below:

Now we have to show that any element of a quadratic real field L over K can be obtained
by a straightedge-and-compass construction. As we know L = K(

√
d), where d ∈ K, d > 0,

so each element of L is of the form a+ b
√
d, where a, b ∈ K. Thus we only need to construct√

d when d is given, since we already know how to construct the product b
√
d having b and√

d, and the sum a+ b
√
d having its terms a, b

√
d. The construction of

√
d follows from Fig.

14.2: first we draw a line with intervalls 1 and d, then we find the middle point of 1 + d
and draw a half circle with radius (1 + d)/2. The line perpendicular to the line AC through
the point C gives the intervall CD whose length is

√
d. In fact, by a known result on the

altitude of a right triangle, we have CD2 = AC ·BC = 1 · d, that is, CD =
√
d.

2

Proof of T.14.1. If a point P = (a, b) can be constructed from X by a straightedge-
and-compass construction, then this can be done by constructing a sequence of points
P0, P1, P2, . . . , Pn = P such that each point can be directly constructed from X and the
points preceding it. As we know from Lemma 14.1.1(b), the coordinates of every new point
are in a real extension of degree at most 2 over the preceding field (starting with K) which
contains the coordinates of the points of X and all the points constructed earlier. This shows
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that the coordinates a, b of P belong to a field L, which can be obtained from K by a se-
quence of extensions each of which has degree at most 2. Thus we get a sequence (∗) if we
only take those fields whose degrees are 2.

Conversely, if a point P = (a, b) has its coordinates in an extension L of K, which can be
obtained by a chain of quadratic extensions like in (∗), then an evident inductive argument
using Lemma 14.1.1(c) gives that the elements of each field Ki (i = 1, . . . , n) can be
constructed from X. In particular, the point P = (a, b) can be constructed from X.

Finally notice that the distance between two points P = (a, b) and P ′ = (a′, b′), where
a, b, a′, b′ ∈ L is d =

√
(a− a′)2 + (b− b′)2, so such a number d belongs to a quadratic

extension of L. 2

T.14.2 Let K be the least subfield of R which contains the coordinates of all points be-
longing to a point set X in the plane R2. A point P = (a, b) can be constructed from X
by a straightedge-and-compass construction if and only if one of the following equivalent
conditions hold:
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(a) There exists a Galois extension L ⊇ K such that a, b ∈ L and [L : K] is a power of 2.

(b) There exists a Galois extension L ⊇ K such that a+ bi ∈ L and [L : K] is a power of 2.

In order to prove this thoerem, we need some notations and an auxiliary result. Let K be
a subfield of the real numbers and let r2(K) denote all complex numbers x for which there
exists a chain of radical 2-extensions:

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ C (∗∗)

such that x ∈ Kn and [Ki : Ki−1] = 2 for i = 1, . . . , n. Let rr2(K) denote all numbers for
which there is such a chain of fields withKi ⊂ R. It follows easily from Lemma 13.1.2(b) that
r2(K) and rr2(K) are fields. Moreover, if x ∈ r2(K), then

√
x ∈ r2(K), while x ∈ rr2(K)

and x ≥ 0, imply
√
x ∈ rr2(K).

Lemma14.2.1 Let a, b be real numbers. Then the following conditions are equivalent:

(a) a, b ∈ rr2(K),

(b) a, b ∈ r2(K),

(c) a+ bi ∈ r2(K).

Proof. It is evident that (a) implies (b). If a, b ∈ Kn in a tower (∗∗), then a+ bi ∈ Kn+1 =
Kn(i) and [Kn+1 : Kn] ≤ 2, which implies (c). We prove that (c) implies (a) by induction
on the number n of fields in a tower (∗∗). Assume that a+ bi ∈ Kn. If n = 1, then the claim
is evident, since K is real and K1 is a quadratic extension of K. Thus a, b ∈ K ⊂ rr2(K) as
the real and imaginary parts of a+ bi (K1 may be real when b = 0). Assume that the claim
holds when the number of fields in the tower is less than n. Assume that a + bi ∈ Kn. Let
Kn = Kn−1(

√
A+Bi), where A + Bi ∈ Kn−1, A,B ∈ R (it may happen that B = 0). We

have:

a+ bi = (x+ yi) + (z + ti)
√
A+Bi,

where x + yi, z + ti ∈ Kn−1, x, y, z, t ∈ R. By the inductive assumption, x, y, z, t, A,B ∈
rr2(K). Moreover,

√
A+Bi =

√√
A2 +B2 +A

2
+ i

√√
A2 +B2 −A

2
,

so denoting

α =

√√
A2 +B2 +A

2
, β =

√√
A2 +B2 −A

2
,
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we have α, β ∈ rr2(K), a = x+ zα− tβ ∈ rr2(K) and b = y + tα+ zβ ∈ rr2(K). 2

Proof of T.14.2. First note that (a) and (b) are equivalent. In fact, L(i) is an extension of
L such that [L(i) : L] = 1 or 2 and L(i) is of course Galois over K (if L is a splitting field
of a polynomial with coefficients in K, then L(i) is a splitting field of the same polynomial
multiplied by X2 + 1). If L satisfies (a), then we take L(i) as L in (b) – it contains a + bi
and its degree over K is a power of 2. If L satisfies (b), then a− bi ∈ L, since the minimal
polynomial of a + bi over the real field K has a − bi as its zero, which must belong to the
normal extension L of K. Hence a, b ∈ L.

Assume now that a point (a, b) is constructible from a point set X by a straightedge-and-
compass construction, that is, a, b ∈ rr2(K) and let

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ R

be a tower of fields such that [Ki : Ki−1] = 2 for i = 1, . . . , n and a, b ∈ Kn. Let L be a
normal closure of Kn. Then according to Lemma 13.1.2, L is a Galois radical 2-extension
of K. Of course, a, b ∈ L and by T.4.3, the degree [L : K] is a power of 2.

Conversely, assume that (a) holds. Then the order of the Galois group G = G(L/K) is a
power of 2, that is, G(L/K) is a 2-group. This means that it has a filtration

G0 = G(L/K) ⊃ G1 ⊃ · · · ⊃ Gn−1 ⊃ Gn = {id}

such that Gi is a normal subgroup of Gi−1 and the quotient group Gi−1/Gi has 2 elements.
The corresponding tower of the fields LGi = Ki is

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn = L

and [Ki : Ki−1] = 2, that is, a, b ∈ r2(K). According to Lemma 14.2.1, a, b ∈ rr2(K), that
is, the point (a, b) is constructible from X by a straightedge-and-compass construction. 2

Theorems of Chapter 15

T.15.1 (a) Let G be a subgroup of Sn. Then for every subgroup H of G there exists a
polynomial F ∈ K[X1, . . . , Xn] such that H = GF .

(b) Let G = σ1GF ∪ · · · ∪ σmGF be the presentation of G as a union of different left cosets
with respect to GF . Then σiF (X1, . . . , Xn) for i = 1, . . . ,m are all different images of F
under the permutations belonging to G.

Proof. (a) Consider the monomial M = X1X
2
2 · · ·Xn

n and notice that for any two permu-
tations σ, τ ∈ Sn, we have σ(M) = τ(M) if and only if σ = τ . In fact, since the expo-
nents of all Xi in M are different, two different permutations map the monomial M onto
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two different monomials (that is, Xσ(1)X
2
σ(2) · · ·X

n
σ(n) = Xτ(1)X

2
τ(2) · · ·X

n
τ(n) if and only if

σ(i) = τ(i) for every i = 1, 2, . . . , n). Define now F = TrH (M ) =
∑
τ∈H τ(M ). The poly-

nomial F (X1, . . . , Xn) is invariant with respect to every σ ∈ H and σ(F ) = F for σ ∈ G if
and only if σ ∈ H. In fact, for any permutation σ ∈ H, the compositions στ , where τ ∈ H
give exactly all the elements of H, so σ(F ) = F . On the other hand, if σ ∈ G \ H, then
σ(M) is different from all |H| monomials whose sum gives F , that is, we have σ(F ) 6= F .
Thus σ(F ) = F for σ ∈ G, if and only if σ ∈ H = GF . Notice that the definition of F only
depends on H and not on the group G containing it.

(b) We have

σ(F ) = σ′(F )⇔ σ−1σ′(F ) = F ⇔ σ−1σ′ ∈ H = GF ⇔ σGF = σ′GF .

Thus different images σ(F ), when σ ∈ G, correspond to different left cosets of GF in G. 2

T.15.2 Let f(X) ∈ K[X], F (X1, . . . , Xn) ∈ K[X1, . . . , Xn] and assume that Gal(Kf/K) ⊆
G, where G is a subgroup of Sn. Then:

(a) The resolvent polynomial rG,F (f) has its coefficients in K;

(b) If K = Q, F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] and f(X) has integer coefficients and the
highest coefficient 1, then the same is true on rG,F (f);

(c) If all the zeros of rG,F (f) are different, then Gal(Kf/K) is conjugated in G to a subgroup
of GF if and only if at least one of the zeros of rG,F (f) belongs to K.

Proof. (a) Let σ ∈ G. Then

σ(rG,F (f)(T )) =

m∏
i=1

(T − (σσiF )(α1, . . . , αn)) = (T − (σiF )(α1, . . . , αn)) = rG(F, f)(T ),

since σσi for i = 1, . . . ,m is also a set of representatives of left cosets of GF in G. In fact,
since σσi ∈ G, so σσi = σjτ for some 1 ≤ j ≤ m and τ ∈ GF . Thus σσiF = σjτF = σjF , so
σσiF (α1, . . . , αn) = σjF (α1, . . . , αn) is also a zero of rG(F, f). At the same time, it is clear
that if i 6= j, then σσi and σσj represent different cosets of GF in G. Hence σσiF (α1, . . . , αn)
for 1 ≤ i ≤ m is simply a permutation of the elements σiF (α1, . . . , αn), which means that
σrG,F (f) and rG,F (f) have the same coefficients for every σ ∈ G. In particular, this is true
for every σ ∈ Gal(Kf/K), since Gal(Kf/K) ⊆ G. Thus the coefficients of rG,F (f) are fixed
by every element in the Galois group Gal(Kf/K), so they are in K.

(b)

(c) If σ ∈ G and σ = σiτ , where τ ∈ GF , then σF = σiF and σF (α1, . . . , αn) =
σiF (α1, . . . , αn) is a zero of rG(F, f). If all the zeros of rG(F, f) are different, then
σF (α1, . . . , αn) = F (α1, . . . , αn) is equivalent to σ ∈ GF . In fact, σiF (α1, . . . , αn) =
σ1F (α1, . . . , αn) implies σi = σ1 = id, so σ = τ ∈ GF .
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If τ−1Gal(Kf/K)τ ⊆ GF for a τ ∈ G, then τ−1στF (α1, . . . , αn) = F (α1, . . . , αn) for each
σ ∈ Gal(Kf/K). Hence στF (α1, . . . , αn) = τF (α1, . . . , αn), that is, τF (α1, . . . , αn), which
is a zero of rG(F, f), belongs to K.

Conversely, assume that σiF (α1, . . . , αn) ∈ K for some i. If σ ∈ Gal(Kf/K), we have
σσiF (α1, . . . , αn) = σiF (α1, . . . , αn), that is, σ−1

i σσiF (α1, . . . , αn) = F (α1, . . . , αn), so
σ−1
i σσi ∈ GF . Hence σ−1

i Gal(Kf/K)σi ⊆ GF . 2

T.15.3 The Galois group Gal(kf/k) is isomorphic to any group Gri of those permuta-
tions of Y1, . . . , Yn which map ri(X,Y1, . . . , Yn) onto itself for i = 1, . . . , t. Moreover, all
ri(T, Y1, . . . , Yn) have the same degree [kf : k] with respect to T and they have a common
splitting field Kf = kf (Y1, . . . , Yn) over K = k(Y1, . . . , Yn).

Proof. Define θ% = α1Y%(1) + · · · + αnY%(n) ∈ kf (Y1, . . . , Yn) = Kf for % ∈ Sn. The group
Sn acts on the set of all θ% if σ(θ%) = θσ%. Denoting θ = θid = α1Y1 + · · ·+ αnYn, we have
%(θ) = θ% so the action of Sn on the set of all θ% is transitive. Of course,

α1Y%(1) + · · ·+ αnY%(n) = α%−1(1)Y1 + · · ·+ α%−1(n)Yn.

Let θi = σi(θ) = θσi denote a zero of the polynomial ri(X,Y1, . . . , Yn) and assume that
σ1 = id, that is, θ1 = θ.

Notice now that each θi = α1Yσi(1) + · · ·+ αnYσi(n) ∈ kf (Y1, . . . , Yn) is a primitive element
of the extension K = k(Y1, . . . , Yn) ⊆ Kf = kf (Y1, . . . , Yn). In fact, according to the Ex.
15.10(a), the Galois group of this extension is isomorphic to Gal(kf/k) when τ ∈ Gal(kf/k)
corresponds to an automorphism of Kf = kf (Y1, . . . , Yn) which acts on the coefficients of
the rational functions in Kf as τ and as identity on Yi. Thus for the element θi ∈ Kf , we
have

τ(θi) = τ(α1)Yσi(1) + · · ·+ τ(αn)Yσi(n),

which shows that the number of different images of θi is equal to the order of the Galois group
Gal(Kf/K) (diffrent automorphisms give different sets of coefficients of Yi). Hence, according
to Ex. 9.22, θi is a primitive element of the extension K ⊆ Kf and every automorphism of
Kf over K is uniquely defined by its action on θi. Since ri(X,Y1, . . . , Yn) is the minimal
polynomial of θi over K, the remaining zeros of this polynomial are the images τ(θi) under
the automorphisms τ of the Galois group Gal(Kf/K). Thus all polynomials ri(X,Y1, . . . , Yn)
have the same degree |Gal(Kf/K)| = [Kf : K] = [kf : k] and they have a common splitting
field Kf over K.

The Galois group Gal(kf/k) acts on the set of θ% in two different ways. First of all each
τ ∈ Gal(kf/k) acts as the permutation π(τ) ∈ Sn of {1, . . . , n} defined by the relation:

π(τ)(i) = j ⇔ τ(αi) = αj ,
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that is, τ(αi) = απ(τ)(i). This gives the usual representation of the Galois group Gal(kf/k)
as a permutation group. Notice that π is an injective homomorphism of Gal(kf/k) into Sn.
In particular, π(τ−1) = π(τ)−1.

The second action is defined according to Ex. 15.10(a) – the Galois group of the extension
K = k(Y1, . . . , Yn) ⊆ Kf = kf (Y1, . . . , Yn) is isomorphic to Gal(kf/k) when τ ∈ Gal(kf/k)
corresponds to an automorphism of Kf = kf (Y1, . . . , Yn) which acts on the coefficients of
the rational functions in Kf as τ and as identity on Yi. Thus for the element θ% ∈ Kf , we
have

τ(θ%) = τ(α1)Y%(1) + · · ·+ τ(αn)Y%(n).

Let Gri denote the group of permutations % ∈ Sn such that

%ri(X,Y1, . . . , Yn) = ri(X,Y%(1), . . . , Y%(n)) = ri(X,Y1, . . . , Yn)

for i = 1, . . . , t. We will show that π is a group isomorphism of Gal(kf/k) onto Gri .

We have:

ri(X,Y1, . . . , Yn) =
∏

τ∈G(Kf/K)

(X − τ(θi)) =
∏

τ∈G(Kf/K)

(X − τ(α1Yσi(1) + · · ·+ αnYσi(n))).

If π(τ) is the permutation corresponding to τ ∈ Gal(Kf/K), then

π(τ)ri(X,Y1, . . . , Yn) = ri(X,Yπ(τ)(1), . . . , Yπ(τ)(n)) =

∏
τ ′∈G(Kf/K)

(X − τ ′(α1Yπ(τ)(σi(1)) + · · ·+ αnYπ(τ)(σi(n)))) =

∏
τ ′∈G(Kf/K)

(X − τ ′(απ(τ)−1(1)Yσi(1) + · · ·+ απ(τ)−1(n)Yσi(n))) =

∏
τ ′∈G(Kf/K)

(X − τ ′τ−1(α1Yσi(1) + · · ·+ αnYσi(n))) = ri(X,Y1, . . . , Yn)

taking into account that π(τ)−1 = π(τ−1), απ(τ−1)(i) = τ−1(αi) and that τ ′τ−1 permutes all
the elements of Gal(Kf/K) when τ ∈ Gal(Kf/K) (τ arbitrary but fixed). Hence for every
τ ∈ Gal(kf/k), we have π(τ) ∈ Gri .

Conversely, let % ∈ Gri , that is,
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%ri(X,Y1, . . . , Yn) = ri(X,Y%(1), . . . , Y%(n)) = ri(X,Y1, . . . , Yn).

Then on the one hand,

ri(X,Y1, . . . , Yn) =
∏

τ∈G(Kf/K)

(X − τ(θi)) =
∏

τ∈G(Kf/K)

(X − τ(α1Yσi(1) + · · ·+ αnYσi(n))) =

∏
τ∈G(Kf/K)

(X − τ(ασ−1
i (1)Y1 + · · ·+ ασ−1

i (n)Yn)).

ond on the other,

ri(X,Y%(1), . . . , Y%(n)) =
∏

τ∈G(Kf/K)

(X − τ(ασ−1
i (1)Y%(1) + · · ·+ ασ−1

i (n)Y%(n))) =

∏
τ∈G(Kf/K)

(X − τ(α%−1σ−1
i (1)Y1 + · · ·+ α%−1σ−1

i (n)Yn)) =

Hence ασ−1
i (1)Y1+· · ·+ασ−1

i (n)Yn is among the elements τ(α%−1σ−1
i (1)Y1+· · ·+α%−1σ−1

i (n)Yn),

that is, there is τ ∈ Gal(kf/k) such that τ(α%−1σ−1
i (k)) = ασ−1

i (k) for every k = 1, . . . , n.

Hence π(τ)%−1σ−1
i (k) = σ−1

i (k) for k = 1, . . . , n. This means that % = π(τ), so π is bijective,
and consequently an isomorphism of Gal(kf/k) and Gri . 2

(One can find another proof of this theorem in [C].)

Before the proof of the next theorem, we recall the notations. Let ϕ : R → R∗ be a ring
homomorphism mapping an integral domain R into an integral domain R∗. Let K and K∗

be fields of quotients of R and R∗, respectively. Let f ∈ R[X] be separable (that is, without
multiple zeros). Denote by f∗ the image of f under the homomorphism extending ϕ to R[X]
by applying ϕ to the coefficients of the polynomials in R[X]. We write ϕ(r) = r∗, when
r ∈ R and call ϕ (on all levels) the reduction homomorphism.

T.15.4 (Dedekind) (a) Let f ∈ R[X] be a separable monic polynomial and assume that
its image f∗ ∈ R∗[X] is also separable and deg(f) = deg(f∗) = n. Then the Galois group of
f∗ over K∗ has an embedding into the Galois group of f over K.

(b) Let in (a), R = Z, R∗ = Fp and let ϕ be the reduction modulo a prime number p. If
f ∈ Z[X] and

f∗ = f∗1 · · · f∗k ,

where f∗i are irreducible over Fp, then Gal(Qf/Q) considered as a permutation subgroup of
Sn contains a permutation which is a product of cycles of length deg(fi

∗) for i = 1, . . . , k.
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Proof. (a) Let L = K(α1, . . . , αn) and L∗ = K∗(α∗1, . . . , α
∗
n ) be splitting fields of f(X) over

K[X] and f∗(X) over K∗. Consider the polynomials:

r(f)(T, Y1, . . . , Yn) =
∏
σ∈Sn

(T − (ασ(1)Y1 + · · ·+ ασ(n)Yn)),

and

r(f∗)(T, Y1, . . . , Yn) =
∏
σ∈Sn

(T − (α∗σ(1)Y1 + · · ·+ α∗σ(n)Yn)).

The coefficients of r(f)(T, Y1, . . . , Yn) (of the monomials in variables T, Y1, . . . , Yn) are sym-
metric functions of α1, . . . , αn and as such can be expressed as integer polynomials of the
coefficients of f . In exactly the same way, the coefficients of r(f∗)(T, Y1, . . . , Yn) are sym-
metric functions of α∗1, . . . , α

∗
n and can be expressed as integer polynomials of the coefficients

of f∗. Since the formulae expressing the coefficients of r(f) and r(f∗) by the coefficients of
f and f∗ are the same, we see that the polynomial r(f∗)(T, Y1, . . . , Yn) is the polynomial
r(f)(T, Y1, . . . , Yn) when the homomorphism ϕ is applied to its coefficients in R.

Notice also that all the n! zeros ασ(1)Y1 + · · ·+ασ(n)Yn of r(f) and α∗σ(1)Y1 + · · ·+α∗σ(n)Yn
of r(f∗) as polynomials of T are different when σ ∈ Sn. In fact, if ασ(1)Y1 + · · ·+ασ(n)Yn =
ατ(1)Y1 + · · · + ατ(n)Yn for σ, τ ∈ Sn, then ασ(i) = ατ(i) for i = 1, . . . , n, so σ(i) = τ(i)
for each i, since all αi are different. Hence, we have σ = τ . Similarly, we get that all
α∗σ(1)Y1 + · · ·+ α∗σ(n)Yn are different.

Consider now the factorization of r(f)(T, Y1, . . . , Yn) into irreducible factors, the Galois
resolvents, as in (15.3):

r(f)(T ) = r1(T, Y1, . . . , Yn) · · · rt(T, Y1, . . . , Yn).

The homomorphism ϕ applied to the coefficients in R of the polynomial r(f) and its factors
ri gives the factorization:

r∗(f)(T ) = r∗1(T, Y1, . . . , Yn) · · · r∗t (T, Y1, . . . , Yn),

but the polynomials r∗i (T, Y1, . . . , Yn) need no longer be irreducible. Consider the resolvent
r1(T, Y1, . . . , Yn) of f(X) and let

r∗1 = r∗11 · · · r∗1u,

be the factorization of r∗1(T, Y1, . . . , Yn) into irreducible factors r∗1j . These factors are Galois
resolvents of f∗(X).

Consider all permutations of Y1, . . . , Yn which map the resolvent r∗11 into itself. By T.15.3,
such permutations form the group Gal(K∗f/K

∗). Applying the same permutation to the
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Galois resolvent r1 of f(X), we map it onto one of the resolvents ri of f(X) for some
i = 1, . . . , t. We claim that this must be the same resolvent r1. In fact, if the permutation
gives ri, with i 6= 1, then the same permutation transforms r∗1 to r∗i and since the factor r∗11

of r∗1 maps onto itself, it must be also a factor of r∗i . But if i 6= 1, then the polynomials r∗1
and r∗i are relatively prime, since they are products of different linear factors T − (α∗σ(1)Y1 +

· · ·+α∗σ(n)Yn). Thus every permutations of Y1, . . . , Yn, which maps r∗11 into itself also maps

r1 into itself. By T.15.3 every element of Gal(K∗f/K
∗) belongs to the group Gal(Kf/K).

(b) The Galois group of the polynomial f∗ over Fp is cyclic (see T.5.4). Let σ be a generator
of this group. By Ex. 9.4, the automorphism σ can be represented as a product of k cycles
of length equal to the degrees of the irreducible factors of f∗(X) over Fp. Using (a), we get
a permutation of this shape in the Galois group Gal(Qf/Q). 2
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Hints and answers

Problems of Chapter 1

1.1 (a) −3, 3
2 ±

1
2 i
√

3;

(b)−7,−1− i
√

3,−1 + i
√

3;

(c) − 3
√

9− 3
√

3−1, 1
2 ( 3
√

9+ 3
√

3)−1+ 1
2 i
√

3
(

3
√

3− 3
√

9
)
, 1

2 ( 3
√

9+ 3
√

3)−1− 1
2 i
√

3
(

3
√

3− 3
√

9
)
;

(d) 3
√

2− 3
√

4, 1
2 ( 3
√

4− 3
√

2)− 1
2 i
√

3( 3
√

4 + 3
√

2), 1
2 ( 3
√

4− 3
√

2) + 1
2 i
√

3( 3
√

4 + 3
√

2) ;

(e) 1− i
√

3, 1 + i
√

3,
√

2,−
√

2;

(f) 1− i, 1 + i, 1
2 (1 +

√
13), 1

2 (1−
√

13);

(g) 1±
√

2
2 ± 1

2

√
−1 + 2

√
2;

(h) 1±
√

7±
√

6 + 2
√

7.

1.3 Notice that (x1 − x2)2 = x2
3 + 4q

x3
and similarly for (x2 − x3)2 and (x3 − x1)2. Express

x3
1 + x3

2 + x3
3 and x3

1x
3
2 + x3

2x
3
3 + x3

3x
3
1 by p, q using Vieta’s formulae: x1 + x2 + x3 = 0,

x1x2 + x2x3 + x3x1 = p, x1x2x3 = −q.

1.4 The equation has solutions 2,−1 ±
√

3. Write down the trigonometric form of the
numbers −1± i. Thus with suitable choice of the values of the third roots, we have

3
√
−2 + 2i+ 3

√
−2− 2i = 2.

1.5 Represent the complex numbers − q2 ±
√

q2

4 + p3

27 in the formulae (1.5) in trigonometric

form.

1.6 (a) The equation satisfied by α is x3 − 3cx+ 2a = 0.



(b) Use the binomial formulae in the following form:

(X + Y )5 = X5 + Y 5 + 5XY [(X + Y )3 − 3XY (X + Y )] + 10X2Y 2(X + Y )

with X =
5
√
a+
√
b, Y =

5
√
a−
√
b. The equation satisfied by α is x5−5cx3−5c2x−2a = 0.

If a = 1, c = 0 the polynomial is irreducible (see Chapter 3 concerning irreducibility). Of
course, there are equations of degree 5, which can not be represented in this form (e.g. those
with coefficient for x2 different from 0). As we noted in the Remark following this exercise,
it is not possible to find a general algebraic formula, which gives an expression of a solution
to an arbitrary quintic equation (fifth degree polynomial equation) using the coefficients of
the equation, the four arithmetic operations and roots (see Chapter 13).

1.7 If a = 0, then the equation xn−a = 0 has only one solution x = 0 (with multiplicity n).

In general, we have a = |a|eiϕ, so the equality xn = |a|eiϕ is equivalent to x = n
√
|a|e

ϕ+2πik
n

for n different values of k = 0, 1, . . . , n− 1.

1.8 Notice that the discriminant of f(X) = aX2 + bX + c = a(X − x1)(X − x2) is
∆(f) = (x1 − x2)2 = b2 − 4ac (see the text on quadratic equations on p. 2).

Problems of Chapter 2

2.1 Only (d) is a field.

2.2 Let K be a subfield of Q. Starting with 1 ∈ K motivate that all integers, and then, all
rational numbers must belong to K.

2.3 For example, Zp(X), where p is a prime number.

2.4 Use T.2.1 and consider two cases depending whether the prime subfield of K is finite
or infinite.

2.5 (a) Show that the sum, difference, product and the quotient of two elements of K(α)
belong to K(α).

(b) If ab is a square in K, then it is easy to check the equality of the fields. In the opposite
direction, consider two cases: K(

√
a) = K(

√
b) = K, K(

√
a) = K(

√
b) 6= K and the second

case use (a).

2.6 Use Ex. 2.5. (a) a+ b
√

2, a, b ∈ Q;
(b) a+ bi, a, b ∈ Q;
(c) a+ b

√
2 + ci+ di

√
2, a, b, c, d ∈ Q;

(d) a+ b
√

2 + c
√

3 + d
√

6, a, b, c, d ∈ Q.

2.7 If necessary see examples on p. 164.
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2.8 (a) Q(
√

2) = {a+ b
√

2 : a, b ∈ Q};
(b) Q(i,

√
2) = {a+ bi+ c

√
2 + di

√
2 : a, b, c, d ∈ Q};

(c) Q(i,
√

5) = {a+ bi+ c
√

5 + di
√

5 : a, b, c, d ∈ Q};
(d) Q(i) = {a+ bi : a, b ∈ Q}.

2.9 (a) Check that all conditions in the definition of the field are satisfied if and only if every
nonzero matrix in the given set has nonzero determinant. The condition that X2 + 1 = 0
has no solutions in K is needed in order to exclude a possibility that a nonzero matrix has
determinant equal to 0.

(b) The subfield of L isomorphic to K consist of the diagonal matrices

[
a 0
0 a

]
.

(c) Choose K = F3 in (a).

2.10 (a) Similarly as in Ex. 2.9 check that addition and multiplication of matrices in the
given set satisfy all the conditions in the field definition. This time the suitable condition is
that the polynomial X2−X + 1 has no zeros in K, which guarantees that nonzero matrices
of given form have nonzero determinants.

(b) Choose K = F2 in (a). Then the field consists of the following matrices:

0 =

[
0 0
0 0

]
, 1 =

[
1 0
0 1

]
, α =

[
0 1
1 1

]
, β = 1 + α =

[
1 1
1 0

]
.

The addition and multiplication tables are as follows:

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

· 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

2.11 Show that 2a = 0 for each a ∈ K. The answer is 2.

2.12 (a) For m = 1 use the binomial theorem and notice that the binomial coefficients(
p
i

)
are divisible by p if 0 < i < p. Afterwards use induction.

(b) The same argument as in (a) for m = 1.

2.14 Let α be a zero of f(X). Check that all α+ i for i = 1, . . . , p− 1 are also zeros of this
polynomial. Motivate that the polynomial Xp −X + a has no zeros in Fp when a ∈ Fp and
a 6= 0.
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Problems of Chapter 3

3.1 (b) In general, for any complex number a, we have X4 +a2 = X4 +2aX2 +a2−2aX2 =
(X2 + a)2 − (

√
2aX)2 = (X2 −

√
2aX + a)(X2 +

√
2aX + a).

3.2 All polynomials of degree 1 are x, x+ 1. Construct all reducible polynomials of degree
2 using these two. Which are not on the list? Answer: x2 +x+1. This is the only irreducible
polynomial of degree 2. Construct all reducible polynomials of degree 3 using these three:
X,X+1, X2 +X+1. Which are not on the list? Answer: X3 +X+1, X3 +X2 +1. Continue
the process! Answer: X4 + X + 1, X4 + X3 + X2 + X + 1, X4 + X3 + 1, X5 + X2 + 1,
X5 +X3 + 1.

3.4 (a) X4 + 64 = (X2 + 4X + 8))(X2 − 4X + 8) (see above Ex. 3.1 (b));

(b) X4 + 1 = (X2 −
√

2X + 1)(X2 +
√

2X + 1) (see above Ex. 3.1 (b));

(c) X7 + 1 = (X + 1)(X3 +X + 1)(X3 +X2 + 1);

(d) X4 + 2 is irreducible in F5[X];

(e) X3 − 2 is irreducible in Q[X];

(f) X6 + 27 =
(
X2 + 3

) (
X2 + 3X + 3

) (
X2 − 3X + 3

)
;

(g) X3 + 2 = (X + 2)3 in F3[X];

(h) X4 + 2 = (X + 1)(X + 2)(X2 + 1).

3.7 (a) Assume f(X) = g(X)h(X), where g(X), h(X) are monic polynomials in Z[X],
deg g(X) = k ≥ 1 and deg h(X) = l ≥ 1 and look at the relation between the images of
f(X), g(X), h(X) when the reduction modulo p is applied.

(b) Choose p = 2 in Eisenstein’s criterion.

(c) Consider the polynomial f(X + 1) and use Eisenstein’s criterion.

3.8 (c) Use prime numbers p = 2 in (c1) and (c2), p = 5 in (c3), p = 2, 3 in (c4) and (c6),
p = 2, 5 in (c5).

3.10 Let f1, f2, . . . , fr be irreducible polynomials over K and consider the polynomial
f1f2 . . . fn + 1. Use the fact that K[X] has unique factorization (see T.3.2). Observe that
the exercise is trivial over infinite fields.

3.12 Use Gauss’s Lemma T.3.3.
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Problems of Chapter 4

4.1 (a), (b), (c) are algebraic. Use T.4.6. (d), (e), (f) are transcendental. Use T.4.6 and
the transcendence of e and π.

4.2 (a) Use T.4.2 and T.4.3 (one can also use Ex. 4.10 (b) and T.4.2 (a)). You may need a
result saying that the equation f(X) = 0 has a solution in a field containing L (see Chapter
5).

(b) Use (a).

4.3 The degree of each number is equal to the degree of its minimal polynomial. These
polynomials are:

(a) X6 − 2X3 − 2; (d) X2 − 2;
(b) X6 − 6X4 − 4X3 + 12X2 − 24X − 4; (e) X3 − 2;
(c) X4 +X3 +X2 +X + 1; (f) Xp−1 +Xp−2 + . . .+X + 1.

In each case, we have to motivate that the polynomial is irreducible. In order to prove this,
one can use different methods discussed in Chapter 3. In case (b), it may be useful to apply
T.4.2, and in case (e), Ex. 4.10 (b).

4.4 Use T.4.2 and T.4.3 in order to construct suitable bases.

(a) 4; a basis: 1, i,
√

2, i
√

2; (f) 8; a basis: 1,
√

2,
√

3,
√

5,
√

6,
√

10,
√

15,
√

30;

(b) 4; a basis 1,
√

2,
√

3,
√

6; (g) 3; a basis: 1, α, α2, where α =
3
√

1 +
√

3;

(c) 6; a basis 1, i, 3
√

2, 3
√

4, i 3
√

2, i 3
√

4; (h) 4; a basis: 1, α, α2, α3;

(d) 3; a basis: 1, 3
√

2, 3
√

4; (i) 3; a basis: 1, α, α2;
(e) 2; a basis: 1, X; (j) 4; a basis: 1, X,X2, X3.

4.5 Notice that if z = a+ bi is algebraic, so is also z̄ = a− bi (give a suitable argument!).
Use Ex. 3.5 and T.4.6 in both directions.

4.6 Consider z = cos rπ + i sin rπ and use Ex. 4.4.

4.7 (a) x = 1
2

3
√

4; (b) x = 1
3 (1− 3

√
2 + 3
√

4); (c) x = −1 + 3
√

4.

4.8 (a) x = −
√

2 +
√

3; (b) x = 1
2 + 1

4

√
2− 1

4

√
6; (c) x = 1

2 (−5 + 4
√

2 + 3
√

3− 2
√

6).

4.9 (a) x = 1 + α3; (b) x = α+ α2; (c) x = 1; (d) x = α+ α2.

4.10 (a) Notice that p(Y )− p(X)
q(X)q(Y ) is a nonzero polynomial in Y of degree n over K(α),

where α = p(X)
q(X) having X as its zero.

(b) Use (a) and T.4.3.
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(c) Show that the polynomial p(Y )− αq(Y ) is irreducible over the field K(α), for example,
using a version of Gauss’s Lemma T.3.3 and the remark after it for R = K[α]. Notice that
the degree of this polynomial with respect to α is one.

4.11 In (b) and (c) use T.4.3.

(d) In general, we have [M1M2 : K] ≤ [M1 : K][M2 : K] and for trivial reasons, the inequality
may be strict (e.g. M1 = M2 and bigger than K). If [M1M2 : K] = [M1 : K][M2 : K], then
M1 ∩M2 = K and [M1M2 : M1] ≤ [M2 : K] (as a consequence of the inequality above).

4.12 Consider [K(α) : K(α2)] and use T.4.3. The answer to the second part of the exercise
is no (give a counterexample!).

4.13 (a) Consider a minimal polynomial of an element α ∈ L r C (if such exists) and use
the Fundamental Theorem of Algebra.

(b) Consider the minimal polynomial of an element α ∈ Lr R (if such exists) and use Ex.
3.5 (b).

4.14 No. Consider K = Q and L = Q(α) ⊃ Q, where α4 + α + 1 = 0. Prove that there is
no quadratic extension of Q, which is contain in L.

4.15 Study the tower of extensions Q(e, π) ⊃ Q(e+ π, eπ) ⊃ Q.

4.16 (a) Let f(X) = αnX
n + · · · + α1X + α0, where αi for i = 0, 1, . . . , n are algebraic

over K. Consider the tower of fields K ⊆ K(α0, α1, . . . , αn) ⊆ K(α0, α1, . . . , αn, α) and use
T.4.2, T.4.3 and T.4.4.

(b) Use T.4.6 and (a).

4.17 Use T.4.5.

Problems of Chapter 5

5.1 (a) 4; 1,
√

2,
√

5,
√

10;
(b) 6; 1, 3

√
2, 3
√

4, ε, ε 3
√

2, ε 3
√

4, ε3 = 1, ε 6= 1;
(c) 8; 1, i,

√
2, i
√

2, 4
√

2, i 4
√

2, 4
√

8, i 4
√

8;

(d) 8; 1, α, α2, α3, i, iα, iα2, iα3, where α =
√

1
2 (−1 +

√
5);

(e) 4, 1, α, α2, α3, where α = e
πi
4 ;

(f) 4; 1, α, α2, α3, where α = 4
√

2;
(g) 4; 1,

√
2,
√

3,
√

6;

(h) p− 1; 1, α, . . . , αp−2, where α = e
2πi
p .

5.2 (a) yes; (b) yes; (c) no.
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5.3 Let α1, α2, . . . , αn be zeros of f(X) in L = K(α1, α2, . . . , αn). Consider the chain of
the fields

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, α2, . . . , αn).

5.4 Use T.5.4 and T.4.3.

5.5 (a) Compute the number of elements in the field Fp[X]/(f(X)) and use T.5.4.

(b) Consider the field Fp[X]/(f(X)) and use T.5.4 and Ex. 5.4.

5.6 Prove the first formula using Ex. 5.5 (that is easy). The second formula is a special case
of the following general theorem: If f : N → C and g : N → C are two arbitrary functions
and

f(n) =
∑
d|n

g(d), then g(n) =
∑
d|n

f(d)µ
(n
d

)
.

The last implications is called Möbius’ inversion formula and can be easily proved using
the equality

∑
d|n µ(d) = 0 when n 6= 1. Use the inversion formula when f(n) = pn and

g(n) = nvp(n). For a detailed proof of the Möbius inversion formula see A.10.2.

5.7 (a) There are many proofs of this result. For one of them see A.4.2.

(b) According to (a), the group L∗ is cyclic. Take one of its generators as γ. See also Ex.
8.15.

5.8 (a) Show that the zeros of the primitive polynomials are exactly the generators of the
group of the nonzero elements of the field. In such a field with pn elements, compute the
number of elements, which generate the group of its nonzero elements. Afterwards, find the
number of the irreducible polynomials, which have these elements as their zeros. Use Ex.
5.5.

(b) Using for example T.5.4, motivate that F has an extension of degree n. Use Ex. 5.7.

5.9 Use the evident formula for (f + g)′ and start the proof with f = aXm, g = bXn.

5.10 (a) Use Ex. 5.8 (a).

(b) In one direction, use T.5.3.

5.11 (b) Consider X4 + 4, for example, over Q.

5.12 Motivate that the polynomial X4 + 1 has a zero in the field Fp2 by studying its
multiplicative group of order p2 − 1, which is divisible by 8 if only p > 2.
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Problems of Chapter 6

6.1 (a) Let f(X) = anX
n + . . .+ a1X + a0 and f(α) = 0. Look at σ(f(α)).

(b) How to express the elements of the field K(α1, . . . , αn)? See the definition in Chapter 2.

6.2 (a) G = {σ0, σ1}, σ0 = id., σ1(
√

2) = −
√

2;
(b) G = {σ0}, σ0 = id.;
(c) G = {σ0, σ1}, σ0 = id., σ1( 4

√
2) = − 4

√
2;

(d) G
√

2
√

3

σ0

√
2
√

3

σ1 −
√

2
√

3

σ2

√
2 −
√

3

σ3 −
√

2 −
√

3

(e) G = {σ0}, σ0 = id.;
(f) G = {σ0, σ1, σ2, σ3}. σi(X) = iX.

6.3 (a) Let σ be an automorphism of a field. Look at σ(1), σ(2) = σ(1 + 1) and so on.

6.4 Show that σ(x) > 0 if x > 0 (use x = (
√
x)2). Assume that, e.g. σ(x) > x and choose

r ∈ Q such that σ(x) > r > x. Use afterwards Ex. 6.3 (a).

6.5 Consider LG(L/K) and use T.6.2.

6.6 (a) Use Ex. 4.9.

(c) Check that the mapping sending a matrix

(
a b
c d

)
∈ GL2(K) onto a function ϕ(X) =

aX+b
cX+d is a group homomorphism. Find its kernel. For repetition see A.2.6.

6.7 |G| = 6, LG = Z2(α), where α = (X3+X+1)(X3+X2+1)
(X2+X)2 .

6.8 |G| = 6, LG = Z3(X6 +X4 +X2).

6.9 (a) LG = R(X2, Y ).

6.10 (a) LG = R(X2, XY ).

6.11 LG = Q(X2, Y 2).

6.12 LG = Q. Use T.6.2 and Ex. 4.9.

6.13 (a) LG = K(X + Y,XY ).
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6.14 No. Construct a counterexample using L = K(X).

6.15 (a) 2; σ0(a) = a, σ1(a) = 2a2 − a5;

(b) 4; σ0(a) = a, σ1(a) = −a, σ2(a) = 1
2a

5, σ3(a) = − 1
2a

5;

(c) 4; σ0(a) = a, σ1(a) = −a, σ2(a) = 10a5 − a11, σ3(a) = a11 − 10a5.

Problems of Chapter 7

7.1 (a), (b), (e) and (h) are not normal, all other are.

7.2 (a) Q( 4
√

2, i); (d) Q(X, ε), ε3 = 1, ε 6= 1;

(b) Q(
√

2, 3
√

2, ε), ε3 = 1, ε 6= 1; (e) Q(X, i), i2 = −1;
(c) L; (f) L(α), α2 + 1 = 0.

7.3 (a) and (c) Not necessarily! Give an example! (b) Yes.

7.4 Use T.5.1 (b) and T.5.2.

7.5 Use T.7.1, Ex. 6.1 and in (b), Ex. 7.4.

7.6 In (a) and (b) use T.7.1.

7.7 Show that a minimal polynomial of β over K is irreducible over K(α).

7.8 Let αi and αj be zeros of two irreducible factors of f(X) over L. Consider the field
extensions K(αi) ⊆ L(αi) and K(αj) ⊆ L(αj). Use T.5.1 and T.5.2.

7.9 (a) Use T.4.2.

(b) Consider one concrete example of a splitting field of Xn − 2 with n > 2 (e.g. n = 4) –
the general argument will be similar.

7.10 (a) 12,2; Two quadratic factors of f(X) over K have the same splitting field: Find the
discriminats of these polynomials and show that their product is a square (in fact, 9). The
command >galois(f(X) also gives a solution.

(b) 6,1; (the polynomial is normal).

(c) 36,3; The polynomial f(X) has a quadratic and a cubic irreducible factor over K. The
splitting field of f(X) over K has degree 6 as the quadratic factor remains irreducible over
the cubic extension of K (see Ex. 4.2). You can use the command >galois(f(X)).

(d) 48,3; The polynomial f(X) has an irreducible factor of degree 4 over K but it is not
normal over K. Use the command >galois(f(X)), which gives the degree of the normal
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closure. You can see that it is not sufficient to adjoin one zero of the quadric polynomial to
K in order to get the normal closure.

(e) 5040,6; Use >galois(f(X) and Ex. 5.3 (possibly also Ex. 16.50)).

(f) 14,2; There are 3 irreducible quadratic factors of f(X) over K and all have the same
splitting field over K. Either use >galois(f(X)) or check that for each two of these factors,
the product of their discriminants is a square (so they have the same splitting field).

7.11 Only (b) is not normal.

Problems of Chapter 8

8.1 (a) Find the minimal polynomial of X over the field Fp(X2). Use the definition of
separability or T.8.1.

(b) For example, L ⊃ K, where L = Fp(X), K = Fp(Xp).

(c) F2(X) is a splitting field of the polynomial T 2 −X2 over the field F2(X2).

8.3 (a) Consider K ⊆ K(αp) ⊆ K(α). Use T.8.1 (b).

(c) If K is perfect show that every irreducible factor of Xp − a, where a ∈ K must be of
degree 1. Use T.8.1(b). Conversely, when K = Kp use the same argument as in the proof
of T.8.1(a) on p. 105 in the case of a finite field K.

(d) Show that L is separable over K using (b) and (c).

8.4 (a) Use Ex. 8.3.

(b) Use (a) and T.7.2.

8.5 Use Ex. 8.4.

8.6 Use T.8.1 (b).

8.7 As a first step, assume L = K(γ).

8.8 Use Ex. 8.4.

8.9 Use Ex. 8.7.

8.10 (a) For example
√

2 +
√

3; (d) For example X + Y ;

(b) For example
√

2 +
√

3 + i; (e) For example X;

(c) For example
√

2 +
√

3 + i; (f) For example
√

2 + 3
√

2 or 6
√

2.

8.11 Show that if γ exists, then γ2 ∈ K. Find [L : K].
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8.12 (a) Compare the degrees of L over M and L over the subfield of M generated over K
by the coefficients of the minimal polynomial of γ over M .

(b) If L = K(γ), then use the fact that the minimal polynomial of γ over M divides the
minimal polynomial of γ over K. In the opposite direction, show that L is finitely generated
and algebraic over K. Use Ex. 4.10. Thereafter, consider separately K finite and K infinite.
If K is finite use Ex. 5.7. If K is infinite, use the fact that L as a vector space over K is not
a union of a finite number of proper subspaces (choose any γ, which is not in the union of
all proper subfields of L containing K).

8.13 Consider K ⊂ L from Ex. 8.11. (e.g. Fp(X2, Y 2, X + cY ), where c ∈ K).

8.14 Use T.8.2.

8.15 (b) No. (c) 4, 6 for n = 2, 13, 24 for n = 3, 32, 54 for n = 4.

8.16 Use Ex. 2.13 and Ex. 8.4.

8.17 For example: (a) c = 6
√

2; (b) c =
15
√

3553; (c) c = 3
√

3 + 3
√

5; (d) c = 15
√

2.

Problems of Chapter 9

9.1 (c), (d), (e), (f) if p 6= 2 and (g) are Galois extensions, the remaining, are not Galois.

9.2 (a) L = Q(
√

2,
√

5); [L : Q] = |G(L : Q)| = 4, G = G(L : Q) = {σ0, σ1, σ2, σ3}, where

G
√

2
√

5 o

σ0

√
2
√

5 1

σ1 −
√

2
√

5 2

σ2

√
2 −
√

5 2

σ3 −
√

2 −
√

5 2

The subgroups of G: I = {σ0},
H1 = {σ0, σ1}, H2 = {σ0, σ2}, H3 = {σ0, σ3}.

The fields between Q and L: LG = Q, LI = L,
LH1 = Q(

√
5), LH2 = Q(

√
2), LH3 = Q(

√
10).

(b) L = Q(i,
√

5). Compare (a).

(c) L = Q(ε), ε = e
2πi
5 , [L : Q] = |G(L : Q)| = 4, G = {σ0, σ1, σ2, σ3}, where

G ε o
σ0 ε 1
σ1 ε

2 4
σ2 ε

3 4
σ3 ε

4 2

The subgroups of G: G, I = {σ0}, H = {σ0, σ3}.
The fields between Q and L: LG = Q, LI = L,
LH = Q(ε+ ε4) = Q(cos 2π

5 ) = Q(
√

5).

(d) L = Q(i,
√

2). Compare (a).
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(e) L = K( 4
√

2); [L : K] = |G(L/K)| = 4, G = {σ0, σ1, σ2, σ3}, where

G 4
√

2 o

σ0
4
√

2 1

σ1 − 4
√

2 2

σ2 i 4
√

2 4

σ3 −i 4
√

2 4

The subgroups of G; G, I = {σ0}, H = {σ0, σ1}.
The fields between K and L: LG = K : LI = L,
LH = K(

√
2) = Q(i,

√
2).

(f) L = Q( 3
√

5, ε), ε3 = 1, ε 6= 1; [L : Q] = |G(L : Q)| = 6, G = {σ0, σ1, σ2, σ3, σ4, σ5}, where

G 3
√

5 ε o

σ0
3
√

5 ε 1

σ1
3
√

5 ε2 2

σ2 ε 3
√

5 ε 3

σ3 ε 3
√

5 ε2 2

σ4 ε
2 3
√

5 ε 3

σ5 ε
2 3
√

5 ε2 2

Subgroups till G: G, I = {σ0}, H1 = {σ0, σ1}, H2 = {σ0, σ3},
H3 = {σ0, σ5}, H = {σ0, σ2, σ4}.
The fields between Q and L: LG = Q, LI = L,LH1 = Q( 3

√
5),

LH2 = Q(ε2 3
√

5), LH3 = Q(ε 3
√

5), LH = Q(ε).

(g) L = Q(α, i), α =
√

1
2 (
√

5− 1); [L : Q] = |G(L : Q)| = 8. Let β =
√

1
2 (
√

5 + 1) (αβ = 1).

G = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7}, where

G α i o
σ0 α i 1
σ1 −α i 2
σ2 iβ i 2
σ3 −iβ i 2
σ4 α −i 2
σ5 −α −i 2
σ6 iβ −i 4
σ7 −iβ −i 4

Subgroups till G: G, I = {σ0}, H1 = {σ0, σ1}, H2 = {σ0, σ2},
H3 = {σ0, σ3}, H4 = {σ0, σ4}, H5 = {σ0, σ5},
H23 = {σ0, σ1, σ2, σ3}, H45 = {σ0, σ1, σ4, σ5}, H67 = {σ0, σ1, σ6, σ7}.
The fields between Q and L: LG = Q, LI = L,LH1 = Q(

√
5, i),

LH2 = Q(α+ iβ), LH3 = Q(α− iβ), LH4 = Q(α), LH5 = Q(iα),
LH23 = Q(i), LH45 = Q(

√
5), LH67 = Q(i

√
5), .

(h) L = K(ε), ε3 = 1, ε 6= 1; [L : K] = |G(L/K)| = 2, G = {σ0, σ1}, where
σ0 = id., σ1(ε) = ε2. Only the trivial subgroups and subfields.

9.3 (b) We take in Ex. 9.2 (a)–(h) only the zeros of f(X), which are not in the ground field
K.

(a) The zeros:
√

2,−
√

2,
√

5,−
√

5 numbered 1, 2, 3, 4, respectively. Then σ0, σ1, σ2, σ3 are
(1), (1, 2), (3, 4), (1, 2)(3, 4), respectively.

(b) The zeros: i,−i,
√

5,−
√

5 numbered 1, 2, 3, 4, respectively. As in (a).

(c) The zeros: ε, ε2, ε3, ε4 (ε = e
2πi
5 ) numbered 1, 2, 3, 4, respectively. Then σ0, σ1, σ2, σ3 are

(1), (1, 2, 4, 3), (1, 3, 4, 2), (1, 4)(2, 3), respectively.

(d) The zeros: α = 1/2
√

2+1/2 i
√

2,−α, ᾱ,−ᾱ numbered 1, 2, 3, 4, respectively. The four au-
tomorphisms defined by σ(

√
2) = ±

√
2, σ(i) = ±i are {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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(e) The zeros: 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2 numbered 1, 2, 3, 4, respectively. Then σ0, σ1, σ2, σ3 are
(1), (1, 2)(3, 4), (1, 3, 2, 4), (1, 4, 2, 3), respectively.

(f) The zeros: 3
√

5, ε 3
√

5, ε2 3
√

5, numbered 1, 2, 3, respectively. Then σ0, σ1, σ2, σ3, σ4, σ5 are
(1), (2, 3), (1, 2, 3), (1, 2), (1, 3, 2), (1, 3), respectively.

(g) In the notations of Ex. 9.2 (g), the zeros are α,−α, iβ,−iβ numbered 1, 2, 3, 4 in this
order. Then the automorphisms σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7 are (1), (1, 2)(3, 4), (1, 3)(2, 4),
(1, 4)(2, 3), (3, 4), (1, 2), (1, 3, 2, 4), (1, 4, 2, 3), respectively.

(h) The zeros are ε, ε2, where ε = e
2πi
3 , numbered 1, 2 in the given order. The automorphisms

σ0, σ1 are (1), (1, 2).

9.4 (a) Use Ex. 6.1.

(b) Use T.5.1(b), T.5.2(b) and Ex. 6.1.

(c) Use Theorem T.9.1(b).

9.5 (a) Modify Ex. 9.2 (a).

(b) Modify Ex. 9.2 (f).

(c) [L : Q] = |G(L : Q)| = 8, since L is a splitting field of X4 − 2 over Q. G = G(L : Q) =
{σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7}, where

G 4
√

2 i o

σ0
4
√

2 i 1

σ1 − 4
√

2 i 2

σ2 i 4
√

2 i 4

σ3 −i 4
√

2 i 4

σ4
4
√

2 −i 2

σ5 − 4
√

2 −i 2

σ6 i 4
√

2 −i 2

σ7 −i 4
√

2 −i 2

The subgroups of G: G, I = {σ0}, H1 = {σ0, σ1},
H2 = {σ0, σ4}, H3 = {σ0, σ5}, H4 = {σ0, σ6},
H5 = {σ0, σ7}, G1 = {σ0, σ1, σ2, σ3},
G2 = {σ0, σ1, σ4, σ5}, G3 = {σ0, σ1, σ6, σ7}.
The fields between Q and L: LG = Q, LI = L;
LH1 = Q(

√
2, i), LH2 = Q( 4

√
2), LH3 = Q(i 4

√
2),

LH4 = Q((1 + i) 4
√

2), LH5 = Q((1− i) 4
√

2),
LG1 = Q(i), LG2 = Q(

√
2), LG3 = Q(i

√
2).

(d) [L : K)| = 4, since K is the fixed field of the group G = {σ0, σ1, σ2, σ3}, which is the
group of K-automorphisms of L, where:

G X o
σ0 X 1
σ1 −X 2
σ2 1/X 2
σ3 −1/X 2

The subgroups of G: G, I = {σ1}, H1 = {σ0, σ1}
H2 = {σ0, σ2}, H3 = {σ0, σ3}.
The fields between K and L: LG = K,LI = L,
LH1 = R(X2),
LH2 = R(X + 1

X ), LH3 = R(X − 1
X ).

(e) [L : K] = |G(L/K)| = 4, since K is the fixed field of the group G = G(L/K) =
{σ0, σ1, σ2, σ3} of K-automorphisms of L, where
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G X Y o
σ0 X Y 1
σ1 −X Y 2
σ2 X −Y 2
σ3 −X −Y 2

The subgroups of G: G, I = {σ0}, H1 = {σ0, σ1},
H2 = {σ0, σ2}, H3 = {σ0, σ3}.
The fields between K and L: LG = K,LI = L,
LH1 = R(X2, Y ), LH2 = R(X,Y 2),
LH3 = R(X2, XY ).

(f) [L : K] = |G(L/K)| = 4, since K is the fix field of the group G = G(L/K) =
{σ0, σ1, σ2, σ3} of K-automorphisms of L, where

G X Y o
σ0 X Y 1
σ1 −X −Y 2
σ2 Y X 2
σ3 −Y −X 2

The subgroups of G: G, I = {σ0}, H1 = {σ0, σ1},
H2 = {σ0, σ2}, H3 = {σ0, σ3}.
The fields between K and L: LG = K, LI = L,
LH1 = R(X2, XY ), LH2 = R(X + Y,XY ),
LH3 = R(X − Y,XY ).

9.6 No.

9.7 L = Z3(X), LG = Z3(X6 +X4 +X2), [L : LG] = 6.

G X o
σ0 X 1
σ1 X + 1 3
σ2 X + 2 3
σ3 2X 2
σ4 2X + 1 2
σ5 2X + 2 2

The subgroups of G: G, I = {σ0}, H1 = {σ0, σ3},
H2 = {σ0, σ4}, H3 = {σ0, σ5}, H = {σ0, σ1, σ2}.
The fields between LG and L: LG, LI = L,LH1 = Z3(X2),
LH2 = Z3(X2 −X), LH3 = Z3(X2 +X), LH = Z3(X3 −X).

9.8 L ⊇M and L ⊇ K are Galois extensions. Use T.9.1(a).

9.9 (b) Consider the index of H(L/M) in G(L/K) and use the homomorphism ϕ :
H(L/M)→ G(M/K), where ϕ(σ) = σ|M . Use T.9.1.

(c) Use (b) and T.9.1(a).

(d) Check directly that N (G(L/M)) ⊆ H(L/M). Use (b) and the characterization of the
normaliser as the biggest subgroup of G(L/K) in which G(L/M) is normal.

9.10 (a) Use the definition of the normal extension together with T.9.1(a) and T.4.3.

(b) How to describe all the zeros of fα(X) in terms of α and σ ∈ G(L/K)? Use (a).

(c) Count how many times a given zero β = σ(α) of fα(X) (for a fixed σ ∈ G(L/K)) appears
among the images σ1(α), . . . , σn(α).

9.11 (a) Consider L as vector space over LH and use T.6.3 in order to show that the image
of TrH has dimension 1.

(b) Use (a) and the properties of TrH as a linear transformation.
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9.12 (a) Use T.5.4, T.?? and T.9.1(d).

(b) Use Ex. 2.12.

(c) NrL/K (x ) = x
qn−1
q−1 , where n = [L : K]. The mapping NrL/K : L∗ → K ∗ is a group

homomorphism. How many elements belongs its kernel?

9.13 Use Ex. 9.12(b) and T. 9.2. For example, β = α2 + α (or α2 + α+ 1).

9.14 (a) Use Ex. 7.6, Ex. 8.16 and T.9.1(d).

(b) Consider a natural homomorphism mapping an automorphism σ ∈ G(M1M2/M2) onto
its restriction to M1. What is the image and the kernel of this homomorphism?

(c) Consider the homomorphism ϕ : G(M1M2/K) → G(M1/K) × G(M2/K), where
ϕ(σ) = (σ|M1

, σ|M2
). Show that Ker ϕ = {e}. Then compute the orders of G(M1M2/K)

and G(M1/K)×G(M2/K) using T.9.1(a) and Ex. 7.7.

(d) Use Ex. 7.4(b).

9.15 In each case below, we give an example of a field (chosen among plenty of other
possibilities).

(a) Q(i); (b) Q(α), α = ε+ 1
ε , ε = e

2πi
7 ; (c) Ex. 9.2(c);

(d) Q(α), α = ε+ 1
ε , ε = e

2πi
11 ; (e) Ex. 9.2(a); (f) Q(i, ε), ε = e

2πi
5 ;

(g) Q(
√

2,
√

3,
√

5); (h) Q(α, β), α3 = 3α+ 1, β3 = 7β + 7;
(i) Ex. 9.5(c); (j) Ex. 9.2(f);
(k) L = Kf , f(X) = X4 − 2X − 2;(l) L = Kf , f(X) = X3 + 20X + 16 .

9.16 Use Dirichlet’s theorem: For every natural number n, there exists a natural number k
such that nk + 1 is a prime number. See also Ex. 10.12.

9.17 No. Try to find your own counterexample – it may be interesting.

9.18 G(L/M1M2) = H1 ∩ H2 (motivate that each σ ∈ G(L/M1M2) must be in both
H1 = G(L/M1) and H2 = G(L/M2), as well as, conversely); G(L/M1 ∩M2) = the least
subgroup of G(L/K) containing both H1 and H2 (that is, the group of all finite products in
which every factor belongs either to H1 or to H2).

This answer can be also expressed in the following way: M1 = LH1 ,M2 = LH2 gives
LH1∩H2 = LH1LH2 and L〈H1,H2〉 = LH1 ∩ LH2 , where 〈H1, H2〉 denotes the least subgroup
of G = G(L/K) containing both H1 and H2.

9.19 Show that K(α) ⊇ K is a Galois extension.

9.20 Follow similar argument as in the solution of Ex. 9.14(b).

9.21 What happens when you take the complex conjugation of a number in L?
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9.22 Use T.9.1(a) and Ex. 9.10(a).

9.23 (a) Every permutations of the zeros is a composition of inversions (of only two zeros).
What happens with the sign of αi − αj when they are shifted? Even permutation is a
composition of an even number of inversions, and an odd needs an odd number of inversions.

(b) Show that the index of Gal0(L/K) in Gal(L/K) is 1 or 2 and the second possibility
occurs if and only if

√
δ(f) 6∈ K.

9.24 Let αi = α+ i for i = 0, 1, . . . , i− 1. Let fi(X) be the minimal polynomial of αi over
K. Notice that K(αi) = K(α) for each i = 0, 1, . . . , p− 1.

9.25 Ex. 7.11(a): If a1 = a is a zero of f(X), then the remaining are a2 = 2−a2, a3 = a3−3a,
a4 = a4 − a3 − 3a2 + 2a, a5 = −(a4 − 4a2 + 2). The Galois group is cyclic of order 5 and is
generated by σ(a) = 2− a2.

Ex.7.11(c): If a is a zero of f(X), then the remaining zeros can be obtained from the
factorization of f(X) over the field Q(a) (using >factor(f(X),a)). Since the Galois group
has order 7, it is cyclic and generated by any σ mapping a onto another zero (different from
a) of f(X).

Ex.7.11(d): If a1 = a is a zero of f(X), then the remaining zeros are a2 = −a, a3,4 =
± 1

6 (−252a + 468a3 − 215a5 + 3a7), a5,6 = ± 1
24 (−552a + 1566a3 − 1064a5 + 15a7), a7,8 =

± 1
24 (−1212a+3294a3−1922a5+27a7). The automorphisms are functions fi defined by map-

ping a onto one of the 8 zeros (for example, >f3:= a -> a_3 where a3 is given as a function of
a). Then we can check the orders of fi in the Galois group computing >simplify(fi(fi(a)).
We get that fi(fi(a) = −a for all i 6= 1, 2, so all elements in the Galois group with the excep-
tion of the identity and the automorphism mapping a onto −a have order 4 (the involution
mapping a onto −a has order 2). This shows that the Galois group is the quaternion group
(see Ex. 12.1(e)).

9.26 (a) The zeros of the polynomial are a, a2 − 2, 2 − a − a2, so K = Q(a). The Galois
group is cyclic of order 3 and G(K/Q) = 〈σ〉, where σ(a) = a2 − 2.

(b) The zeros of the polynomial are a,−a2,−a4, a5, a−a4, a2−a5, so K = Q(a). The Galois
group is cyclic of order 6 and G(K/Q) = 〈σ〉, where σ(a) = a5 (define >σ:=a->a^5 and check
the order of σ in the group using >simplify(σ(σ(a))) and >simplify(σ(σ(σ(a)))). You
see that the order is not 2 or 3, so it must be 6).

(c) The zeros of the polynomial are a,− 1
9 (9− 12a2 + a5), 1

3 (6 + 4a3 + 2a4 + a5), 1
9 (27 + 9a−

12a2+12a3+6a4+4a5, − 1
9 (45+9a−6a2+18a3+9a4+5a5), − 1

9 (18+9a+6a2+6a3+3a4+a5).
The Galois group of order 6 is S3 and G(K/Q) = 〈σ, τ〉, where σ(a) = 1

3 (6 + 4a3 + 2a4 + a5)
is of order 2, τ(a) = − 1

9 (9 − 12a2 + a5) is of order 3 and στ = τ2σ (check it defining the
corresponding functions σ, τ in Maple like in (b)).

9.27 Use the command >galois(f(X)).
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(a) The Galois group D5 (dihedral of order 10 - see Ex. 12.1) and the minimal number of
zeros generating the splitting field is 2.

(b) The Galois group A5 (alternating of order 60) and the minimal number of zeros gener-
ating the splitting field is 3.

(c) The Galois group S5 (symmetric of order 60) and the minimal number of zeros generating
the splitting field is 4.

You may use Maple in order to adjoint zeros and check how the given polynomials split in
the subsequent extensions but it is much more elegant to deduce the minimal number of
zeros generating the splitting fields using the knowledge of the order of the Galois groups.

Problems of Chapter 10

10.1 Φ1(X) = X−1; Φ2(X) = X+1; Φ3(X) = X2+X+1; Φ4(X) = X2+1; Φ5(X) =
X4 + X3 + X2 + X + 1; Φ6(X) = X2 −X + 1; Φ7(X) = X6 + X5 + X4 + X3 + X2 +
X + 1; Φ8(X) = X4 + 1; Φ9(X) = X6 +X3 + 1; Φ10(X) = X4 −X3 +X2 −X + 1.

10.2 (a) Φp = (Xp − 1)/(X − 1).

(b) It is a special case of Ex. 10.3(a) for k = r(n).

(c) It is a special case of Ex. 10.3(b) for r = p, s = n.

Φ20(X) = 1−X2 +X4 −X6 +X8,

Φ105(X) = 1 +X +X2 −X6 −X5 −X8 − 2X41 −X42 −X43 +X46 +X47 +X48 − 2X7 −
X9 +X12 +X13 +X14 +X15 +X16 +X17−X20−X22−X24−X26−X28 +X31 +X32 +
X33 +X34 +X35 +X36 −X39 −X40.

10.3 (a) Let εr for r = 1, . . . , ϕ(k) be all primitive k-th roots of 1 and let d = n/k. Show
that all d-th roots of εr give all primitive n-th roots of 1 (notice that ϕ(n) = dϕ(k) depending
on the assumption on primes dividing n and k).

(b) Use the formula expressing the cyclotomic polynomials by binomials Xd−1 in T.10.2(a).

10.4 Notice that if m > 1 is odd and ε is a primitive m-th root of 1, then −ε is a primitive
2m-th root of 1.

10.5 (a) Use Ex. 9.14(b).

(b) Look at the degree of Q(εm)Q(εn) over Q(εm) using (a), Ex. 9.14(b), T.9.1 and T.4.1.

(c) Q(εm)Q(εn) = Q(ε[m,n]) and Q(εm) ∩ Q(εn) = Q(ε(m,n)), where [m,n] is the least
common multiple and (m,n) the greatest common divisor of m and n.

10.6 Use Ex. 9.21. One can choose η = εn + εn (notice that εn = 1/εn).
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10.7 (a) Use Ex. 5.8(a).

(b) Use T.9.2 taking into account that the Galois group is cyclic (see A.4.2).

(c) Find the number of different images of θd by all automorphisms of G(K/Q). Use Ex.
9.22.

10.8 (a) Q(i), Q(
√

2), Q(
√
−2); (b) Q(

√
5); (c) Q(

√
−7).

10.9 (a) σ(ε) = ε2 has order 4, G2 = 〈σ2〉, KG2 = Q(θ2) = Q(
√

5), θ2 = ε5+σ2(ε5) = ε5+ε4
5

has minimal polynomial X2 +X − 2;

(b) σ(ε7) = ε3
7 has order 6,

G2 = 〈σ3〉, KG2 = Q(θ3), θ3 = ε7 +σ3(ε7) = ε7 +ε6
7 has the minimal polynomial X3 +X2−

2X − 1;

G3 = 〈σ2〉, KG3 = Q(θ2) = Q(
√
−7), θ2 = ε7 + σ2(ε7) + σ4(ε7) = ε7 + ε2

7 + ε4
7 has the

minimal polynomial X2 +X + 2.

(c) σ(ε17) = ε3
17 has order 16,

G2 = 〈σ8〉, KG2 = Q(θ8), θ8 = ε17 + σ8(ε17) = ε17 + ε16
17 has the minimal polynomial

X8 +X7 − 7X6 − 6X5 + 15X4 + 10X3 − 10X2 − 4X + 1.

G4 = 〈σ4〉, KG6 = Q(θ4), θ4 =
∑3

0 σ
4i(ε17) = ε17 + ε34

17 + ε38

17 + ε312

17 has the minimal
polynomial X4 +X3 − 6X2 −X + 1,

G8 = 〈σ2〉, KG8 = Q(θ2), θ2 =
∑7

0 σ
2i(ε17) = ε17 + ε32

17 + ε34

17 + ε36

17 + ε38

17 + ε310

17 + ε312

17 + ε314

17

has the minimal polynomial X2 +X − 4,

10.10 Use Ex. 10.7(c) for θ2 =
∑ p−1

2
i=1 σ

2i(ε) =
∑ p−1

2
i=1 ε

g2i , where σ is a generator of the

Galois group G(Q(ε)/Q) and ε a p-th root of 1 (ε 6= 1). Define θ′2 =
∑ p−3

2
j=0 σ

2j+1(ε) =∑ p−3
2

j=0 ε
g2j+1

. Compute θ2θ
′
2 and consider in the product all the terms such that g2i + g2j−1

(mod p) has a fixed value. These values are given by the values of the quadratic formX2+gY 2

over the field Fp. Motivate that for p = 1 (mod 4) this quadratic form does not represent 0
(that is, the only solution of the equation X2 + gY 2 = 0 is X = Y = 0 (mod )) and each
nonzero value in Fp is represented in p+ 1 different ways. Count the number of possibilities
for X2 and Y 6= 0 (X = gi, Y = gj). Show that for p = 3 (mod 4), the quadratic form
represents 0 in (p − 1)/2 different ways with XY 6= 0, and every nonzero element in Fp in
(p − 3)/2 different ways. Show that θ2 has the minimal polynomial X2 + X − p−1

4 , when

p = 1 (mod 4) and X2 +X + p+1
4 , when p = 3 (mod 4).

10.11 (a1) X6 +X5 +X4 +X3 +X2 +X + 1 = (X3 +X + 1)(X3 +X2 + 1);

(a2) X6 + 6X3 + 8 = (X3 + 2)(X3 + 4);

(a3) X12 + 2X11 + X10 + 2X9 + X8 + 2X7 + X6 + 2X5 + X4 + 2X3 + X2 + 2X + 1 =
(X3 + 2X + 1)(X3 + 2X2 + 1)(X3 +X2 + 2X + 1)(X3 + 2X2 +X + 1).
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(b) Let ε be a primitive n-th root of 1 over Fp and let k be the degree of the field Fp(ε) over
Fp. What is a relation between n and k?

10.12 (a) Use T.10.2(a) and show that Xn − 1 has a double zero x.

(b) What can be said about the order k of x in the group Z∗p? What is its relation to n?
Consider the cases k = n and k < n and use (a).

(c) Use induction starting from Ex. 10.2(a), and to the inductive step Ex. 10.3(a).

(d) Assume that the number of primes congruent to 1 modulo n is finite and consider their
product with n. Take a prime p which divides Φn(Nk) for a sufficiently big k and show that
it must be congruent 1 modulo n using (b).

10.13 (a) G is a product of cyclic groups of some orders n1, . . . , nr. For every order ni,
we can find a prime number pi = niki + 1, where ki is an integer (this is a special case
of Dirichlet’s theorem on primes in arithmetical progressions – see Ex. 10.12) and we can
choose ki, so that all pi are different. We have a surjection of Z∗pi onto Zni and hence, a
surjection of Z∗p1 × · · · × Z

∗
pr = Z∗p1...pr onto G = Zn1

× · · · × Znr .

(b) Use (a) and T.9.3(b).

10.14 (a) Consider a tower K ⊆ K(ε) ⊆ K(ε, α), where εn = 1, K(ε) is a splitting field of
Xn − 1 and αn = a. The maximal order of G(L/K) is nϕ(n), where ϕ is the Euler function
(see p. 256).

(b) Let σ ∈ G(L/K) and let σ(ε) = εa, a ∈ Z∗n and σ(α) = εbα, b ∈ Zn. Map σ onto the

matrix

(
a b
0 1

)
.

(c) If Xp − a, where a ∈ Q, is irreducible over Q then the Galois group is isomorphic to the
group of all matrices as in (b), where a ∈ Z∗p and b ∈ Zp, so its order is p(p− 1). For p = 2,
we have a cyclic group of order 2, for p = 3, the group of order 6 isomorphic to S3 and for
p = 5, the group of order 20 (usually denoted by GA(1, 5) as a special case of the general
affine groups GA(1, p) given by the matrices in (b)).

(d) The Galois group is a cyclic group of order n.

10.15 (a) What is the m-th power of a primitive 2m-th root of 1?

(b) Take a primitive m-th root of 1 and find a zero of the second polynomial.

10.16
(a) 4; (b) 8; (c) 6; (d) 12;
(e) 12; (f) 8; (g) 16; (h) 16;

10.17 The first coefficient with absolute value bigger than 1 appears for n = 105 = 3 · 5 · 7.
The number 105 is the least one having 3 different odd prime factors. The formulae for
Φn,Q(X) say that the size of the coefficients depends on the number of different primes
dividing n (see Ex. 10.2(b)). But it is not true that 3 different factors of n imply that there
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are coefficients with absolute value bigger than 1. For example, the coefficients of Φn,Q(X)
for n = 231 = 3 · 7 · 11 are all of absolute value at most 1. However, it is a not bad guess,
since it is possible to prove that n with only two odd prime factors give polynomials with
coefficients of absolute value at most 1 (see Ex. 10.2(b) and Ex. 10.4). It is known that for
sufficiently big n, the coefficients can be arbitrarily large (check in the Wikipedia).

10.18 (a) Motivate that the splitting field of X6 − a has at most degree 12 over Q. When
it is less than 12? Answer: a = −3b2 for an integer b 6= 0. Motivate that this happens if and
only if Q(

√
a) = Q(

√
−3), which is (the quadratic subfield of) the cyclotomic field Q(ε6).

(b) The Galois group of an irreducible binomial X7−a has always order 42. For an irreducible
binomial X8 − a, the order of the Galois group is at most 32. It is always divisible by 8
(why?) and, in fact, may be 8 or 16, but usually is 32. The exceptional cases appear when
a = −b2 (8) or a = ±2b2 (16) for an integer b 6= 0. This may be obtained experimentally
using Maple (and supplemented by a proof) or deduced from the properties of cyclotomic
extensions (see Ex. 10.14). For irreducible binomials X9−a, the order of the Galois group is
always 54. In fact, if the polynomial X9 − a is reducible over the field M = Q(ε9), where ε9

is a primitive 9-th root of 1, then a = b3, where b ∈M by Capelli’s theorem (see Ex. 5.11).
Then X3 − a which is irreducible over Q (since X9 − a is irreducible) has a zero b in M .
So the splitting field of X3 − a is contained in M , which is a contradiction, since G(M/Q)
is an abelian group, while the Galois group of X3 − a is S3. Thus Q(ε6, 9

√
a) has degree 54

over Q.

Problems of Chapter 11

11.1 (a) G(Q(i)/Q) = {σ0, σ1}, where σ0(i) = i,σ1(i) = −i. A normal basis: σ0(α) =
1 + i, σ1(α) = 1− i, where α = 1 + i.

(b) G(Q(
√

2,
√

3)/Q) = {σ0, σ1, σ2, σ3}, where

G
√

2
√

3

σ0

√
2
√

3

σ1 −
√

2
√

3

σ2

√
2 −
√

3

σ3 −
√

2 −
√

3

A normal basis: σ0(α) = 1 +
√

2 +
√

3 +
√

6, σ1(α) = 1−
√

2 +
√

3−
√

6, σ2(α) = 1 +
√

2−√
3−
√

6, σ3(α) = 1−
√

2−
√

3 +
√

6, where α = 1 +
√

2 +
√

3 +
√

6.

(c) G(Q(ε)/Q) = 〈σ〉, where σ(ε) = ε2. A normal basis: σ0(α) = ε, σ(α) = ε2, σ2(α) =
ε4, σ3(α) = ε3, where α = ε.

(d) G(F2(γ)/F2) = 〈σ〉, where σ(γ) = γ2. A normal basis: σ0(α) = γ, σ(α) = γ2, σ2(α) =
γ4 = γ2 + γ + 1, where α = γ
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11.2 (a) Let σ be the nontrivial automorphism of L over K. If α 6∈ K, then L = K(α). Let
β = σ(α) = p− α, where α2 = pα+ q. When α, β form a basis of L over K?

(b) Let L = K(α) and let σ be a generator of the Galois group G(L/K). Denote β = σ(α)
and γ = σ(β). Notice that σ3 = 1 so σ(γ) = α. When α, β, γ form a basis of L over K? You
may use L.11.1 on p. 112.

11.3 (a) Use Ex. 9.22. The converse is not true – find a suitable example.

(b) In both cases the answer is “no”. Try to construct suitable examples using finite fields.

11.6 (a) Use T.11.3 for K = E = Q(ε) and n = 3. Notice that E = Q(
√
−3) is the quotient

field of Z[ε] and any α can be replaced by r2α, where r ∈ Z[ε].

(b) Use Ex. 9.14, T.9.2 and the fact that the cyclic group Z2 × Z3 = Z6 has exactly one
subgroup of order 3.

(c) Use T.11.4 for n = 3.

(d) Use (19.1). Examples: the splitting fields of X3 − 3X + 1 (f = 1 + ε), X3 − 7X + 7
(ε = 2 + 2ε), X3 − 13X + 13 (f = 4 + 3ε).

11.7 (a) Use T.11.3 for K = E = Q(i) and n = 4. Notice that E = Q(i) is the quotient
field of Z[i] and any α can be replaced by r2α, where r ∈ Z[i].

(b) Use Ex. 9.14, T.9.2 and the fact that the group G = Z2×Z4 has exactly two subgroups
H of order 2 such that G/H is cyclic (of course, of order 4). Consider the fixed subfields
corresponding to these two subgroups.

(c) Use T.11.4 for n = 4.

(d) Use (c) and check that the automorphism, which maps 4
√
α onto 4

√
ᾱ has order 2. Take

its fixed field. It is possible to show directly that the Galois group of this field is cyclic
of order 4. The minimal polynomial of γ is X4 − 4Nr(f )gX 2 + Nr(f )g2[4Nr(f ) − Tr(f )2].
Examples: the splitting fields of X4 + 8X2 + 8 (f = −(1 + i), g = −1), X4 − 10X2 + 20
(f = 1 + 2i, g = 2), X4 − 52X2 + 468 (f = 2 + 3i, g = 1).

11.8 Use T.11.2(b) and Ex. 9.22.

11.9 By Ex. 8.3(d), we know that L is a Galois extension of K. Let q be a prime dividing
the order of the Galois group G(L/K). Assume that [L : K] = q and consider two cases:
char(K) 6= q and char(K) = q (in the first case the characteristic of K may be 0). In the first
case show that all q-th roots of 1 are in K. Thereafter use T.11.3 and show that L = K(α),
where αq = a ∈ K. Take β ∈ K such that βq = α and take the norms to K of the two sides
(see (6.1)). This gives a contradictions unless q = 2.

In the second case, use Ex. 11.8 to show that L = K(α), where αq−α = a ∈ K. Take β ∈ K
such that βq − β = aαq−1 in order to find a contradiction to the fact that α 6∈ K.
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Finally consider the case when the order of G(L/K) is a power of 2 and consider what
happens if i (a solution of X2 + 1 = 0 in L) belongs to K.

Problems of Chapter 12

12.1 (b) Consider the chain G = G0 = S3 ⊃ G1 = 〈σ〉 ⊃ G2 = 〈I〉, where σ is an element
of order 3 (any nontrivial rotation) and I the identity.

(c) Consider the chain G = G0 = S4 ⊃ G1 = A4 ⊃ G2 = V4 ⊃ G4 = 〈I〉, where
A4 is the group of even permutations of 1, 2, 3, 4 (the group of the rotations of a regu-
lar tetrahedron), V4 is the subgroup of permutations of order at most 2 in A4 (it consists of
(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) and is Klein’s four group) and I is identity.

(d) Consider the chain G0 = Dn ⊃ G1 = Cn ⊃ 〈I〉, where Cn is the group of all rotations of
the regular polygon with n sides and I is the identity.

(e) Consider the chain G0 = H∗(Z) ⊃ G1 = 〈−1〉 ⊃ G2 = 〈1〉.

12.2 (c) The group An is normal in Sn as a subgroup of index 2. Use (b) and T.12.1.

12.3 (a) Among all possible chains G = G0 ⊃ G1 ⊃ . . . ⊃ Gn = {e} consider a chain
with maximal possible value of n. Motivate that then all the quotients Gi/Gi+1 are cyclic
of prime order. Use A.2.10 and A.2.8.

(b) Use (a).

12.4 (a) Motivate that the functions ϕa,b(x) are bijections on the set {0, 1, . . . , n− 1} and
as such can be considered as permutations belonging to the group Sn of all permutations of
this set (with n elements).

Notice that different x ∈ {0, 1, . . . , n−1} have different images ϕa,b(x), so ϕa,b(x) is bijective
on the set {0, 1, . . . , n− 1}.

(b) The number of functions ϕa,b(x) is nϕ(n). Show that ϕa,b ◦ ϕc,d = ϕac,ad+b(x) and
gcd(ac, n) = 1. Use A.2.1.

(c) Check that Φ is a group homomorphism (use (b)) and find its kernel Tn. Notice that Tn
is abelian. Use T.12.1(c) for G = Gn and N = Tn.

(d) Notice that already the subgroup Tn of all translations ϕ1,b(x) = x+ b acts transitively
on {0, 1, . . . , p− 1}. How many solutions has equation ϕa,b(x) = x when a, b are fixed?

(e) Let ϕa,b(x) be a function of order p. Show that a = 1, so ϕa,b(x) ∈ Tp. Use (b) above.

(f) Denote by M the group of the matrices in (d) and show that Ψ : Gn → M such that

Ψ(ϕa,b) =

(
a b
0 1

)
, is a group isomorphism.
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12.5 (d) Look at the fix group Gx of any element x ∈ X and use the formula |X||Gx| = |G|
(see A.8.2(a)).

(e) If H is a subgroup of a transitive group G on a set X with p elements, then H is also
transitive on X or every element of H acts as the identity on X.

(e) Show that if x, x′ ∈ X and gx = x′ for some g ∈ G, then Hx′ = gHxg
−1. Conclude

that two arbitrary orbits Hx and Hx′ for x, x′ ∈ X have the same number of elements. Use
A.8.2 (on |Hx| = |H|/|Hx|).

12.6 Show that the center of a p−group, is always nontrivial. Consider the action of G on
the set X = G by conjugation, that is, for g ∈ G and x ∈ X the action of g takes x on
gxg−1. Notice that the fix elements for this action of G are x such that gxg−1 = x for each
g ∈ G, so gx = xg, that is, such x form the center C(G) of G. Use formula in A.8.2(a) in
this case.

Use the fact that G has nontrivial center together with T.12.1 and induction with respect
to the order of the group taking into account that C(G) is a normal subgroup of G.

Problems of Chapter 13

13.3 Consider a longest possible chain of fields

K = K0 ⊂ K1 ⊂ . . . ⊂ Kn = L

such that Ki = Ki−1(αi), where αrii ∈ Ki−1 and ri are positive integers for i = 1, . . . , n− 1.
Show that for such a chain all ri are prime numbers (observe that the next field is really
bigger than the preceding one).

13.4 (a) Denote by L a splitting field of f(X) over K and consider the the Galois group
G(L/K) as a subgroup of Sp. Notice that the order of G(L/K) is divisible by p and use
Cauchy’s theorem (see A.8.3) to prove the existence of a cycle of length p in G(L/K). Show
that the complex conjugation is a transposition of two zeros and use A.9.4 to show that
G(L/K) = Sp.

(b) Study the derivative of the polynomial f(X) and plot its graph in order to show that
exactly 3 zeros are real. Use (a).

13.5 For example, Xn−5f(X), where n ≥ 5 and f(X) = X5 − 4X − 2 according to Ex.
13.4(b) for p = 2.

13.6 (b) Assume that the polynomial f(X) is reducible over Ki. We show that it can
not happen considering two possibilities: f(X) = g(X)h(X) over Ki, where deg(g) = 2,
deg(h) = 3 or deg(g) = 1, deg(h) = 4. Compare the degree of a splitting field M of f(X)
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over Ki−1 (this is 120 by Ex. 13.4(a)) with its degree resulting from the two possibilities of
reducibility.

13.7 Discuss all possible Galois groups and use T.13.1. Alternatively, show how to solve
such equations.

13.8 Compare the splitting fields of f(X) and f(Xn) over K. Alternatively: How to express
the solutions of f(Xn) = 0 when the solutions of f(X) = 0 are known and conversely?

13.9 (a) If two of the zeros of a polynomial do not generate its splitting field, then there is
an automorphism of this field having these two zeros as fix points but moving another zero
by T.9.1 and T.9.3.

(b) Notice that the Galois group Gal(Kf/K) is a transitive permutation group on the set of
zeros of f(X) by Ex. 7.4 and use the description of solvable groups with this property given
in Ex. 12.5. Use (a).

13.10 Let Kf be a splitting field of f(X) over K. What can be said about the field Kf if
f(X) has at least two real zeros?

13.11 (a) The discriminant of f(X) is ∆(f) =
∏

1≤i<j≤5(αi−αj)2, where αi, i = 1, 2, 3, 4, 5
denote its zeros. Study the sign of ∆(f) depending on the cases: All αi real, exactly three
real, only one real.

(b) An example of a solvable equation with ∆(f) > 0 is f(X) = X5 − 2 = 0 (only one real
zero). If f(X) = X5 +X2 + 1, then f(X) also has only one real zero (thus ∆(f) > 0), but
G(Qf/Q) = S5 (for a proof, see Ex. 15.11(a)), so the equation f(X) = 0 is not solvable by
radicals.

13.14 (a) Let K = R(α), where α is a zero of an irreducible polynomial f(X) ∈ R[X] of
odd degree. Use the fact that f(X) has a zero in R.

(b) Use the formula for solving of quadratic equations.

(c) Consider a Sylow 2-subgroup H of G = G(K/R) and its fixed field KH over R. Use (a),
and then use Ex. 12.3 in combination with (b).

Problems of Chapter 14

14.1 (a) The side of the new cube has length 3
√

2. Use T.14.1 and [Q( 3
√

2) : Q] = 3.

(b) We have to construct the point (cos 20◦, sin 20◦). From cos 3α = 4 cos3 α − 3 cosα, we
get that cos 20◦ satisfies the equation 4x3 − 3x = 1

2 . Show that [Q(cos 20◦) : Q] = 3 and use
T.14.1.

158



(c) If the construction is possible, the point (0,
√
π) can be constructed from (0, 0), (1, 0).

Motivate that [Q(
√
π) : Q] = ∞ using the fact that π is a transcendental number (see

Chapter 4, p. 17 and Ex 4.16). Use T.14.1.

14.3 (a) Yes. The radius of the new circle is
√
r2
1 + r2

2, where r1 and r2 are the radii of the
two given circles.

(b) Sometimes. The radius of the new sphere satisfies the equation X3−r3
1−r3

2 = 0, where r1

and r2 are the radii of the two given spheres. For example, if r1 = r2 = 1, then a construction
is impossible, but if r1 = 1, r2 = 3

√
7, then it is possible (use T.14.1).

14.4 Yes. The side of the square is x =
√

1
2ah, where a is the length of a side of the triangle

and h the corresponding hight – both a and h are given.

14.5 No. The volume of a regular tetrahedron with side a is equal a3
√

2
12 . Thus the side of

the cube is x = 1
6√72

. Use T.14.1.

14.6 A regular polygon with n sides is constructible if and only if the angle 2π
n is con-

structible, which means that the point (cos 2π
n , sin

2π
n ) is constructible. Study the fields

L = Q(cos 2π
n , sin

2π
n ) and L(i) ⊇ Q(ε), where ε is a primitive n-th root of 1. Use T.14.1

and T.14.2 as well as the fact that [Q(ε) : Q] = ϕ(n) where ϕ is the Euler function (see
T.10.1).

14.7 (a) cos 72◦ =
√

5−1
4 ; (b) and (c): Use (a) and Ex. 14.6 (b).

14.8 (a) 1◦ = 2π
360 is not constructible by Ex. 14.6, since 360 = 23 · 32 · 5;

(b) 3◦ = 2π
120 is constructible by Ex. 14.6, since 120 = 23 · 3 · 5;

(c) 5◦ = 2π
72 is not constructible by Ex. 14.6, since 72 = 23 · 32.

14.9 For example, α = 2π
7 . Use Ex. 14.6 and the equality α

3 = 2(π3 − α).

Problems of Chapter 15

15.1 (a) Consider two cases: f(X) reducible or irreducible over K. Notice that ∆(f) =
g(α1)2(α2 − α3)2, when α1, α2, α3 are zeros of f(X) and g(X) = f(X)/(X − α1) = (X −
α2)(X−α3) has its coefficients in K(α1). Notice also that the Galois group of an irreducible
cubic equation has at least 3 and at most 6 elements (as a subgroup of S3 – see Ex. 6.1).

(b) Motivate that F (X1, X2, X3) has two different images ±F (X1, X2, X3) under the per-
mutations in G = S3, notice that GF = A3 and use the definition of rG,F (f). Apply T.15.2.

159



15.2 Motivate that F (X1, . . . , Xn) has two different images ±F (X1, . . . , Xn) under the
permutations in G = Sn, notice that GF = An and use the definition of rG,F (f). Apply
T.15.2.

15.3 Consider a factorization X4 +pX2 +qX+r = (X2 +aX+b)(X2 +a′X+b′). Compare
the coefficients on the left and on the right. How to express a, a′, b, b′ by p, q, r? Find a
polynomial with coefficients depending on p, q, r whose zero is a2.

15.4 (a) What are the possibilities for a in the factorization X4 + pX2 + qX + r = (X2 +
aX + b)(X2 + a′X + b′)?

15.5 (a) Check directly that the permutations in GF do not change F (X1, X2, X3, X4) and
that this polynomial has exactly 3 different images under the action of the permutations in
A4 (and S4).

(b) Use the definition rG,F (f) and the three different images of F (X1, X2, X3, X4) in order
to compute the resolvent rG,F (f). Use either the Vieta’s formulae for the zeros α1, α2, α3, α4

of f(X) or (a) in Ex 15.3.

15.6 Use Ex. 15.1 and Ex. 15.4 in order to study Kf through Kr(f) (but this needs some
effort, so if needed check a solution in the next chapter).

15.7 Consider a factorization f(X) = X4 + pX2 + qX + r = (X2− aX + b)(X2 + aX + b′),
where a, b, b′ ∈ K, δ = a2 − 4b and δ′ = a2 − 4b′ are not squares in K (since otherwise,
the polynomial f(X) has zeros in K). Compute r(f) and its zeros. Discuss two possibilities
depending on K(

√
δ) = K(

√
δ′) and K(

√
δ) 6= K(

√
δ′).

15.8 (a) This is true for both types of resolvents discussed in Ex. 15.5. If r(f)(T ) =
T 3 + 2pT 2 + (p2 − 4r)T − q2 = T 3 + 2pT 2 + (p2 − 4r)T = T (T 2 + 2pT + p2 − 4r), then one
zero is T = 0 and the remaining two are −p±2

√
r. If r(f)(T ) = T 3−pT 2−4rT +4pr−q2 =

T 3 − pT 2 − 4rT + 4pr = (T − p)(T 2 − 4r), then the zeros are p and ±2
√
r. Use Ex. 15.6(a)

in order to express the discriminant by the coefficients.

(b) Use directly Ex. 15.6(b).

15.9 Use Ex. 15.6 in order to construct suitable examples. For example, the Galois group
of X4 +X + 1 is S4, X4 + 3X + 3 is D4, X4 + 5X + 5 is C4, X4 + 8X + 12 is A4 and X4 + 1
is V4.

15.10 (a) Use T.8.2 to represent k′ = k(θ) for some θ and notice that K ′ = K(θ). If
[k′ : k] = m, show that 1, θ, . . . , θm−1 form a basis of K ′ over K. Map any automorphism of
k′ over k on the automorphism of K ′ over K having the same effect on θ – use Ex. 6.1.

(b) The resolvent is rG,F (f)(X) = X2 + p(Y1 + Y2)X + (p2 − 2q)Y1Y2 + q(Y 2
1 + Y 2

2 ). The
resolvet is reducible if and only if its discriminant ∆(rG,F (f)) = (p2 − 4q)(Y1 − Y2)2 = 0,
that is, p2 − 4q = 0 (which could be, of course, expected).
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15.11 Consider reductions modulo prime numbers: (a) 2, 3, 5; (b)2, 3, 23 (14 is a zero modulo
23); (c) 3, 7, 23; (d) 3, 13, 17 (or Eisenstein’s Criterium instead of reduction modulo 3). The
discriminant is 28 · 56 · 114.

15.12 (a) Choose a prime number p > n−2 (n > 2) and three polynomials of degree n such
that the first is irreducible over F2, the second is a product of an irreducible polynomial of
degree n−1 by a first degree polynomial over F3, and the third is a product of an irreducible
quadratic polynomial by n−2 different first degree polynomials. Use the Chinese Remainder
Theorem A.5.1 in order to show that there is a polynomial f(X) ∈ Z[X], which has the
chosen polynomials as reductions modulo 2,3 and p. Use T.15.4 and A.9.4 in order to show
that the Galois group of f(X) is Sn.

(b) Follow the prescription in (a) for n = 6, 8.
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APPENDIX: Groups, rings and fields

A.1 Equivalence relations

A relation on a set X is any subset R of the product X × X = {(x, y)|x, y ∈ X}. For
example, the relation “less or equal” on the set of real numbers is the subset R ⊂ R × R
consisting of all pairs (x, y) such that x ≤ y. If we don’t have any special reason to use a
specific notation for a relation, we shall write x ∼ y when x, y ∈ X are in a relation R on
X, that is, (x, y) ∈ R.

A.1.1 Definition. We say that a relation R on X is an equivalence relation if it is reflexive,
symmetric and transitive, that is, if for x, y, z ∈ X, we have

(a) x ∼ x (reflexivity);

(b) if x ∼ y, then y ∼ x (symmetry);

(c) if x ∼ y and y ∼ z, then x ∼ z (transitivity).

An equivalence class [x] of x ∈ X with respect to an (equivalence) relation R is the set of all
x′ ∈ X, which are related to x with respect to this relation, that is, [x] = {x′ ∈ X|x′ ∼ x}
(in terms of pairs, [x] = {x′ ∈ X|(x′, x) ∈ R}). Every element belonging to an equivalence
class is called its representant.

The equivalence relations play a very important role, since they split all the elements of
X into equivalence classes so that every class contains elements with some special property
(“relatives” to a fixed x ∈ X):

A.1.2 Proposition. The equivalence classes of an equivalence relation on X form a parti-
tion of X, that is, every element of X belongs to an equivalence class and different equivalence
classes are disjoint.

Proof. Every element of x ∈ X belongs to an equivalence class – its own class [x]. If [x1]
and [x2] are two equivalence classes with a common element x, then x1 ∼ x, x2 ∼ x, which



implies that x1 ∼ x2 by symmetry and transitivity. If now y ∈ [x1], then y ∼ x1, so x1 ∼ x2

implies that y ∼ x2, that is, y ∈ [x2]. In the same way, if y ∈ [x2], then y ∈ [x1]. Thus
[x1] = [x2], which means that two equivalence classes with at least one common element
already coincide. Hence different equivalence classes can not have any element in common,
that is, they are disjoint. �

In general, if X is any set, then its partition is a family Xi of subsets of X (for i in an index
set) which cover X (that is, X =

⋃
Xi) and are disjoint (that is, Xi ∩ Xj = if i 6= j). It

is clear that any partition defines an equivalence relation on X, when we declare that two
elements are equivalent when they are in the same subset Xi. Of course, the equivalence
classes are just the sets Xi. Thus essentially, the notion of equivalence relation is exactly the
same as the notion of partition.

In this book, we meet several examples of equivalence relations, so we mention here only
one, which is very important.

A.1.3 Exmple. Let X = Z be the set of integers and let n 6= 0 be a fixed integer. Define
R as the set of all pairs of integers (x, y) such that x, y give the same residue when divided
by n. We check immediately that it is an equivalence relation on Z. An equivalence class
[x] consists of all integers, which give the same residue when divided by n. Since there are
exactly n possible residues 0, 1, . . . , n−1, we get that there are exactly n different equivalence
classes represented by these residues. This set of equivalence classes [0], [1], . . . , [n − 1] is
often denoted by Zn and is called the set of residues modulo n. Very often the notation [a]
is simplified to a with no risk of confusion, and we write Zn = {0, 1, . . . , n− 1}. The set Zn
inherits also addition and multiplication (modulo n) from Z, which makes it to a ring (see
below in connection with the notions of the quotient group and quotient ring.

A.2 Groups

A group is a set G with a binary operation, which maps every pair g1, g2 ∈ G onto g1g2 ∈ G
in such a way that

(a) (g1g2)g2 = g1(g2g3) (associativity),

(b) there is e ∈ G such that eg = ge = g for each g ∈ G (existence of a unit),

(c) for each g ∈ G there exists g′ ∈ G such that gg′ = g′g = e (existence of an inverse).

One checks easily that in any group, there is only one unit e and for each g there is only one
inverse g′. The inverse of an element g ∈ G is denoted by g−1. A group is called abelian if
it is commutative, that is, g1g2 = g2g1 for every pair g1, g2 ∈ G.

The multiplicative notation of the group operation is more convenient (more compact) and
it is usually used when general theory of groups is presented, but sometimes the group
operation is denoted as addition and then the binary operation maps a pair g1, g2 ∈ G onto
g1 + g2 ∈ G. The associativity means then that (g1 + g2) + g3 = g1 + (g2 + g3), the unit
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(rather called zero) is usually denoted by 0, and the inverse of g ∈ G is then called the
opposite element and is denoted by −g.

Most of the groups considered in this text are finite, that is, G has finitely many elements. If
G is finite, then its number of elements is denoted by |G| and called the order of the group.
If G has infinitely many elements, we often write |G| =∞.

A subgroupH ofG is a nonempty subset ofG which also is a group when the binary operation
is restricted to it. A nonempty subset H of G is a subgroup if and only if h1h2 ∈ H for each
pair h1, h2 ∈ H and h−1 ∈ H whenever h ∈ H. In fact, the associativity holds as it holds in
G and the unit element is in H as e = hh−1 for any h ∈ H. For a finite subset of a group,
the situation is a little better:

A.2.1 Proposition. If H is a finite subset of a group G, then it is a subgroup if and only
if h1h2 ∈ H whenever h1, h2 ∈ H.

Proof. We have to show that h−1 ∈ H when h ∈ H. All powers hn when n = 1, 2, . . . are
in H and since H is finite, they can not be all different. Thus there exists m < n such that
hm = hn, which gives hn−m = e in G. But this equality says that h−1 = hn−m−1 ∈ H. �

If g ∈ G, then the powers of g are defined in the usual manner, that is, gn as a product of n
factors g, when n > 0 and of −n factors g−1 when n < 0. We define g0 = e. If g1, . . . , gk ∈ G,
then the least subgroup of G containing these elements (the intersection of all subgroups
containing them) is denoted by 〈g1, . . . , gk〉 and is called the subgroup of G generated by
g1, . . . , gk. It is not difficult to see that this subgroup consists of all possible products of
powers gn1

i1
. . . gnrir , where 1 ≤ i1, . . . , ir ≤ k and the exponents n1, . . . , nr are arbitrary

integers. In particular, the group generated by one element g ∈ G is 〈g〉 and consists of
the powers gn where n is an integer. This group is called cyclic (generated by g). Its order
is called the order of g, which is denoted by o(g). If g0 = e, g, . . . , gn−1 are all different
and gn is equal to one of these powers, then it is easy to check that it must be e and
〈g〉 = {e, g, . . . , gn−1}. Thus the order of g is the least positive integer n such that gn = e.
Notice that if gN = e and o(g) = n, then n | N . In fact, if N = qn + r, where 0 ≤ r < n,
then e = gN = gqn+r = gr, which implies that r = 0, since r < n.

A.2.2 Let G = 〈g〉 = {e, g, . . . , gn−1}, gn = e, be a cyclic group of order n.

(a) The element gk for 0 < k < n is a generator of G if and only if gcd(k, n) = 1, so G has
ϕ(n) generators, where ϕ is Euler’s totient function (see p. 256).

(b) For every divisor d of n, the element g
n
d generates a subgroup of order d and such a

subgroup is unique.

Proof. (a) If gk generates G, then there is an integer l such (gk)l = g, that is, gkl−1 = e.
Since the order of g is n, we have n | kl− 1, which shows that n and k are relatively prime,
that is, gcd(k, n) = 1 (if d is a common divisor of n and k, then d must divide 1).
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Conversely, if k and n are relatively prime, then gcd(k, n) = 1 = kl + nq for some integers
l, q. Hence (gk)l = g1−nq = g as gn = e. This shows that a power of gk equals g, so the
powers of gk generate G.

(b) Let as before G = 〈g〉 and let H be a subgroup of G. Let m be the least positive power
of g such that h = gm ∈ H. If gM ∈ H for some integer M , then m | M , since otherwise
M = mq + r, where 0 < r < m and gM = gmq+r = gr ∈ H, which contradicts the choice
of m. Thus gn ∈ H implies that n = md and we have H = 〈h〉 = {e, h, . . . , hd−1}, since
H consists of some powers of g and all these powers have exponents divisible by m. Thus
the order d of H ⊆ G uniquely defines m = n/d and consequently the subgroup H of G is
uniquely defined by its order d. �

Notice that the group Zn with addition modulo n (see A.1.3) is cyclic of order n, since 1
is its generator. According to A.2.2 this group has ϕ(n) generators and k is one of them if
and only if gcd(k, n) = 1.

Cyclic subgroups are generated by one element of the group. If A is any subset of G, then
there is the least subgroup of G containing A – the intersection of all subgroups of G
containing A. Such a subgroup consists of all finite products a1 · · · ak, where each ai or its
inverse is in A. In fact, a product of two such products and the inverse of one such product
keep the required type. If A = {a1, . . . , ak}, ai ∈ G is a finite set, then the least subgroup of
G containing A is denoted by 〈a1, . . . , ak〉. If G = 〈a1, . . . , ak〉, then we say that the group
G is generated by a1, . . . , ak and these elements are called generators of G. Notice that
cyclic groups are the groups with one generator. Every equality such that a product of the
generators or they inverses is equal to the unity is called a relation between the generators.
For example, if G = 〈g〉 is a cyclic group of order n, then gn = e is a relation for the
generator g. If group is not cyclic, for example G = S3, then the number of generators must
be at least 2. In the case of G = S3, we have G = 〈a, b〉, where a3 = 1, b2 = 1 and ba = a2b
(that is, a2ba−1b−1 = 1), where a = (1, 2, 3) and b = (1, 2) (as a, b one can choose any
element of order 3 and an element of order 2). Using generators and relations between them
gives a very convenient way to describe groups, which is often used in different computer
packages. A group G is defined by a set of its generators a1, . . . , ak and relations between
them if every group with some generators b1, . . . , bk satisfying the same relations (with ai
replaced by bi) is isomorphic to G.

As an example consider the symmetry group of a regular polygon with n sides denoted
usually by Dn (n ≥ 3), whose order is 2n. It consists of n rotations of the polygon and n
symmetries. As for S3 (which is D3), we can choose two elements a, b, where the first is the
rotation by the angle 2π

n and b is any symmetry of the polygon. Since the rotation a has
order n, it generates a cyclic subgroup Cn of Dn of order n. A symmetry b has order 2 and
is not in Cn, so the products akb for k = 1, . . . , n give n different elements (symmetries) in
the group Dn. Notice that the relations defining Dn generated by a, b are an = 1, b2 = 1
and bab = ak for some k (depending on the choice of the symmetry b – the simplest choice
is k = −1, when the relation is abab = 1).

If A,B are two subsets of a group G, then AB denotes the set of all products ab, where
a ∈ A and b ∈ B. Such a product is of course associative, that is, A(BC) = (AB)C for any
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subsets A,B,C of G. Notice that if H is a subgroup of G, then HH = H. If in particular,
we take A = {g} and B = H is a subgroup of G, then the product gH is called a left coset
of H in G. Similarly, the product Hg is a right coset of H in G. Here follow some simple,
but important properties of cosets:

Notice that if H is a subgroup of G and g ∈ G, then a coset gH may be represented in
different ways, that is, we may have gH = g′H for g′ ∈ G different from g. We say that
g represents gH and it may happen that also g′ is a representant of the same coset. This
happens precisely when g′ belongs to the coset of g, that is, if and only if g′ ∈ gH. In fact, if
g′H = gH, then evidently g′ = gh for some h ∈ H, so g′ ∈ gH and, conversely, if g′ = gh for
some h ∈ H, then g′H = ghH = H, since hH = H when h ∈ H. The equality g′ = gh for
some h ∈ H is equivalent to g−1g′ ∈ H. In additive notation, the equality g+H = g′+H is
equivalent to g′ = g+h for some h ∈ H or g′−g ∈ H. Notice that (left) cosets are equivalence
classes of the equivalence relation on G such that g ∼ g′ if and only if g−1g′ ∈ H.

A.2.3 Let H be a subgroup of a group G.

(a) gH = H if and only if g ∈ H;

(b) If g′ ∈ gH, then g′H = gH (every element in a coset represents it);

(c) g′H = gH if and only if g−1g′ ∈ H (additively: g+H = g′+H if and only if g′−g ∈ H);

(d) g ∈ gH (every element in G belongs to a coset);

(e) If g ∈ g1H ∩ g2H, then g1H = g2H (two different cosets are disjoint);

(f) If H is finite, then |gH| = |H| for any g ∈ G.

(g) The left (or right) cosets of H in G form a partition of the set G.

Proof. (a) If gH = H, then ge = g belongs to H. If g ∈ H, then gH ⊆ H and, conversely,
H ⊆ gH, since the equation h = gx, h ∈ H implies x = g−1h ∈ H.

(b) If g′ = gh, h ∈ H, then g′H = ghH = gH by (a).

(c) We have g′H = gH if and only if g−1g′H = H if and only if g−1g′ ∈ H by (a).

(d) We have g = ge, e ∈ H.

(e) If g ∈ g1H ∩ g2H, then g1H = g2H = gH by (b).

(f) If H is finite and H = {h1, . . . , hm}, then gH = {gh1, . . . , ghm} and all products ghi are
different, since ghi = ghj implies hi = hj (multiply from left by g−1).

(g) This is clear from (d) and (e) and means that any subgroup defines an equivalence
relation on the set G by declaring two elements equivalent if and only if they belong to the
same coset. �

A.2.4 Lagrange’s Theorem. The order of a subgroup in a finite group divides its order.
In particular, the order of an element in a finite group divides its order.
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Proof. Let |G| = n and |H| = m. The group G is a union of the left cosets of H in G
by A.2.3(d). These cosets are disjoint A.2.3(e) and each of them consists of m elements
A.2.3(e). Hence n = mi, so m divides n. �

The number of cosets of a subgroup H in a group G is called the index of H in G and is
denoted by [G : H]. This number is finite when G is finite, but it may be also finite when G
is infinite. For a finite group G, we have [G : H] = |G|/|H| according to the argument given
in the proof of Lagrange’s theorem. Notice that in a finite group, the number of left cosets
of a subgroup is equal to the number of its right cosets, which easily follows from Lagrange’s
theorem by noting that the argument in the proof works equally well for right as for left
cosets. In general it is easy to construct a bijection between the sets of right and left cosets.
Sometimes, we write [G : H] = ∞ when there are infinitely many cosets of H in G. Since
usually what can be said about right cosets can be also said about the left, we shall use the
term coset alone meaning either type of them, but of course fixed in any statement about
them (like in the preceding statement). We prefer to use left cosets in different arguments
concerning one type of them.

Sometimes the cosets of a subgroup H in a group G form a group with respect to the
multiplication of subsets of G. The first condition to assure this is a property of H that
the product of any two cosets gHg′H is again a coset. When it happens, then this coset
must be gg′H (of course, gg′ ∈ gHg′H, so if the product gHg′H is a coset, it must be
gg′H by A.2.3). When a product of any cosets is a coset, then these cosets form a group,
since multiplication of cosets is associative, the unit is the coset H and the inverse of gH
is g−1H. This group is then called the quotient group of G modulo H and is denoted
by G/H. If G is finite, then its order is the number of cosets of H in G, that is, the index
of H in G. Thus for the orders, we have |G/H| = |G|/|H|, which in some way motivates
the terminology. The subgroups for which the above construction of the quotient group is
possible are called normal subgroups. More exactly, we have the following characterization
of normal subgroups:

A.2.5 Each of the following equivalent conditions defines a normal subgroup H of G:

(a) The product of any two cosets of H in G is a coset;

(b) For each g ∈ G the left and the right cosets of g coincide, that is, gH = Hg;

(c) For each g ∈ G, we have g−1Hg ⊆ H.

Proof. First, we prove that (a) implies both (b) and (c), which are equivalent. Since the
product of cosets is a coset, we have gHgH = g2H (as we know, the product is the coset
containing g2, so it must be g2H). Thus for every h ∈ H, there exists h′ ∈ H such that
ghg = g2h′, that is, hg = gh′. Hence for every g ∈ H, we haveHg ⊆ gH, that is, g−1Hg ⊆ H,
which is (c). Since (c) holds for any g ∈ G, we can replace g by g−1 and we get gHg−1 ⊆ H.
Now notice that this inclusion is the same as gH ⊆ Hg and g−1Hg ⊆ H as Hg ⊆ gH, so
gH = Hg, which is (b). Thus (c) implies (b), and of course (b) implies (c).

Now (b) implies that gHg′H = gg′HH = gg′H, so we get (a). �
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Notice that if g ∈ G, then the mapping x 7→ gxg−1 for x ∈ G is called conjugation by g.
Using this terminology, A.2.5(c) says that H is a normal subgroup of G if and only if it
is invariant with respect to conjugation by any element of G. The fact that H is a normal
subgroup of G is often denoted by H C G.

If H is any subgroup of a group G, then it is easy to check that N (G) = {g ∈ G|gHg−1 ⊆ H}
is a group containing H in which H is of course normal by A.2.5(c). The group N (G) is
called the normaliser of H in G and is the biggest subgroup of G in which H is normal.
Of course, it may happen that N (H) = H or N (H) = G and in the last case, the subgroup
H is normal in G.

In G = Z is the group of integers with respect to the addition, then any subgroup is the
set of all multiples 〈n〉 of a fixed integer n. The quotient group Z/〈n〉 consists of the cosets
a+ 〈n〉 and each such coset consists of all b = a+qn for integers q, that is, b−a = qn. Hence
a coset consists of all integers giving the same residue as a when divided by n. It is possible
to choose the least residue 0 ≤ r < n, that is, each coset has a representative r satisfying
this restriction. Hence all cosets are r + 〈n〉(= r + Zn), where r = 0, 1, . . . , n − 1. In fact,
the group Z/〈n〉 is simply the set of equivalence classes of the equivalence relation defined
in A.1.3 (the same as above defining the cosets modulo 〈n〉) and denoted by Zn.

If H is a normal subgroup of G, then we have a natural function ι : G → G/H such that
ι(g) = gH mapping any element g ∈ G onto its coset. This function has a multiplicative
property: ι(gg′) = ι(g)ι(g′), since gg′H = gHg′H. In general, a function ϕ : G → G′ is
called homomorphism if this property holds, that is, ϕ(gg′) = ϕ(g)ϕ(g′) for any g, g′ ∈ G.
The homomorphism ι : G→ G/H, where H is normal in G is called the natural surjection
(defined by a normal subgroup H). Notice that the elements mapping on the unit of G/H,
that is, on H, are those g ∈ G for which ι(g) = gH = H. The equality, gH = H is equivalent
to g ∈ H (see A.2.3(a)), so the kernel of the natural homomorphism of G onto G/H is H.

In general, the kernel of a group homomorphism ϕ : G → G′ is the set of elements in
G whose image in G′ is the unit element e′. The kernel is denoted by Ker(ϕ), that is,
Ker(ϕ) = {g ∈ G|ϕ(g) = e′}. Notice that the kernel of a homomorphism is a normal
subgroup of G. In fact, if g, g′ ∈ Ker(ϕ), then ϕ(gg′) = e′, so gg′ ∈ Ker(ϕ). We have also
g−1 ∈ Ker(ϕ) if g ∈ Ker(ϕ), since ϕ(g−1) = ϕ(g)−1. The last equality follows from the fact
that ϕ(e) = e′ (since ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e)) and ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(e) = e′,
that is, ϕ(g−1) is the inverse of ϕ(g). Thus the kernel H = Kerϕ of a homomorphism
ϕ : G → G′ is a subgroup of G. In order to check that H is normal, we have to check that
ghg−1 ∈ H whenever h ∈ H. This follows immediately, since ϕ(g−1hg) = ϕ(g−1)ϕ(h)ϕ(g) =
ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(e) = e′.

A homomorphism ϕ : G → G′ is injective, that is, the images of different elements are
different, if and only if Kerϕ = 〈e〉. In fact, we have ϕ(g) = ϕ(g′) if and only if ϕ(g′g−1) = e′,
that is, g′g−1 ∈ Kerϕ. Hence, if Kerϕ = 〈e〉, then g′g ∈ Kerϕ gives g′g = e, that is, g′ = g
and, conversely, if the mapping ϕ is injective and g ∈ Kerϕ, then ϕ(g) = e′ = ϕ(e) gives
g = e, that is, Kerϕ = 〈e〉. The image of the homomorphism ϕ, that is, ϕ(G) is often denoted
by Imϕ. A homomorphism ϕ : G → G′ is called isomorphism if it is bijective, that is, it
is injective (Kerϕ = (e)) and surjective (Imϕ = ϕ(G) = G). An isomorphism ϕ : G → G
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is called an automorphism of G. We have met several times the inner automorphisms
ϕg : G→ G defined by the elements g ∈ G as conjugation ϕg(x) = gxg−1 for x ∈ G.

The quotient group G/Kerϕ is closely related to the image of G in G′. In fact, all elements in
the coset gH, where H = Kerϕ have the same image in G′ since ϕ(gh) = ϕ(g)ϕ(h) = ϕ(g).
Hence we can define a function Φ : G/H → G′ mapping the whole coset gH onto ϕ(g), that
is, Φ(gH) = ϕ(g). It is easy to check that this function is an isomorphism from G/H to G′

and its image is, of course, ϕ(G). In fact, using the fact that H is normal, we have

ϕ(gHg′H) = ϕ(gg′H) = ϕ(gg′) = ϕ(g)ϕ(g′) = ϕ(gH)ϕ(g′H),

so Φ is a homomorphism of G/H into G′. But KerΦ = {gH ∈ G/H|Φ(gH) = ϕ(g) = e′} =
H, so the kernel of Φ is the unit element of G/H. Thus Φ is injective, so it is an isomorphism
of G/Kerϕ with ϕ(G). This is an important fact which is very often called the main theorem
on group homomorphisms:

A.2.6 If ϕ : G → G′ is a group homomorphism, then the kernel H = Kerϕ is a normal
subgroup of G and the function Φ(gH) = ϕ(g) is an injection ϕ∗ : G/Kerϕ→ G′. Thus ϕ∗

is an isomorphism of the groups G/Kerϕ and Imϕ. In particular, if G is finite, we have
|G| = |Kerϕ||Imϕ|.

The homomorphism ϕ∗ in A.2.6 is a special case of a more general context when a group
homomorphism induces a homomorphism of quotient groups. Let H be a normal subgroup
of G, and H ′ a normal subgroup of G′. We say that a group homomorphism ϕ : G → G′

is a homomorphism of pairs if ϕ(H) ⊆ H ′ – the pair G ⊇ H is mapped into the pair
G′ ⊇ H ′. The situation like this is very common and we meet it several times in Chapter 12
where we use the following very important consequence of it:

A.2.7 Group homomorphism of pairs. Let ϕ : G → G′ be a group homomorphism of
the pair G B H into the pair G′ B H ′. Then there exist an induced homomorphism

ϕ : G/H → G′/H ′

such that ϕ(gH) = ϕ(g)H ′. Moreover, we have Kerϕ = ϕ−1(H ′)/H and ϕ(G) = ϕ(G)H ′/H ′.

Proof. We have only to check that the function ϕ is correctly defined, since we see imme-
diately that if the definition is correct, then

ϕ(g1Hg2H) = ϕ(g1g2H) = ϕ(g1g2)H ′ = ϕ(g1)ϕ(g2)H ′ = ϕ(g1)H ′ϕ(g2)H ′ = ϕ(g1H)ϕ(g2H).

In order to check the definition of ϕ, we must show that if g1H = g2H, then ϕ(g1)H ′ =
ϕ(g2)H ′, that is, the definition is independent of the choice of a representant of a coset
of H. But g1H = g2H is equivalent to g−1

1 g2 ∈ H, which implies ϕ(g−1
1 g2) ∈ H ′, so

ϕ(g1)−1ϕ(g2) ∈ H ′, which gives ϕ(g1)H ′ = ϕ(g2)H ′, that is, ϕ(g1H) = ϕ(g2H). 2
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A.2.8 Let ϕ : G→ G′ be a group homomorphism with kernel N = Kerϕ.

(a) The image ϕ(H) of a subgroup H of G is a subgroup of G′ and the inverse image ϕ−1(H ′)
of any subgroup H ′ of G′ is a subgroup of G containing N . We have ϕ(ϕ−1(H ′)) = H ′ and
ϕ−1(ϕ(H)) = NH. The inverse image ϕ−1(H ′) is normal in G if H ′ is normal in G′.

(b) If ϕ is surjective (so G′ ∼= G/N), then there is a one-to-one correspondence between the
subgroups H ′ of G′ and the subgroups H of G containing N in which H ′ corresponds to
the inverse image ϕ−1(H ′) and H corresponds to its image ϕ(H). In this correspondence,
normal subgroups of G containing N correspond to normal subgroups of G′.

Proof. (a) If H ′ is a subgroup in G′, then one checks easily that ϕ−1(H ′) is a subgroup of
G. Of course, the group H = ϕ−1(H ′) contains N , which is the inverse image of the identity
e′ of G′. If H ′ is normal in G′, then for any g ∈ G and h ∈ G such that ϕ(h) ∈ H ′, we have
ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1 ∈ H ′, since H ′ is normal in G′. Hence ghg−1 ∈ ϕ−1(H ′), so
this subgroup of G is normal.

The equality ϕ(ϕ−1(H ′)) = H ′ is evident (for any function between sets G,G′ not just
groups). In order to check the second equality ϕ−1(ϕ(H)) = HN , take g ∈ ϕ−1(ϕ(H)).
Then ϕ(g) = ϕ(h) for some h ∈ H, so ϕ(gh−1) = e′. Hence, we have gh−1 ∈ N , which
means that g ∈ NH. Conversely, if g ∈ NH, then g = nh for some n ∈ N,h ∈ H. Thus
ϕ(g) = ϕ(nh) = ϕ(h) ∈ ϕ(H), so g ∈ ϕ−1(ϕ(H)).

(b) Let XN (G) denote the set of all subgroups of G containing N , and let X(G′) denote the
set of all subgroups of G′. We have two functions: Φ(H) = ϕ(H) mapping the subgroups
of G on subgroups in G′ (see (a)), and Ψ(H ′) = ϕ−1(H ′) mapping the subgroups in G′ on
subgroups in G containing N . Now Φ(Ψ(H ′)) = ϕ(ϕ−1(H ′) = H ′ by (a), and Ψ(Φ(H)) =
ϕ−1(ϕ(H)) = NH = H by (a) and the assumption N ⊆ H, which implies that NH = H.
Hence both compositions Φ ◦ Ψ and Ψ ◦Φ give identities, so both are bijections between the
corresponding sets XN (G) and X(G′). �

A.2.9 Let G be a finite abelian group. Then the exponent of G, that is, the least natural
number m such that gm = e for each element g ∈ G equals the maximal order n of the
elements of G. Moreover, m divides the order of G.

Proof. First we note that if g, h ∈ G are elements whose orders o(g) and o(h) are relatively
prime, then o(gh) = o(g)o(h). In fact, if r is the order of gh, then (gh)r = e gives (gh)ro(h) =
gro(h) = e. Hence o(g) | ro(h) and by the assumption, o(g) | r. Similarly, o(h) | r, so
o(g)o(h) | r. Since, of course, (gh)o(g)o(h) = e, we have r = o(g)o(h).

Now let n be the maximal order of elements in G and let g be an element of that order.
Assume that h is an element whose order does not divide n. Then GCD(o(h), n) = d and
n = da, o(h) = db, where GCD(a, b) = 1 and b > 1 (if b = 1 then the order of h divides n).
The order of gd equals a, and the order of hd equals b, so the order of gdhd equals ab. Thus
the order of gh equals dab = nb > n. This is a contradiction, since n was the maximal order
of the elements in G. Thus b = 1 and o(h) | n, so n is the exponent of G.
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The last statement is clear, since the order of every element of G divides the order of this
group, so in particular, the exponent divides this order. 2

A.2.10 A group G of order at least 2 has no nontrivial subgroups if and only if it is cyclic
of prime order.

Proof. If the order of G is a prime number p and H is its subgroup, then as the order of H
divides p by Lagrange’s theorem A.2.4, the order of H is 1 or p. Thus H is either the unit
subgroup or the whole group G.

Now assume that G has at least one element different from the unit and no nontrivial
subgroups. Take g ∈ G, g 6= e. The cyclic subgroup 〈g〉 of G is not nontrivial, so G = 〈g〉.
If the order of g is infinite, then G contains nontrivial subgroups e.g. 〈g2〉. Thus the order
of g is finite, say, n. If n is not a prime number, then n = kl, where k > 1, l > 1. Thus G
contains a nontrivial subgroup e.g. 〈gk〉. Hence n must be a prime number. 2

A group G without nontrivial normal subgroups is called simple. Simple groups are in
some sense building stones of all finite groups, since a group G having a nontrivial normal
subgroup N can be described in terms of N and G/N (even if such a description is usually
not “simple”). All simple groups were classified thanks to the efforts of many generations of
mathematicians. The classification was ready about 1980 and so far the presentations of it
take several thousands of pages. Those simple groups which we use are the alternate groups
An for n ≥ 5. Groups from A.2.10 which do not contain any subgroups are of course simple.
These are all simple abelian groups.

If G1 and G2 are two groups, then we can form a new group G1 ×G2, called their product,
which consists of all pairs (g1, g2), where g1 ∈ G1, g2 ∈ G2 with coordinate-wise operation,
that is, (g1, g2)(g′1, g

′
2) = (g1g

′
1, g2g

′
2).

There are two groups related to a given group G, which in some sense gives a measure of
non-commutativity of G. The first is the center C(G) of G consisting of those elements of
G, which commute with all elements in this group, that is, C(G) = {x ∈ G|∀g ∈ Gxg = gx}.
Of course, the center is a normal subgroup of G and the group is abelian exactly when
C(G) = G. The second group is the G′ of G (denoted also by [G,G]. If g1, g2 ∈ G, then g1g2

and g2g1 differ by an element c ∈ G such that g1g2 = cg2g1 (c “corrects” g2g1 to be the same
as g1g2). Of course, we have c = g1g2g

−1
1 g−1

2 . The element c is often denoted by [g1, g2] and
called the commutator of g1, g2. Notice that [g1, g2] = e precisely when g1, g2 commute.
The subgroup of G generated by all commutators of pairs g1, g2 ∈ G is denoted by G′ and
called the commutator group of G. The group G′ consists simply of all finite products of
commutators, since inverse of a commutator is a commutator: [g1, g2]−1 = [g−1

1 , g−1
2 ]. Notice

that the group G′ reduces to e if and only if all commutators are trivial, that is, the group
G is abelian.

The commutator subgroup G′ of G is normal. In fact, if c = [g1, g2] is a commutator and
g ∈ G, then gcg−1 = [gg1g

−1, gg2g
−1] is also a commutator, so conjugation by g maps any

product of commutators onto a product of commutators, so commutators are invariant with
respect to conjugation.
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The most important property of the commutator group G′ of G is the fact that the quotient
group G/G′ is abelian and that every normal subgroup N of G such that G/N is abelian
contains G′. This means that G/G′ is the biggest abelian quotient group of G (since N ⊇ G′,
we have an imbedding of the pair G′ ⊆ G into the pair N ⊆ G and as a consequence an
induced surjection of the quotient G/N onto the quotient G/G′ (see A.2.7).

A.3 Rings

A ring is a set R with two operations usually called addition ” + ” and multiplication ” · ”
such that R with respect to the addition is an abelian group, multiplication is associative
and addition is distributive with respect to multiplication, that is, a(b + c) = ab + ac and
(b+ c)a = ba+ ca for all a, b, c ∈ R. In this text, we always assume that R is commutative,
that is, ab = ba for all a, b ∈ R. We say that R is a ring with identity if there exists an
element 1 ∈ R such that 1a = a for all a ∈ R. It is easy to see that the identity 1 is unique
if it exists. In the sequel, we only consider rings with identity. A zero divisor in a ring R
is a nonzero element a ∈ R such that ab = 0 for some nonzero b ∈ R. A ring without zero
divisors is called integral domain. We will always assume that an integral domain has an
identity element 1. Thus, the ring Z is an integral domain, whereas the rings Zn of integers
modulo n are integral domains only when n is a prime number (see A.1.3). For example, in
Z4 = {0, 1, 2, 3}, we have 2 · 2 = 0.

A subring of a ring R is any nonempty subset R′, which is also a ring with respect to the same
addition and multiplication as in R. In practical terms, in order to check that a nonempty
subset R′ of R is a ring, it suffices to check that when a, b ∈ R′, then a+ b, ab,−a ∈ R′. All
other conditions in the definition of ring are automatically satisfied, since they are satisfied
in R.

If a ring R is a subring of ring S and α ∈ S, then R[α] denotes the least subring of S
containing R and α. It is easy to see that it consists of all sums r0 + r1α+ · · ·+ rnα

n, where
ri ∈ R and n is a nonnegative integer. For example, the ring of integers Z is a subring of the
complex numbers C and taking α = i, we get the ring Z[i]. This ring consists of all a + bi,
where a, b ∈ Z, since the equality i2 = −1 makes all powers of i with exponents bigger than
1 needless.

If R is a commutative ring with identity, then an element a ∈ R is called a unit (or an
invertible element) if there exists a′ ∈ R such that aa′ = 1. The element a′ is called an
inverse of a. All invertible elements form a group with respect to the multiplication in R,
which is often denoted by R∗. For example, we have Z∗ = {±1}, Z[i]∗ = {±1,±i}. In the ring
Zn the invertible elements form the group Z∗n consisting of all k such that gcd(k, n) = 1.
Its order is the value of Euler’s function ϕ(n) (see p.256). In fact, if gcd(k, n) = 1, then
kx+ ny = 1 for some integers x, y, so kx = 1 in Zn, that is, k is invertible. Conversely, if k
is invertible in Zn, then kx = 1 for some x ∈ Zn, so n|kx− 1, that is, kx− 1 = ny for some
y ∈ Z. Hence, gcd(k, n) = 1.

231



If R1 and R2 are rings, then it is possible to form a new ring R1 × R2 consisting of pairs
(r1, r2), where r1 ∈ R1 and r2 ∈ R2, which are added and multiplied coordinate-wise. This
ring is called the product of the two rings. Of course, it is possible to extend this definition to
any finite number of rings. If both rings has identity, then (1, 1) is the identity of the product.
For future use, observe that (r1, r2) is invertible if and only if r1 and r2 are invertible and
(R1 ×R2)∗ = R∗1 ×R∗2, where on the right hand side, we have the direct product of groups.

If R,R′ are rings, then a ring homomorphism is a function ϕ : R→ R′, which respects both
addition and multiplication, that is, ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b). If R,R′

are rings with identity, we shall also assume that a ring homomorphism maps the identity
in R onto the identity in R′. The kernel of ϕ is its kernel as a homomorphism of the additive
group R into the additive group R′, so Kerϕ = {a ∈ R|ϕ(a) = 0}. This set is not only a
subgroup of the additive group R, but it is a subring with a stronger property: if a ∈ Kerϕ
and b ∈ R, then ab ∈ Kerϕ. In fact, if ϕ(a) = 0, then ϕ(ab) = ϕ(a)ϕ(b) = 0 for any b ∈ R.
A subring I of R having this strong property for multiplication, that is, ab ∈ I whenever at
least one of the factors a, b ∈ R is in I is called ideal. Thus kernels of the homomorphisms of
R are ideals. In fact, every ideal is also a kernel of a homomorphism, which will be clear in a
moment. Notice that Kerϕ = {0} if and only if ϕ : R→ R′ is an injective function. In fact,
if ϕ is injective, than ϕ(a) = 0 = ϕ(0) implies that a = 0, that is, Kerϕ = {0}. Conversely,
assuming the last equality, we get from ϕ(a) = ϕ(b), which is the same as ϕ(a− b) = 0, that
a− b = 0, that is, a = b. This means that ϕ is injective.

In the ring of integers Z every ideal is the set of all multiples of any fixed integer n (see
A.3.2). Such an ideal is denoted by (n). If n = 1, we get the whole ring Z and for n = 0
the zero ideal (0) having only one element 0. Both these ideals are called trivial. In any ring
one can fix a finite number of elements a1, . . . , ak and consider all sums r1a1 + · · · + rkak,
where r1, . . . , rk ∈ R. It is easy to check that all such sums of products form an ideal I in
R. It is called the ideal generated by a1, . . . , ak and is denoted by (a1, . . . , an). The elements
a1, . . . , ak are called generators of I. An ideal may have many sets of generators. If there is
only one generator of an ideal I, that is, I = (a) for some a ∈ R, then I is called principal.
We have (a) = (b) if and only if a = bε and b = aη for some ε, η ∈ R. If R is an integral
domain and ab 6= 0, then these equalities imply εη = 1. Hence ε and η are units in R. In
general, two elements of a ring, which differ by a unit are called associated. We summarize:

A.3.1 Two elements a, b ∈ R in an integral domain R generate the same ideal, that is,
(a) = (b), if and only if they are associated. In particular, we have (a) = R if and only if a
is a unit.

A ring R is called a principal ideal ring if every ideal in R is principal. If moreover, there
are no zero divisors in R and an identity element 1, then it is called principal ideal domain
(PID). The following examples of such rings are very important:

A.3.2 The ring of integers Z and the polynomial rings K[X], where K is a field, are prin-
cipal ideal domains.
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Proof. Let I be an ideal in Z. The zero ideal is always principal and generated by 0, so
assume that I is nonzero. Let d be a nonzero integer in I with the least absolute value. If
a ∈ I, we use the division algorithm and get a = dq+r, where 0 ≤ r < |d|. But r = a−dq ∈ I,
so by the definition of d, we have r = 0. Hence each element of I is a multiple of d, that is,
I = (d) is principal.

Let now I be an ideal in K[X]. The zero ideal is always principal and generated by 0, so
assume that I is nonzero. Let d be a nonzero polynomial in I of the least possible degree.
If f ∈ I, we use the division algorithm and get f = dq + r, where −1 ≤ deg r < deg r. But
r = a−dq ∈ I, so by the definition of d, we have r = 0. Hence each element of I is a multiple
of d, that is, I = (d) is principal. �

In any ring R it is possible to consider the notion of divisibility saying that a ∈ R is divisible
by b ∈ R (notation: b | a) if there is c ∈ R such that a = bc. However, such a notion has
meaningful properties when R is an integral domain (there are no zero divisors in R), which
we will assume when discussing divisibility. A nonzero element a ∈ R is called irreducible
if it is not a unit and it is not a product of two non-units. We say that a ring is a unique
factorization domain (UFD) if it is an integral domain in which every nonzero element, which
is not a unit can be represented uniquely as a product of irreducible elements. Uniqueness
here means that if r ∈ R and

(UFD) r = a1 · · · ak = b1 · · · bl,

where ai, bj are irreducible and k, l ≥ 1, then k = l and it is possible to order the factors in
such a way that ai and bi are associated.

If a, b ∈ R, then we say that d ∈ R is a greatest common divisor (gcd) of a, b if d divides
both these elements and every common divisor of a and b divides d. If d exists, it is often
denoted by (a, b) or gcd(a, b). If ab 6= 0 and d exists then it is defined only up to a unit in
R. In fact, if d′ is also a greatest common divisor of a, b ∈ R, ab 6= 0, then by the definition,
we have d | d′ and d′ | d, that is, d′ = dε and d = d′η for some ε, η ∈ R. Hence, we have
εη = 1, so both these factors are units in R and (d′) = (d).

A dual to the notion of greatest common divisor is the notion of least common multiple
(denoted by lcm(a, b) or [a, b] for two integers a, b). If R is an integral domain, then a least
common multiple of two elements a, b ∈ R is an element m ∈ R, which is divisible by both
these elements and divides every element with this property. As for a greatest common
divisor, if m exists, it is unique up to a unit.

A.3.3 Let R be a principal ideal domain.

(a) Any two elements a, b ∈ R have a greatest common divisor and it is equal to any generator
d of the ideal (a, b) = (d).

(b) If a, b ∈ R and d = gcd(a, b), then there exist x, y ∈ R such that d = ax+ by.

(c) Any two elements a, b ∈ R have a least common multiple and it is equal to any generator
m of the ideal (a) ∩ (b) = (m) and (a, b)((a) ∩ (b)) = (ab), so that
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lcm(a, b) =
ab

gcd(a, b)
.

Proof. We prove simultaneously (a) and (b). Consider the ideal (a, b) in R. Since it is
principal, there exists d such that (a, b) = (d). Of course, we have d = ax + by for some
x, y ∈ R, which proves (b) when we show that d = gcd(a, b). But a, b ∈ (a, b) = (d), so d | a
and d | b. On the other hand, if d′ | a and d′ | b, then the equality d = ax + by shows that
d′ | d. Hence d really is a greatest common divisor of a, b.

(c) The ideal (a) ∩ (b) is principal and if m is its generator, then (m) ⊆ (a) and (m) ⊆ (b),
so a | m and b | m. On the other hand, if a | m′ and b | m′ for some m′ ∈ R, then (m′) ⊆ (a)
and (m′) ⊆ (b), so (m′) ⊆ (a) ∩ (b) = (m). This implies that m | m′. Hence , m is a least
common multiple of a and (b).

Now we prove of formula relating lcm(a, b) to gcd(a, b). Denote

d′ =
ab

lcm(a, b)
.

We want to show that d′ = d (up to an invertible element). The equality above implies that:

a

d′
=

lcm(a, b)

b
and

b

d′
=

lcm(a, b)

a

so d′ divides both a and b (since the right hand sides are elements of R). Thus d′ as a
common divisor to a and b divides the greatest common divisor d. Conversely, both a and
b divide ab

d , since it is both a multiple of a as a bd and b as a
db. Thus lcm(a, b) divides ab

d ,

which means that the quotient ab
d : lcm(a, b) = d′

d is an element of R. Hence, we get that d
divides d′. Since both d′ | d and d | d′, these two elements are associated. �

Sometimes, the elements x, y in A.3.3(b) may be found effectively. In particular, it is possible
when R is the ring of integers or a polynomial ring K[X] over a field K using the Euclidean
algorithm. Since the last nonzero remainder in the Euclidean algorithm for a, b ∈ R is
a greatest common divisor of these two elements, it is possible to express it as a linear
combination of a, b tracing back all the steps of this procedure. In these two most common
cases, that is, R = Z or R = K[X], both gcd(a, b) and lcm(a, b) are chosen in a unique way.
In Z, the units are ±1, and the standard choice is gcd(a, b) and lcm(a, b) as positive integers.
In R = K[X] the units are all nonzero constants and in any class of associated elements it
is possible to choose monic polynomial (that is, with highest coefficient 1). Thus gcd(a, b)
and lcm(a, b) are chosen uniquely as monic polynomials.

Any ideal I in a ring R forms a subgroup of the additive group R, which by definition is
abelian. Therefore, we can form the quotient group R/I with respect to addition, since I is
a normal subgroup of the additive group R. But R/I inherits a ring structure from R when
multiplication of the cosets a+I, b+I, a, b ∈ R is defined by the equality (a+I)(b+I) = ab+I.
Here it is necessary to know that the result of multiplication of a+I and b+I does not depend
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on the representation of cosets by the representants a, b. In fact, we may have a+ I = a′+ I
and b + I = b′ + I for some a′, b′ ∈ R. Then our multiplication is correctly defined if
ab+I = a′b′+I. But a+I = a′+I if and only if a′−a ∈ I and similarly, b+I = b′+I if and only
if b′−b ∈ I according to the properties of cosets in groups. Thus a′ = a+i and b′ = b+j, where
i, j ∈ I and a′b′−ab = ib+ja+ij ∈ I, so a′b′+I = ab+I. The ring R/I is called the quotient
ring of R modulo I. As for groups, we have a natural surjection ι : R → R/I mapping an
element a ∈ R onto the coset a+I ∈ R/I. This mapping is not only a group homomorphism,
but also a ring homomorphism, since ι(ab) = ab+ I = (a+ I)(b+ I) = ι(a)ι(b). Its kernel is
the set of a ∈ R such that ι(a) = a+ I = I, that is, a ∈ I. Thus Ker ι = I, which shows that
every ideal I really is a kernel of a ring homomorphism – namely, the kernel of the natural
surjection ι : R→ R/I.

If ϕ : R → R′ is any ring homomorphism and I = Kerϕ its kernel, then there is a similar
relation between the quotient R/I and the image ϕ(R) as for the group homomorphisms,
since ϕ is a group homomorphism of R into R′ considered as additive groups and I is its
kernel. The only new ingredient is the presence of multiplication and the mapping Φ : R/I →
R′, where Φ(a + I) = ϕ(a) is not only a group isomorphism of the quotient R/I onto the
image ϕ(R) but also a ring isomorphism. In order to check this, we only need to note that

Φ((a+ I)(b+ I)) = φ(ab+ I) = ϕ(ab) = ϕ(a)ϕ(b) = Φ(a+ I)Φ(b+ I).

Thus we can summarize these facts in what is called the main theorem on ring homomor-
phisms:

A.3.4 If ϕ : R → R′ is a ring homomorphism, then the kernel I = Kerϕ is an ideal of R
and the function Φ(a+ I) = ϕ(a) is a ring isomorphism of R/Kerϕ and Imϕ.

A.3.5 Let ϕ : R→ R′ be a ring homomorphism with kernel I = Kerϕ.

(a) The image ϕ(S) of a subring S of R is a subring of R′ and the inverse image ϕ−1(S′)
of any subring S′ of R′ is a subring of R containing I. We have ϕ(ϕ−1(S′)) = S′ and
ϕ−1(ϕ(S)) = S + I. The inverse image ϕ−1(I ′) is an ideal in R if I ′ is an ideal in R′.

(b) If ϕ is surjective (so R′ ∼= R/I ), then there is a one-to-one correspondence between the
ideals I ′ of R′ and the ideals I of R containing I in which I ′ corresponds to the inverse
image ϕ−1(I ′) and I to its image ϕ(I).

If R is a ring and I, J its ideals, then it is possible to form theirs sum I + J and product
IJ . The sum is simply the set of all sums i + j, where i ∈ I and j ∈ J . It is easy to check
that all such sums form an ideal. The product IJ is defined as the set of all finite sums of
products ij, where i ∈ I and j ∈ J . Here also it is evident that such finite sums of products
form an ideal. This ideal IJ is in fact contained in the ideal I ∩ J . If R is a principal ideal
ring and I = (a), J = (b), then I +J = (a, b) = (gcd(a, b)) and IJ = (ab). As we know from
A.3.3(c), we have (I + J)(I ∩ J) = IJ , so if I + J = R, then I ∩ J = IJ . Two ideals I, J
in any ring are called relatively prime if I + J = R. This condition simply means that
1 = i + j, where i ∈ I and j ∈ J (since every ideal which contains 1 is equal to R). Notice
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that if I is relatively prime with J and J ′, then it is also relatively prime with JJ ′. in fact,
I + J = R and I + J ′ = R imply that i + j = 1 and i′ + j′ = 1 for i, i′ ∈ I, j ∈ J , j′ ∈ J ′.
Thus ii′ + ij′ + i′j + jj′ = 1, where i” = ii′ + ij′ + i′j ∈ I and jj′ ∈ JJ ′, so i” ∈ I and
i” + jj′ = 1, that is, I + JJ ′ = R. In several places, we use the following isomorphism:

A.3.6 If I, J are relatively prime ideals in a ring R, then the homomorphism ϕ : R→ R/I×
R/J such that ϕ(r) = (r + I, r + J) induces an isomorphism ϕ∗ : R/(I ∩ J)→ R/I ×R/J .

Proof. It is easy to check that ϕ is a homomorphism and that kerϕ = I ∩ J (ϕ(r) =
(r + I, r + J) = (0, 0) if and only if r + I = R and r + J = R, that is, r ∈ I and r ∈ J).

We show that ϕ is surjective. Since I + J = R, we have 1 = i+ j for some i ∈ I and j ∈ J .
Notice that 1 + I = j + I and 1 + J = i+ J . Hence, for (x+ I, y+ J) in R/I ×R/J , we can
take r = xj + yi and then

ϕ(r) = (xj + yi+ I, xj + yi+ J) = (xj + I, yi+ J) = ((x+ I)(j + I), (y + J)(i+ J)) =

((x+ I)(1 + I), (y + J)(1 + J)) = (x+ I, y + J),

so ϕ is surjective and by A.3.4, we get the induced isomorphism ϕ∗. �

A.3.7 Example. Take R = Z, I = (a) and J = (b) where a, b are relatively prime, so
that I + J = Z by A.3.3(a). As we know, the assumption gcd(a, b) = 1 implies that
I ∩ J = IJ = (ab). Hence, by A.3.6, we have

Z/(ab) ∼= Z/(a)× Z/(b),

where the isomorphism maps the residue of an integer n modulo ab on the pair of its residues
(n1, n2) modulo a and b. In more compact notation, we write Zab ∼= Za×Zb,. If n = pk11 · · · pkrr
is a factorization of an integer into a product of prime numbers, then applying the formula
above several times, we get a very useful isomorphism of rings:

Zn ∼= Z
p
k1
1
× · · · × Zpkrr .

Taking units in these rings, we have also an isomorphism of groups, which we use several
times:

Z∗n ∼= Z∗
p
k1
1

× · · · × Z∗
pkrr
.

Similarly, if R = K[X] is a polynomial ring, I = (f(X)) and J = (g(X)), where f(X), g(X)
are relatively prime polynomials, then as above, we have I+J = K[X] and A.3.6 gives this
time
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K[X]/(fg) ∼= K[X]/(f)×K[X]/(g).

A.3.8 Characteristic of a ring. If R is a commutative ring with identity, then the additive
subgroup 〈1〉 generated by the identity consists of multiples k · 1 for k ∈ Z. If the order
of this group is infinite, then it is isomorphic with the group of integers Z. In this case,
we say that the characteristic of R is zero. If 1 generates a finite group of order n, then
〈1〉 = {0 · 1, 1 · 1, . . . , (n− 1) · 1} and n · 1 = 0. This group is isomorphic to Zn the group of
residues modulo n. In this case, we say that R has characteristic n. Observe that n is the
order of 1 in the additive group of the ring R in this case. The characteristic of a commutative
ring R with identity is sometimes denoted by char(R). Notice that the multiples k·1 for k ∈ Z
form a subring of R, so a commutative ring R with identity contains a subring isomorphic to
the integers Z if its characteristic is 0, and a subring isomorphic to Zn if its characteristic is
n. In particular, the ring of integers Z has characteristic 0, and the ring Zn = {0, 1, . . . , n} of
residues modulo n has characteristic n. For convenience of references, we record these facts:

A.3.9 The characteristic of a commutative ring with identity is either 0 or a positive integer
n. The identity 1 ∈ R generates a subring isomorphic to the integers Z in the first case, and
a subring isomorphic to Zn in the second case.

Notice that if the number n is composite, that is, n = kl, where k, l > 1, then the ring Zn
has zero divisors, that is, k 6= 0 and l 6= 0 but kl = 0. If the number n = p is a prime, then
Zp is without zero divisors, since kl = 0 in this ring means that p | kl, which implies that
p | k or p | l, that is, k = 0 or l = 0 in Zp.

A.4 Fields

If in a commutative ring with identity every nonzero element is invertible, then this ring
is called a field. In somewhat other words, a field is a commutative ring with identity in
which nonzero elements form a group with respect to multiplication. Notice that invertible
elements are not zero divisors, so any field is an integral domain (if a is invertible with the
inverse a−1 and ab = 0, then a−1ab = b = 0).

Fields are often denoted by letters K,L,M, . . . (with K having its explanation in the German
term “Körper”). Thus any field contains at least two elements: 0 and 1. A subring of a field
K, which also is a field is called subfield of K. In order to check that K ′ is a subfield of K
it suffices to check that a, b ∈ K ′ imply a+ b, ab,−a, a−1 ∈ K ′ (a−1 for a 6= 0).

Among all fields considered in this text, a special role is played by the field of rational
numbers Q and the fields of residues modulo prime numbers Zp. The former fields are very
often denoted by Fp and we follow this tradition. The fact that Fp is a field follows from a
general property of finite integral domains (commutative rings with identity without zero
divisors). In fact, if R is a finite integral domain and a ∈ R, a 6= 0, then the powers an for
n = 1, 2, . . . are nonzero and can not be different, so there exist exponents k, l such that
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l > k and al = ak. Hence, we have ak(al−k − 1) = 0, which implies al−k = 1 as ak 6= 0.
Thus a has an inverse al−k−1 in R. Notice that Q has characteristic 0 (the order of 1 in the
additive group of Q is infinite) and Fp has characteristic p (the order of 1 is p).

A.4.1 (a) The characteristic of a field is 0 or a prime number.

(b) Any field K of characteristic 0 contains a unique subfield isomorphic to the rational
numbers Q, and any field of characteristic p contains a unique subfield isomorphic to Fp.

Proof. (a) The characteristic of any commutative ring with identity is either 0 or a positive
integer n by A.3.8. If characteristic of a field K is not 0, then it is n for some positive
integer n and K contains a subring isomorphic to Zn also by A.3.8. But if n is composite
(that is, n = kl, k < n, l < n), then Zn contains zero divisors (kl = 0, k 6= 0, l 6= 0), which
are absent in fields. Thus n must be a prime.

(b) If a field K has characteristic 0, then the multiples k · 1, k ∈ Z form a subring of K
isomorphic to Z. Since every quotient (k · 1)/(l · 1), where l 6= 0 must belong to K, this field
contains a subfield isomorphic to the rational numbers Q. If K has characteristic p, then K
contains a subfield isomorphic to Fp. Such subfields of K are unique, since every subfield
contains 1, so it must contain the subfield generated by this element. In fact, the subfield
generated by 1 is the intersection of all subfields of K (it is contained in any subfield). 2

The fields Q and Fp are called prime, since they are the smallest ones in the sense that
every field contains (an isomorphic copy) of exactly one of them and they do not contain
any proper subfields.

The fields, which we use to exemplify the Galois theory in this book are mainly number
fields, that is, subfields of the field of complex numbers C, finite fields (see Chapter 5) and
fields of rational functions with coefficients in number fields or finite fields. The latter, we
introduce in the next section of this Appendix, but already here, we note that fields of
rational functions are fields of fractions of integral domains through a construction, which
generalizes the construction of the field of rational numbers from the ring of the integers.

Take any integral domain R (for example, the ring of integers Z). Consider the set K = R0 of
all pairs (a, b) such that a, b ∈ R, b 6= 0. We think of a as nominator and b as denominator of
a fraction. We say that (a, b) and (c, d) are equivalent if ad = bc (both these pairs define the
same fraction). This equivalence can be denoted in some way, for example as (a, b) ∼ (c, d).
Denote by a/b the set of all pairs equivalent to (a, b). Such a class will be called a fraction.
Now we define addition and multiplication of fractions in such a way that we get a field:

a

b
+
c

d
=
ad+ bc

bd
,

a

b

c

d
=
ac

bd
.

It needs a little formal calculations that the addition and multiplication of fractions give
the same result independently of the presentation of the involved fractions by the pairs of
elements of R (for example, we have to show that if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), then
(ad + bc, bd) ∼ (a′d′ + b′c′, b′d′)). When this is done, we have to check that the fractions
really form a field and this also needs a little of very simple (but also tedious) computations.
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Anyway, we check that we get a field in which R can be naturally embedded by mapping
a ∈ R onto the fraction a/1. In fact, in this way, we usually consider R as a subring of its
field of fractions K = R0. Of course, if R = Z, then Z0 = Q is the field of rational numbers.
Notice that the field of fractions of R is very often called the quotient field of R (meaning the
field of quotients a/b rather than fractions a/b). There is a little danger that using “quotient
ring” in this sense may be confused with quotients of rings modulo ideals. We use the term
“field of fractions” in order to avoid such misunderstandings.

A.4.2 Any finite subgroup of the multiplicative group of a field K is cyclic.

Proof. Let G be a subgroup of order n of the multiplicative group of a field K. Let the
exponent of G be m, that is, xm = 1 for every element x ∈ G. Since the equation Xm−1 = 0
has at most m solution in the field K and every element of G satisfies this equation, we
have n ≤ m. But as we know (see Lemma A), the exponent m is the maximal order of the
elements of G and m | n. Hence m = n and the group G has an element of order n, that is,
G is cyclic. 2

Notice that as a special case, the last result says that the groups of nonzero residues (Z/pZ)∗

modulo prime number p are cyclic as the groups of nonzero elements in the fields Fp = Z/pZ.

A.4.3 Maximal ideals and fields. An ideal I in a ring R is called maximal if it is not
equal R and if an ideal J is such that I ⊆ J ⊆ R, then J = I or J = R. A very important
property of maximal ideals, which we use on some occasions is the following result:

A.4.4 An ideal I in a ring R with identity is maximal if and only if R/I is a field.

Proof. If R/I is a field, then there are no nontrivial ideals in this ring, so the ideal I is
maximal by A.3.5(b). Conversely, if I is a maximal ideal, then A.3.5(b) says that R/I is
without proper ideals, so it is a field by A.4.6. �

We apply A.4.4 mostly when R is the ring of integers or the ring of polynomials over a field.
As we know, all ideals in Z and K[X] (K a field) are principal (see A.3.2). For such rings,
we have

A.4.5 In a principal ideal ring, the maximal ideals are exactly those generated by irreducible
elements.

Proof. If R is a principal ideal ring and (a) an ideal generated by an irreducible element
(a) (see the definition of irreducible elements on p.233), then the ideal is maximal. In fact,
if (a) ⊆ (b) ⊂ R, then a (b) gives a = bc, where c ∈ R. Hence, we have that b or c must be a
unit in R. But b is not a unit (otherwise (b) = R), so c is a unit, which means that (a) = (b)
(see A.3.1. Thus (a) is maximal.

Conversely, if (a) is maximal, then a must be irreducible, since otherwise a = bc, where both
b and c are not units. Hence, we have (a) ⊂ (b) ⊂ R, since (a) = (b) gives that a = bc implies
that c is a unit, whereas (b) = R gives that b is a unit (see A.3.1). 2
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In the ring Z the irreducible elements are prime numbers, so all maximal ideals are the
ideals (p), where p is a prime number. In the polynomial rings K[X], K a field, the irre-
ducible elements are exactly all irreducible polynomials f(X), which generate the maximal
ideals. Thus each quotient Z/(p) is a field (with p elements). Similarly, each quotient ring
K[X]/(f(X)) is a field when f(X) is an irreducible polynomial.

If K[X] is a polynomial ing over a field K and I = (f(X)) an ideal generated by a noncon-
stant polynomial f(X) ∈ K[X] then we write [g(X)] = g(X) + I to denote the class of g(X)
in the quotient. Of course, the class [g(X)] consists of all polynomials g(X) + f(X)q(X),
where q(X) is an arbitrary polynomial. We have as usual, [g(X)] = [h(X)] if and only if
g(X)− h(X) ∈ I = (f(X)), that is, g(X)− h(X) is a multiple of f(X). Of course, we have
[f(X)] = [0].

In particular, if a ∈ K is a constant polynomial, then its class [a] may be simply identified
with a, since for classes of the constant polynomials, we have [a] = [b] if and only if f(X) (a
nonconstant polynomial) divides a− b (a constant), so it must be a = b. In fact, every class
[g(X)], we have [g(X)] = [r(X)], where r(X) is the residue of g(X) divided by f(X), since
g(X) − r(X) is divisible by f(X). As we know, the residue is unique, so every class has a
unique representation as [r(X)] with deg(r(X)) < deg(f(X)).

We will always identify [a] with a for constants so thatK will be considered as a subring of the
quotient K[X]/(f(X)). If we denote α = [X] and r(X) = bkX

k+· · ·+b1X+b0, then [r(X)] =
bk[X]k+· · ·+b1[X]+b0 = bkα

k+· · ·+b1α+b0. In particular, if f(X) = anX
n+· · ·+a1X+a0

is a polynomial of degree n, then 0 = [f(X)] = anα
n + · · · + a1α + a0, that is, we have

f(α) = 0, which means that f(X) has a zero α in the quotient K[X]/(f(X)). Thus, the
quotient K[X]/(f(X)) can be described as the ring K[α] of all polynomials expressions
bkα

k + · · ·+ b1α+ b0, where α is a zero of f(X) and 0 ≤ k < n.

As an example, we have R[X]/(X2 + 1) = R[α], where α2 + 1 = 0 and every element hasa
unique representation as a+bα. Thus the quotient is the field of complex number as α2 = −1.

In particular when K = F is a finite field with q elements and f(X) is a polynomial of degree
n, then F[X]/(f(X)) = F[α] is a ring with qn elements bkα

k+ · · ·+b1α+b0, where 0 ≤ k < n
(so there are q possible choices for each bi, i = 0, 1, . . . , n − 1). The ring F[X]/(f(X)) is a
field exactly when f(X) is irreducible in F[X].

A.4.6 A ring with unity has only the trivial ideals (0) and R if and only if it is a field.

Proof. If R is a field and I is a nonzero ideal, then there is a ∈ I such that a 6= 0. Thus a
has an inverse, that is, there is a′ ∈ R such that aa′ = 1. Hence 1 ∈ I, so I = R.

If R is a ring whose only ideals are (0) and R, then for any a ∈ R, a 6= 0, we can take the
principal ideal Ra. This ideal is nonzero, since a = a · 1 ∈ I. Hence I = R. This means that
1 = a′a for some a′ ∈ R, so a has an inverse in R. Hence R is a field. �
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A.5 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) says that if d1, . . . , dk ∈ R are relatively prime
positive integers and r1, . . . , rk are any integers, then there is an integer a such that the
residue of a when divided by di is ri for i = 1, . . . , k. When we say that the remainder of
a when divided by d is r, we mean that d divides a − r, which is denoted by d | a − r or
a − r ∈ (d) or a ≡ r (mod d) (a is congruent to r modulo d). This result is true in much
greater generality. Since we use it both for integers and polynomials, we give a formulation,
which covers this two cases:

A.5.1 Let R be an integral domain and let d1, . . . , dk ∈ R be relatively prime elements, that
is, (di, dj) = R. If r1, . . . , rk ∈ R, then there exists a ∈ R such that a − ri ∈ (di) for all
i = 1, . . . , k.

Proof. We use induction starting with k = 1 when the result is of course true. Notice know
that it is true for k = 2, since by A.3.6, we have a surjection of R onto R/(d1) × R/(d2)
mapping a onto (a + (d1), a + (d2)). But this means that if we take (r1 + (d1), r2 + (d2)),
then we can find a ∈ R such that a + (d1) = r1 + (d1) and a + (d2) = r2 + (d2), that is,
a− r1 ∈ (d1) and a− r2 ∈ (d2).

Assume now that the theorem is true for k−1 elements of R and consider k relatively prime
elements d1, . . . , dk ∈ R. Denote d = d1d2 · · · dk. First we note that every di, (i = 1, . . . , k),
and d/di are relatively prime. In fact, we noted earlier (see the text preceding A.3.6) that
an ideal relatively prime with two other is relatively prime with their product ((d/di) is
the product of all (dj) for j 6= i). Now we use k times the case of two factors di and find
x1, . . . , xk ∈ R such that

xi − 1 ∈ (di) and xi ∈ (d/di) ⊆ (dj) for j 6= i.

Take now a = r1x1 + · · ·+ rkxk. We check that a− ri ∈ (di) for all i = 1, . . . , k. In fact, we
have a− ri = r1x1 + · · ·+ ri(xi − 1) + · · ·+ rkxk ∈ (di). �

A.6 Polynomial rings

If R is a commutative ring, then the ring of polynomials with coefficients in R is the set of
all expressions a0 + a1X + a2X

2 + · · · where ai ∈ R, almost all ai are 0 and X is a symbol
(called a variable), which are added and multiplied as usual polynomials. This ring is denoted
by R[X]. The construction may be used inductively – we can construct a polynomial ring
over R[X] and so on. Thus R[X][Y ] = R[X,Y ] is the polynomial ring in two variables over
R. Continuing in this way, we get polynomial rings R[X1, . . . , Xn] over R in n variables
X1, . . . , Xn.

The most common in this book are polynomial rings over fields and, in particular, the
polynomial rings K[X] in one variable over a field K. In this case, we have the well-known
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division algorithm which for f(X), g(X) ∈ K[X] with g(X) 6= 0, gives the unique quotient
q(X) ∈ K[X] and the remainder r(X) ∈ K[X] such that g(X) = g(X)q(X) + r(X) and
deg r(X) < deg g(X).

A.6.1 Factor Theorem. Let K ⊆ L be a field extension.

(a) The remainder of f ∈ K[X] divided by X − a, a ∈ L, is equal f(a);

(b) An element a ∈ L is a zero of f ∈ K[X] if and only if X − a|f(X) (in L[X]).

Proof. (a) The division algorithm for polynomials gives

f(X) = (X − a)q(X) + r,

where deg r < 1, that is, the remainder r is a constant polynomial. Thus, taking X = a, we
get f(a) = r.

(b) Using (a), we have f(a) = 0 if and only if r = f(a) = 0. 2

The polynomial rings K[X], like the ring of integers Z are unique factorization domains (see
(UFD)). This property is shared by all principal ideal domains (see A.3.2) but we refrain
from proving this in such a generality. The unique factorization property also holds in the
polynomial rings over the ring of integers and over fields, since in general it is true that if
a domain R is UFD, then also the polynomial ring R[X] is UFD (see [L], Chap.IV, Thm.
2.3). Below, we give a proof that the polynomial rings over fields are unique factorization
domains

A.6.2 Let K be a field. Every polynomial of degree degree ≥ 1 in K[X] is a product of
irreducible polynomials. If

f = p1 . . . pk = p′1 . . . p
′
l,

where pi and p′i are irreducible polynomials, then k = l and with suitable numbering of the
factors pi, p

′
j, we have p′i = cipi, where ci ∈ K.

Proof. First we prove by induction that every polynomial f(X) of degree at least one is
a product of irreducible polynomials. It is clear for polynomials of degree one (they are
irreducible). Assume that we have proved that every polynomial of degree less than n > 1
is a product of irreducible polynomials. Take an arbitrary polynomial f(X) of degree n. If
f(X) is irreducible, we have what we want. If f(X) is reducible, then f(X) = g(X)h(X),
where 1 ≤ deg g < n and 1 ≤ deg h < n, so both g, h are products of irreducible polynomials.
Thus also f(X) is such a product.

Now consider two factorizations of f(X) given in the theorem:

p1 . . . pk = p′1 . . . p
′
l,
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where all pi, p
′
j are irreducible. We prove theorem by induction with respect to m = k + l.

If m = 2, then we have one factor to the left and one to the right, so the claim that k = l
is true (and the factors are equal). Assume that the theorem is true when the number of
factors pi, p

′
j is less than m ≥ 2. Consider the case when the number of factors is m. The

irreducible polynomial pk divides the product on the right hand side. Hence pk must divide
at least one of the factors of this product. Say that pk|p′l (we can change the numbering of
the factors if necessary). But both these polynomials are irreducible, so p′l = ckpk for some
constant ck. We divide both sides by pk and get

p1 . . . pk−1 = ckp
′
1 . . . p

′
l−1,

so the number m is now k+ l−2 and by our inductive assumption the theorem is true. Thus
k − 1 = l − 1, that is, k = l and by suitable numbering of the factors, we get p′i = cipi for
i = 1, . . . , k − 1. 2

A.7 Modules over rings

If R is a ring and M is an abelian group, then we say that M is a left module over R if for
every pair (r,m) ∈ R×M , we have an element rm ∈M so that

(a) r(m1 +m2) = rm1 + rm2,

(b) (r1 + r2)m = r1m+ r2m,

(c) (r1r2)m = r1(r2m),

(d) 1m = m,

where r, r1, r2 ∈ R and m,m1,m2 ∈M . A right module is defined in similar way. If R = K is
a field, then K-modules are called vector spaces or linear spaces (over the field K) and their
elements are called vectors. A homomorphism of modules over R is a function ϕ : M →M ′

satisfying:

(a) ϕ(m1 +m2) = ϕ(m1) + ϕ(m2);

(b) ϕ(rm) = rϕ(m),

when m,m1,m2 ∈M and r ∈ R. The kernel of ϕ is its kernel as a homomorphism of abelian
groups, that is, Kerϕ = {m ∈ M1|ϕ(m) = 0}. The kernel is also a submodule of M1, that
is, if r ∈ R and m ∈ Kerϕ, then rm ∈ Kerϕ.

If M1,M2 are R-modules, then the pairs (m1,m2), where m1 ∈ M1 and m2 ∈ M2 form
a module when the addition of pairs and multiplication by elements of R are defined on
coordinates: (m1,m2) + (m′1,m

′
2) = (m1 +m′1,m2 +m′2) and r(m1,m2) = (rm1, rm2). This

new module is denoted by M1×M2 and called the direct sum (or direct product) of M1,M2.
This definition can be extended on arbitrary finite number of modules (it is also possible to
consider infinite families but the definitions of sum and product are then different).
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In this book, we need some knowledge of modules over fields, the ring of integers and
polynomial rings. We say that a module M is finitely generated if there are elements
m1, . . . ,mk ∈M such that every element m ∈M can be expressed as a linear combination
of these elements, that is, if there are r1, . . . , rk ∈ R such that m = r1m1 + · · ·+ rkmk. We
write M = 〈m1, . . . ,mk〉. If there is one element m ∈M such tat M = 〈m〉, then M is called
cyclic module. Notice that if M = 〈m〉 is cyclic, then we have a surjective homomorphism
ϕ : R→M such that ϕ(r) = rm. If I denotes the kernel of ϕ, then R/I ∼= M . Thus a cyclic
module can be also defined as a module isomorphic to a module R/I. If R = Z is the ring of
integers, than the cyclic modules are Z/(n) = Zn, which are finite cyclic groups when n > 0
or the infinite cyclic group Z when n = 0. This explains the terminology.

If M is a left module over a ring R, then the annihilator of M is the set of all r ∈ R such
that rM = 0 (that is, rm = 0 for each m ∈ M). The annihilator of M is an ideal in R,
which is denoted by AnnR(M). In fact, if r1, r2 ∈ AnnR(M), that is, r1M = r2M = 0, then
(r1−r2)M = 0, so r1−r2 ∈ AnnR(M). Similarly, if r ∈ AnnR(M), that is, rM = 0, then for
any r′ ∈ R, we have also (r′r)M = 0, so r′r ∈ AnnR(M). Notice that the annihilator of the
R-module M = R/(a) is equal to (a). In fact, it is clear that aM = 0, so a ∈ AnnR(M). On
the other hand, if r ∈ AnnR(M), that is, rM = 0, then in particular r(1+(a)) = r+(a) = 0,
so r ∈ (a). Hence AnnR(M) = (a). In the particular case when M = R = R/(0), we have
AnnR(R) = (0).

A.7.1 Theorem. If R is a principal ideal ring, then every finitely generated module M
over R is a finite direct sum of cyclic R-modules. Moreover,

M = R/(a1)×R/(a2)× · · · ×R/(ar),

where a1 | a2 | . . . | ar, Ann(M) = (ar) and the ideals (a1), (a2) . . . , (ar) are uniquely defined
by M .

We can not give a proof of this result here, but only note that we use it in two particular
situations. Notice that it may happen that some ai = 0, which corresponds to R/(ai) = R.
In our notations, we follow here a convention that 0 | a for any a ∈ R.

If R = Z, then A.7.1 says that every abelian group is a direct sum of finitely many cyclic
groups. These cyclic group are either finite of the form Z/(a), a > 0 or infinite of the form
Z. If the group is finite, then there are only the summands of the first type. Each positive
integer a can be factorized as a product of prime powers and each cyclic group Z/(a) can be
split into a product of cyclic groups Z/(pk) for prime numbers p and their exponents k such
that pk | a and pk+1 - a according to A.3.7. The set of such cyclic groups is also uniquely
determined by the isomorphism class of G (notice that the same prime p with the same
exponent k may appear several times). We record this result as we refer to it occasionally:

A.7.2 Fundamental Theorem on Finite Abelian Groups. Every finite abelian group
G is a direct product
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G = Z/(a1)× Z/(a2)× · · · × Z/(ar),

where a1 | a2 | . . . | ar, Ann(G) = (ar) and the ideals (a1), (a2) . . . , (ar) are uniquely defined
by G. The cyclic groups Z/(ai) can be represented as direct products of cyclic groups whose
orders are prime powers. The number of such factors in the product and the orders of the
cyclic groups in it are also uniquely determined by the group.

The second important case when we use modules over principal ideal rings is the case
of polynomial rings over fields. As we know every ring R = K[X], where K is a field is a
principal ideal domain (see A.3.2). Consequently theorem A.7.1 is true over R. As we know,
the cyclic modules in this case are quotientsK[X]/(p(X)), where p(X) is a polynomial. If this
is the zero polynomial, then the cyclic module is K[X] itself. This module has an infinite
dimension as a vector space over K (a basis is 1, X,X2, . . .). If p(X) is a polynomial of
degree n > 0,then the quotient ring consists of (classes) of all remainders when polynomials
are divided by p(X) (the elements of K[X]/(p(X)) are cosets r(X) + (p(X)) = {r(X) +
p(X)q(X), q(X) ∈ K[X]} and each coset may be represented by a unique polynomial r(X)
of degree at most n − 1). Thus r(X) = a0 + a1X + · · · + an−1X

n−1 and K[X]/(p(X)) has
dimension n and a basis 1, X, . . . ,Xn−1 over K. Similarly to the case of integers, every
polynomial p(X) can be factored as a product of irreducible factors, so that using A.3.7, we
can represent M uniquely as a product of cyclic modules K[X]/(pk), where p are irreducible
polynomials. Thus in the case of the polynomial ring K[X], the theorem A.7.1 says the
following:

A.7.3 Every K[X]-module M , which is of finite dimension as a vector space over K is a
direct product

M = K[X]/(p1)×K[X]/(p2)× · · · ×K[X]/(pr),

where p1 | p2 | . . . | pr, Ann(M) = (pr) and the ideals (p1), (p2) . . . (pr) are uniquely defined
by M . The cyclic modules K[X]/(pi) can be represented as direct products of cyclic modules
K[X]/(pk), where p are irreducible polynomials in K[X]. The number of such factors in the
product and the ideals (pk) are also uniquely determined by the module M .

Notice that if the polynomial pr, which generates the annihilator of M is separable (without
multiple zeros), then M = K[X]/(pr).

A.7.4 Group rings. If G is a finite group and R a ring, then it is possible to form a
ring, denoted by R[G] and called the group ring of G over R. Formally, this ring consists
of all functions ϕ : G → R. Such functions are added and multiplied in the following way:
(ϕ+ψ)(g) = ϕ(g)+ψ(g) and ϕψ(g) =

∑
h∈G ϕ(h)ψ(h−1g). In practice, we denote ϕ(g) = rg

and write any element of R[G] as a sum ϕ =
∑
g∈G rgg. Such sums are added by adding

the corresponding coefficients for g ∈ G and multiplied in the “usual way” (according to the
above definitions of addition and multiplication). This means that if ψ =

∑
g∈G sgg, then

the coefficient of g in the product ϕψ is the sum of rg′sg′′ such that g′g′′ = g.
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In Chapter 11, we defined the notation of G-module. If A is such a G-module, which is an
R-module for a ring R with the property g(ra) = r(ga) for each r ∈ R and g ∈ G, then
it becomes a module over the group ring R[G] if we define (

∑
g∈G rgg)a =

∑
g∈G rg(ga).

Conversely, each R[G]-module A is a G-module (as in Chapter 11) and at the same time an
R-module (and both structures are related by (rg)a = g(ra) = r(ga) when r ∈ R, g ∈ G
and a ∈ A).

A.8 Group actions on sets

We say that a group G acts on a set X if for every pair (g, x) ∈ G×X, we have an element
gx ∈ X so that (gg′)x = g(g′x) and ex = x (e is the identity in G). Thus an action of G
on X is a function from G ×X to X satisfying these two assumptions, which can be best
understood in terms of the transformations of the set X. If we fix g, then we get a function
σg : x 7→ gx for x ∈ X(instead of the term function, we use often the term transformation
in this case). The function σg is a bijection on the set X, since it has an inverse function
σg−1 . In fact, we have σg ◦ σg′(x) = σg(σg′(x)) = σg(g

′x) = g(g′x) = (gg′)x = σgg′(x), that
is, σg ◦ σg′ = σgg′ and σe(x) = ex = x, that is, σe = idX is the identity mapping on X.
Hence, σg ◦ σg−1 = σgg−1 = σe = idX and similarly, σg−1 ◦ σg = idX , which shows that σg
and σg−1 are inverses of each other.

If X is a set, then all bijective functions σ : X → X form a group under composition of
functions, that is, if also τ : X → X is a bijection, then the composition τσ(x) = τ(σ(x))
for x ∈ X is a bijection on X. The composition of functions is associative, the identity is
the identity function id(x) = x for x ∈ X, and the inverse of σ is the inverse function σ−1.
Denoting by B(X) the group of all bijections on X, we define a transformation group as
any subgroup of B(X). Notice that, for simple combinatorial reasons, if X is a finite set,
then every injective or surjective function σ : X → X is automatically bijective (that is, an
injective function must be also surjective, and a surjective function must be injective). This
easy observation is often useful as well as the following general property of functions, which
we often use:

A.8.1 Lemma. If σ : X → Y and τ : Y → X are functions such that τ ◦ σ = idX , then σ
is injective and τ is surjective, so if also σ ◦ τ = idY , then both σ and τ are bijective.

Proof. If x, x′ ∈ X and σ(x) = σ(x′), then τ ◦ σ(x) = τ ◦ σ(x′), so x = x′. Hence σ is
injective (different x.x′ have different images by σ). If x ∈ X, then x = τ(σ(x)), so τ is
surjective (every element x of X is an image of an element σ(x) of Y ). �

The observations above concerning actions of groups on sets can be now simply expressed
by saying that any action of a group G on a set X defines a homomorphism from G to the
transformation group B(X) such that g ∈ G maps onto the transformation σg. Denoting
such a homomorphism by Φ : G → B(X), we have Φ(g) = σg. It is easy to see that also
conversely, any homomorphism Φ : G → B(X) defines an action of G on X if we define
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gx = Φ(g)(x). The properties Φ(gg′) = Φ(g)Φ(g′) and Φ(e) = Id of the homomorphism Φ
immediately translate to (gg′)x = g(g′x) and ex = x for g, g′ ∈ G and x ∈ X.

Let a group G act on a set X. The orbit of x ∈ X, denoted by Gx is the set of all images of
x by the elements of G, that is, Gx = {gx, x ∈ X}. The stabilizer of x ∈ X in G, denoted
by Gx, is the subgroup of G consisting of those elements, which map x on itself, that is,
Gx = {g ∈ G|gx = x}. If g ∈ G, we denote by Xg the set of all elements in X fixed by
g, that is, Xg = {x ∈ X|gx = x}. We say that G acts transitively on X if for each pair
x, x′ ∈ X there is g ∈ G such that x′ = gx.

A.8.2 If G is a finite group acting on a finite set X, then;

(a) The orbits of G on X are disjoint and cover the set X and the number of elements in
the orbit of x ∈ X is equal to the index of the stabilizer of x in G, that is, |Gx| = [G : Gx] =
|G|/|Gx|. Moreover, if x′ = hx for h ∈ G, then Gx′ = hGxh

−1. Thus, we have

X =
⋃
x

Gx and |X| =
∑
x

|G|
|Gx|

;

where x represent different orbits of G on X;

(b) (Burnside’s lemma) Denoting by |G/X| the number of orbits of G on X, we have

|G/X| = 1

|G|
∑
g∈G
|Xg|.

(c) If X has p elements, where p is a prime and G acts transitively on X, then p divides the
order of G.

Proof. (a) It is clear that each element x ∈ X belongs to an orbit (its own). Two different
orbits are disjoint, since if x ∈ Gx1 and x ∈ Gx2 for some x ∈ X, then for any x′ ∈ Gx1,
we have x′ = g′x1 and x = g1x1 = g2x2, that is, x1 = g−1

1 g2x2, gives x′ = g′g−1
1 g2x2, so

x′ ∈ Gx2. Hence, we have Gx1 ⊆ Gx2. By symmetry, we also have the inclusion Gx2 ⊆ Gx1,
which gives Gx1 = Gx2 (another argument is to use the fact that the orbits are equivalence
classes of the relation x ∼ x′ for x, x′ ∈ X declaring x, x′ ∈ X equivalent if and only if
they belong to the same orbit – knowing this, we get that different orbits are disjoint, since
different equivalence classes of an equivalence relation are disjoint). The number of elements
in an orbit Gx is equal the number of different elements gx, where g ∈ G. Now gx = g′x if
and only if g−1g′x = x, that is, g−1g′ ∈ Gx, which is equivalent to g′Gx = gGx. Thus the
number of different elements in Gx is equal to the number of cosets of Gx in G, that is, the
index [G : Gx] of Gx in G.

If x′ = hx for some h ∈ G, then

g ∈ Gx′ ⇔ gx′ = x′ ⇔ ghx = hx⇔ h−1ghx = x⇔ h−1gh ∈ Gx ⇔ g ∈ hGxh−1.
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(b) First note that

∑
g∈G
|Xg| =

∑
x∈X
|Gx|,

since both these numbers are equal to the number of pairs (g, x) ∈ G×X such that gx = x
(imagine a “multiplication table” for multiplication of elements of G by the elements of X
in which the intersection of the row g with the column x is gx and count the number of
occurrences of gx = x in two ways: by rows and by columns).

We have:

∑
g∈G
|Xg| =

∑
x∈X
|Gx| =

∑
x∈X

|G|
|Gx|

= |G|
∑
x∈X

1

|Gx|
.

Now we observe that the last sum is simply the number of orbits, since each fraction 1
|Gx|

appears as many times as the number of elements in the orbit of x, which means that each
orbit contributes with 1 to this sum (the elements of X are distributed among all orbits
which are disjoint and cover X). Thus

∑
g∈G
|Xg| = |G||G/X|,

which prove Burnside’s lemma (which in reality was proved already by Cauchy and somewhat
later by Frobenius).

(c) By our assumption, we have only one orbit Gx = X for any x ∈ X, so by (a), we have
|Gx||Gx| = |G|. Hence p = |Gx| divides |G|. 2

The formulae in A.8.2(a) is often used in the case of X = G and the action of the group G
is given by conjugation (that is, g · x = gxg−1). In this case, the equality

|G| =
∑
x

|G|
|Gx|

is often called class formulae, since |G|
|Gx| = [G : Gx] = |Gx| is the number of elements in

the group G, which are conjugated to x. We use this formulae in such a way in Ex. 12.6.
Notice that classes with only one element, that is, |Gx| = 1 correspond to Gx = G, that is,
they correspond to the case when gxg−1 = x for every g ∈ G. These are the elements of the
center C(G) of G.

Very often, we consider X = G and H is a subgroup of G acting by multiplication, say from
the left. Then the orbit of x ∈ G is the coset Hx and the formulae of A.8.2(a) is simply the
splitting of G into the right cosets of H in G. We give a few important applications, which
we use on different occasions in the exercises.
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A.8.3 Cauchy’s theorem. Let G be a finite group whose order is divisible by a prime
number p. Then the group G contains an element of order p.

Proof. Consider the set X of all p-tuples (g1, g2, . . . , gp) such that gi ∈ G and g1g2 · · · gp = e.
The number of elements in X is of course np, where n = |G|.

Let H = 〈σ〉 be the cyclic group of order p generated by the permutation σ = (1, 2, . . . , p)
(the cycle of length p mapping 1 7→ 2 7→ · · · 7→ p 7→ 1). The group H acts on the set X, when
the indices of g1, g2, . . . , gp are shifted one place to the right circularly (the last on the first):
σ(g1, g2, . . . , gp) = (gσ(1), gσ(2), . . . , gσ(p)). In fact, if g1g2 · · · gp = e, then g2 · · · gpg1 = e,

since we can multiply the first equality by g−1
1 from the left and then by g1 from the right.

If x = (g1, g2, . . . , gp) ∈ X, then its orbit Hx contains p different elements unless all g1 =
g2 = · · · = gp when all shifts of x give the same element x, that is, the orbit Hx has only
one element. We just want to show that there is x = (g, g, . . . , g) ∈ X with g 6= e, that is,
that the number of elements of X whose orbit has only one element is bigger than 1. Denote
by r the number of orbits Hx of length 1 and by s the number of orbits Hx consisting of p
elements.

According to A.8.2(a), the number of elements in X (np) is equal to the sum of the numbers
of elements in all orbits. Thus np = k + ps. Since p divides the order n of the group G, the
last equality shows that p divides k, so we really have k > 1. �

We use also the formulae A.8.2(a) in the proof of the following theorem of Sylow, which
has many applications also in Galois theory. Let G be a group anf p a prime number. If p
divides the order of G and pk is the highest power of p dividing it, then each subgroup of G
of this order is called a p-Sylow subgroup of G. In general, a group whose order is a power of
a prime p is called a p-group. The Sylow’s subgroups play an important role and the main
result about them is usually formulated as three Sylow’s theorems (below (a), (b), (c)):

A.8.4 Sylow’s Theorems Let G be a finite group and p a prime number. Then

(a) G contains Sylow’s subgroups;

(b) any two Sylow’s subgroups of G are conjugated;

(c) the number np of p-Sylow’s subgroups of of G divides their index and is congruent to 1
modulo p.

Proof. (a) We use induction with respect to the order of G. If |G| = 2, then the group is
cyclic of order 2 and the theorem is of course true. Assume that it is true for all groups
of orders less than the order of a given group G. We prove (a) for G. Assume that G has
proper subgroups, since otherwise it is a cyclic group of a prime order p and the theorem
is automatically true for G (see A.2.10). Let pk be the highest power of a prime number
dividing the order of G. If G has a proper subgroup H of order divisible by pk, then the
theorem is true by induction, since a subgroup of H of order pk is a subgroup of G of this
order. Thus, assume that pk does not divide the orders of all proper subgroups of G. Consider
now the action of G by conjugation (so X = G, H = G and g · x = gxg−1). As we noted
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above, the stabilizer Gx = {g ∈ G | gxg−1 = x} is the centralizer of the element x ∈ G. We
know that Gx = G (that is, Gx is not proper) if and only if x is in the center C(G) of G.
The class formulae of A.8.2(a) gives

|G| =
∑
x

|G|
|Gx|

= |C(G)|+
∑
x

|G|
|Gx|

,

where in the sum to the right, we take only x representing the classes for which the group

Gx is proper. Hence, the prime number p divides all terms |G|
|Gx| for which Gx is a proper

subgroup (since then pk | |G| and pk - |Gx|) and |G|
|Gx| = 1 each time x is in the center of

G. Since pk divides |G| to the left, we get that p divides |C(G)|. Thus the order of C(G) is
divisible by p, which implies by Cauchy’s theorem A.8.3 that there is an element g ∈ C(G)
of order p. Hence the subgroup 〈g〉 has order p and is normal in G, since g is in the center
of this group. The quotient group G/〈g〉 has order |G|/p less than the order of G and the
highest power of p dividing this order is pk−1. By the inductive assumption, the group G/〈g〉
contains a subgroup of order pk−1. Now the inverse image of this subgroup in G (see A.2.8)
has order pk, so it is a p-Sylow subgroup of G.

(b) Let H1 and H2 be two Sylow subgroups of a group G. We want to show that there is an
element x ∈ G such that H1 = xH2x

−1. Once again, we use the class formulae of A.8.2(a)
but this time we choose X = G and we act on X by the subgroup H1 ×H2 of G×G in the
following way (h1, h2)x = h1xh

−1
2 for (h1, h2) ∈ H1×H2 and x ∈ G. It is easy to check that

this definition really defines an action of H1 ×H2 on G:

((h1, h2)(h′1, h
′
2))x = (h1h

′
1, h2h

′
2)x = (h1h

′
1)x(h2h

′
2)−1 = h1(h′1xh

′
2
−1

)h−1
2 = (h1, h2)((h′1, h

′
2)x)

for (h1, h2), (h′1, h
′
2) ∈ H1 × H2, x ∈ G and, of course, (e, e)x = x for the identity (e, e) ∈

H1 × H2. The orbit of x ∈ G is H1xH2 (this set is called double coset of H1, H2 in G).
The isotropy group Gx of x ∈ G consists of all (h1, h2) such that h1xh

−1
2 = x, that is

h1 = xh2x
−1. Such pairs (h1, h2) are exactly those belonging to the intersectionH1∩xH2x

−1.
Hence the number of elements in the orbit H1xH2 is equal

|H1 ×H2|
|H1 ∩ xH2x−1|

=
|H1||H2|

|H1 ∩ xH2x−1|

and the class formulae of A.8.2(a) says that

|G| =
∑
x

|H1||H2|
|H1 ∩ xH2x−1|

,

where x represent different orbits of H1×H2 on G (double cosets). Now |H1||H2| is divisible
by pkpk = p2k and |H1 ∩ xH2x

−1| as a subgroup of H1 is divisible by at most pk. If
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H1 ∩ xH2x
−1 is a proper subgroup of H1, then its order is at most pk−1, which means that

|H1||H2|
|H1∩xH2x−1| is divisible by at least p2k−(k−1) = pk+1. Since the order of G on the left is

divisible exactly by pk, we get a contradiction if all terms to the right are divisible by pk+1.
Hence it must be a term in which H1 ∩ xH2x

−1 is not a proper subgroup of H1, that is, it
must exist x ∈ G such that H1 = xH2x

−1.

(c) Since all Sylow p-subgroups H of G are conjugated, the number of different such groups
is equal to the index of the normalizer N (H) in G (see p.227) (in fact, we have xHx−1 =

x′Hx′
−1

if and only if x−1x′H = Hx−1x′, that is, x−1x′ ∈ N (H), which is equivalent
to x′N (H) = xN (H)). Thus the number of Sylow’s p-subgroups divides the order of G.
Now in order to prove that this number is equal to 1 modulo p, we use the same action
on G as in (b) and choose H1 = H2 = H in (b). Since we want to find the number of
Sylow’s subgroups, which is equal to the index of N (H) in G, we have to find the quotient
|G|/|N (H)|. According to the class formula in (b), we have:

|G| =
∑
x

|H||H|
|H ∩ xHx−1|

,

and we split the sum in those terms which correspond x ∈ N (H) and those for which
x 6∈ N (H) (notice that H ⊆ N (H) ⊆ G). In the first case, we have xHx−1 = H so the
term is equal |H|. The number of such terms is equal to the index of H in N (H), so this

first sum is simply the order |N (H)|. As in (b), each term |H||H|
|H∩xHx−1| of the second type is

divisible by pk+1 (since H ∩ xHx−1 is proper subgroup of H of order pk and the nominator
is |H|2 = p2k). Hence the sum of the terms of the second type is pk+1m for an integer m.
Thus |G| = |N (H)|+ pk+1m, which gives the number od Sylow’s p-groups:

|G|
|N (H)|

= 1 +
pk+1m

|N (H)|
= 1 + pm′

for en integer m′, since the number pk+1m
|N (H)| is an integer (as a difference of two integers) and

it must be divisible by p, since the order of N (H) as a subgroup of G is at most divisible
by pk. This proves that the number of Sylow’s p-subgroups of G equals 1 modulo p. 2

A.9 Permutations

If a set X is finite, the bijective functions on it are usually called permutations of X. The
most common case is X = {1, 2, . . . , n} when B(X) (see A.8) is denoted by Sn and called
the symmetric group. The order of Sn is n!. Thus a permutation of 1, . . . , n is a bijective
function σ : {1, . . . , n} → {1, . . . , n}, which is sometimes denoted by

σ =

(
1 . . . n
i1 . . . in

)
,
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when σ(k) = ik for k = 1, . . . , n. Permutations can be conveniently denoted as a product
of cycles. A cycle is a permutation such that for a subset {i1, . . . , ik} of Xn = {1, . . . , n},
we have σ(i1) = i2, σ(i2) = i3, . . . , σ(ik) = i1 and σ(i) = i for i 6∈ {i1, . . . , ik}. An arbitrary
permutation σ can be written as a composition of cycles, since we can start with 1, take
its image, the image of the image and so on. Finally, we have to return to 1 (if not from
the beginning, we have σ(1) = 1). In this way, we get a cycle starting with 1. If all 1, . . . , n
are in the cycle, then σ is a cycle. Otherwise, we start with the least number, which is not
in the cycle starting with 1 and construct a second cycle, which is disjoint from the first
one. We continue the process so that every number is in a cycle. Notice that we usually
omit the cycles of length 1, that is, those corresponding to σ(i) = i, but we denote by (1)
the cycle corresponding to the unit (essentially, the unit is a composition of n cycles (i) for
i = 1, . . . , n). For example:

σ =

(
1 2 3 4 5 6 7 8
4 7 8 5 1 6 2 3

)
= (1, 4, 5)(2, 7)(3, 8).

The cycle permutations have many pleasant properties, which are important in studying of
the permutation groups. We record the following useful facts:

A.9.1 (a) If σ ∈ Sn and τ = (a1, . . . , ak) ∈ Sn, then στσ−1 = (σ(a1), . . . , σ(ak)).

(b) All cycles in Sn having the same length are conjugated.

Proof. (a) Denote % = στσ−1. We have to show that %(σ(a1)) = σ(a2), . . . , %(σ(ak)) = σ(a1)
and for every a 6= σ(ai), where i = 1, . . . , k, we have %(a) = a.

We check simply that %(σ(a1)) = στσ−1(σ(a1)) = σ(τ(a1)) = σ(a2) and, in general,
%(σ(ai)) = στσ−1(σ(ai)) = σ(τ(ai)) = σ(ai+1) for i = 1, . . . , k, when the addition of
these indices i is performed modulo k.

If a 6= σ(ai), then of course, σ−1(a) 6= ai for all i = 1, . . . , k, that is, τ does not move σ−1(a).
Hence, we have %(σ(a)) = στσ−1(a) = σ(τ(σ−1(a))) = σ(σ−1(a)) = a, that is, % doesn’t
move a.

(b) Take two cycles of the same length (a1, . . . , ak) and (b1, . . . , bk). Choose a permutation
σ ∈ Sn such that σ(ai) = bi for i = 1, . . . , k and σ is any bijection from the set a 6= ai on
the set of b 6= bi Then, it follows from (a) that σ(a1, . . . , ak)σ−1 = (b1, . . . , bk). �

A permutation σ of X = {1, 2, . . . , n} is called even if for even number of pairs i, j ∈ X such

that i < j, we have σ(i) > σ(j) (this number may be 0). Observe that we have
(
n
2

)
= n(n−1)

2
such pairs. The even permutations of X form a subgroup of Sn called the alternating group,
which is denoted by An. Its index in Sn is 2, that is, its order is n!/2. Among many possible
proofs of this, we choose an argument, which is useful in Chapter 15.

As we know, the group Sn acts on the set X = R[X1, . . . , Xn] (R any ring) of polynomials
in variables X1, . . . , Xn by the formula: σ(f(X1, . . . , Xn)) = f(Xσ(1) . . . , Xσ(n)).
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Consider the following polynomial (the discriminant of X1, . . . , Xn) as an element of
Z[X1, . . . , Xn]:

∆(X1, . . . , Xn) =
∏

1≤i<j≤n

(Xi −Xj).

It has as many factors as the number of pairs i, j such that i < j. Consider σ(∆(X1, . . . , Xn)) =
∆(Xσ(1) . . . , Xσ(n)) for a permutation σ ∈ Sn. This polynomial has also Xi −Xj as its fac-
tors but each time σ(i) > σ(j), the corresponding factor Xσ(i)−Xσ(j) in σ(∆(X1, . . . , Xn))
differs by sign from the factor Xσ(j)−Xσ(i), which appears in ∆(X1, . . . , Xn). Hence a per-
mutation σ is even if and only if σ(∆) = ∆ and odd if and only if σ(∆) = −∆. If σ, τ are two
even permutations, then στ(∆) = σ(τ(∆)) = ∆, which shows that the even permutations
form a group. Recall that is denoted by An. We have also that if both σ, τ are odd, then
στ(∆) = σ(τ(∆)) = σ(−∆) = ∆, so στ is an even permutation, that is, στ ∈ An. This
property implies that An has index 2 in Sn, that is, the subgroup An has two cosets in Sn:
one is An and the second is σAn for any odd permutation σ (for example σ = (1, 2)). In fact,
if τ is also odd, then σAn = τAn, since σ−1τ ∈ An as a product of two odd permutations
(σ−1 6∈ An, since σ 6∈ An as An is a subgroup). Thus the number of elements in An is half
of the number of elements in Sn, that is, it is n!/2.

A.9.2 The group An is the only subgroup of Sn having index 2.

Proof. Let H be a subgroup of index 2 in Sn. We claim that all transpositions (a, b) are not
in H. In fact, the subgroup H is normal in Sn as a subgroup of index 2. If a transpositions
t = (a, b) ∈ H, then every other transposition is also in H, since it is conjugated to t. But the
transpositions generate the whole group Sn, so we would have H = Sn, which is not true.
Now a product of two elements which are not in H is an element belonging H, since H has
index 2 in Sn. Thus any product of two transpositions is in H. But any even permutation is
a product of even number of transpositions, so it is an element of H. Thus An ⊆ H, which
means that H = An, since these groups have the same order. �

A.9.3 Cayley’s theorem. Every group G can be embedded into a permutation group Sn.
It is always possible to choose n as a prime number.

Proof. Notice that the group Sn can be embedded into any group SN , where N ≥ n. For
example Sn can be regarded as all permutations of the first n numbers among 1, . . . , n, . . . , N .
In particular, one may choose N as a prime number (see an application of this in Ex. 9.15).

A.9.4 The group Sn is generated by the cycle σ = (1, 2, . . . , n) and the transposition τ =
(1, 2).

Proof. Let H be a subgroup of Sn generated by σ and τ . For 1 ≤ k ≤ n − 2, we have
σk(1) = k + 1 and σk(2) = k + 2. Hence σkτσ−k = (k + 1, k + 2). Thus the subgroup
H contains all transpositions of any two consecutive numbers among 1, 2, . . . , n. But any
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permutation in Sn can be obtained as a product of such transpositions (it is possible to
get any permutation a1, . . . , an from 1, . . . , n by a chain of transpositions of two adjacent
numbers). 2

A.10 Some arithmetical functions

An arithmetical function is any function from the positive integers N to complex numbers.
In this book, there are two functions which appear in many contexts: the Euler (totient)
function ϕ and the Möbius function µ.

Arithmetical functions form a ring under usual addition and multiplication of functions:
(f + g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n). But much more interesting is another
structure of a ring on the set of arithmetical functions which takes into consideration the
divisibility relation in the ring Z. It is called Dirichlet convolution and is defined in the
following way:

(f ? g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b),

where the first sum is over all positive divisors of n, and the second, over all pairs a, b of
positive divisors of n such that ab = n (the last equality is only a change of the notation
d = a, b = n/d). It is clear that the convolution is commutative, but possibly, the reader
would like to write down the formulae showing the associativity and the distributivity of
multiplication with respect to addition. Both are easy to check and the associativity fol-
lows immediately by showing that both ((f ? g) ? h)(n) and (f ? (g ? h))(n) are equal to∑
abc=n f(a)g(b)h(c), where the sum is over all triples (a, b, c) of positive integers such that

abc = n. The ring of arithmetical functions with addition of functions and the Dirichlet
convolution as multiplication is often called the Dirichlet ring. It has identity ε defined by
ε(1) = 1 and ε(n) = 0 when n 6= 1. In fact, (ε ? f)(n) =

∑
ab=n ε(a)f(b) = f(n), since

only the term corresponding to a = 1, b = n matters. Notice that an arithmetical function
f has an inverse in the Dirichlet ring, that is, there is an arithmetical function g such that
f ? g = ε if and only if f(1) 6= 0. In fact, if f ? g = ε, then (f ? g)(1) = f(1)g(1) = 1, which
shows that f(1) 6= 0. Conversely, if f(1) 6= 0, then we can find the function g inductively (it
is unique, if it exists since the units in every ring form a group) in the following way. First
we find g(1) solving the equation f(1)g(1) = 1. When this is done and we already have g(k)
for k < n, then we take the required equality (f ? g)(n) =

∑
ab=n f(a)g(b) = ε(n) = 0 when

n > 1. In this equality, we know all the values of g for b < n and the only value, we have
to find is the one corresponding to the term f(1)g(n). Since f(1) 6= 0, we can compute g(n)
using this equality.

An arithmetical function f is called multiplicative if f(ab) = f(a)f(b) when a, b are
relatively prime, that is, the only common positive divisor of both these numbers is 1. In
other words, the greatest common divisor gcd(a, b) = 1.
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Recall that the Möbius function µ(n) is the arithmetical function defined in the following
way: µ(1) = 1, µ(n) = 0 if n is divisible by a square of a prime number and µ(n) = (−1)k,
when n is a product of k different prime numbers. Since µ(1) = 1, the Möbius function has
an inverse with respect to the convolution, that is, there is a unique arithmetic function f
such that µ ? f = ε. Computing a few values of f (as we did in general case above), there
is an evident guess that f = 1, where 1 is defined by 1(n) = 1 for every positive integer n.
We record this and give a proof:

A.10.1 (a) The Möbius function is multiplicative.

(b) We have 1 ? µ = ε, that is,

1 ? µ(1) = µ(1) = 1 and (1 ? µ)(n) =
∑
d|n

µ(d) = 0 for n > 1

Proof. (a) If a is divisible by k different primes and b by l different primes, then ab is
divisible by k+ l primes. Hence, if gcd(a, b) = 1, then µ(ab) = µ(a)µ(b) since both sides are
equal either 0 (if a or b is divisible by a square of a prime) or (−1)k+l (if both a and b are
square free).

(b) We check immediately that (1 ? µ)(1) = 1 and for n > 1, we obtain:

(1 ? µ)(n) =
∑
d|n

µ(d) = 1 +
∑

pi1 ···pik |n

(−1)k = 1 +

r∑
k=1

(−1)k
(
r

k

)
= (1− 1)r = 0,

where p1 < . . . < pr are all different prime numbers dividing n and the sum is over all
possible products of k of these primes for k = 0, 1, . . . , r with i1 < . . . < ik. The term 1
corresponds to d = 1 (no primes in d, so k = 0), any remaining d contains at least one prime
number. It is possible to argue in many different ways in order to check that 1?µ(n) = 0 when
n > 1. For example, we note that there are r summands containing only one prime and they
contribute with r summands equal −1. Then there

(
r
2

)
products of 2 primes (contributing

as many summands 1),
(
r
3

)
products of 3 primes (contributing as many summands −1) and

so on. This gives the expression of the sum as a sum of binomial coefficients with shifting
signs depending on the number of primes in a divisor of n – even numbers of primes give 1,
and odd numbers of primes in d give −1. �

Using the Möbius function, it is possible to prove one of the fundamental properties of
arithmetic functions, which we use on several occasions in the exercises:

A.10.2 Möbius inversion formula. If f is an arithmetic function and

g(n) =
∑
d|n

f(d),

then
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f(n) =
∑
d|n

µ(d)g
(n
d

)
.

Proof. The theorem says that if g = 1?f , then f = µ?g, but this is evident, since µ?1 = ε,
so f = ε ? f = µ ? 1 ? f = µ ? g. 2

In Chapter 10, we use a multiplicative version of Möbius formula. Such a form sometimes
follows immediately from A.10.2 by replacing f(n) and g(n) by log f(n) and log g(n) (when
these numbers are defined). But what we really need is a more general form of Möbius
inversion:

A.10.3 Multiplicative Möbius inversion formula. If f : N → G is a function, where
G is an abelian group (in multiplicative notation), then

g(n) =
∏
d|n

f(d),

then

f(n) =
∏
d|n

g
(n
d

)µ(d)

.

Proof. In the proof, we prefer the additive notation in G (for typographical reasons). We
have:

∑
d|n

µ(d)g
(n
d

)
=
∑
d|n

µ(d)
∑
m|nd

f(m) =
∑
md|n

µ(d)f(m) =
∑
m|n

f(m)
∑
d| nm

µ(d).

But the last sum is 0 if n/m > 1 according to A.10.1 and it is equal to 1, when n/m = 1,
that is, when m = n, so the right hand side is equal f(n). �

The Möbius function is multiplicative, that is, µ(ab) = µ(a)µ(b) whenever a, b are relaatively
prime. In fact, if there is a prime number p such that p2 | ab, then p2 divides a or b since
these numbers are relatively prime. Thus both the left hand side µ(ab) and the right hand
side µ(a)µ(b) are equal to 0. If no square divides the product ab, then a = p1 · · · pk and
b = q1 · · · ql, where all pi, qj are different prime numbers. Hence by the definition of the
Möbius function, we have µ(a)µ(b) = (−1)k(−1)l = (−1)k+l = µ(ab).

Recall that Euler’s totient function (or simply Euler’s function when only this one is
considered) ϕ is an arithmetic function such that ϕ(n) equals the number of 1 ≤ k ≤ n such
that gcd(k, n) = 1. Those properties of the Euler function, which we use are gathered in the
following theorem:

A.10.4 (a) The Euler function is multiplicative. More exactly, we have ϕ([a, b])ϕ((a, b)) =
ϕ(a)ϕ(b);

(b) If n = pa11 · · · p
ak
k is presentation of n as a product of prime numbers pi for i = 1, . . . , k,

then
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ϕ(n) = n

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
;

(c) We have
∑
d|n ϕ(d) = n, that is, 1 ? ϕ = Id;

Proof. (a) By A.3.7, we have a group isomorphism Zab ∼= Za×Zb (the residue of n modulo
ab is mapped onto the pair of residues of n modulo a and b). The last isomorphism is in
fact also a ring isomorphism, which is easy to check taking the products of the residues.
Thus taking the invertible elements in the rings on both sides, we get an isomorphism
Z∗ab ∼= Z∗a ×Z∗b . As we know (see p.231), ϕ(n) = |Z∗n| is the number of invertible elements in
the ring Zn. Hence, we have ϕ(ab) = |Z∗ab|, ϕ(a) = |Z∗a|, ϕ(b) = |Z∗b |, so ϕ(ab) = ϕ(a)ϕ(b).

(b) Since ϕ is mutiplicative, it is sufficient to show that ϕ(pa) = pa (1− 1/p) = pa − pa−1

when p is a prime. But among pa numbers from 1 to pa, those which are not relatively prime
to pa are exactly those divisible by p and their number is pa/p = pa−1. Thus the number of
those, which are relatively prime to p is pa − pa−1.

(c) There are many different proofs of the equality. We use an argument related to convo-
lution on arithmetic functions. The formula in (b) can be easily expressed in terms of the
Möbius function, since multiplying the factors 1 − 1/pi on the right hand side, we get all

possible terms of the type µ(d)
d , where d = pi1 · · · pir is a divisor of n containing r different

prime numbers dividing n for r = 0, 1, . . . , k. Only such factors contribute nonzero terms to
the sum on the right hand side in

ϕ(n)

n
=

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
=
∑
d|n

µ(d)

d
.

But this equality says simply that ϕ(n) =
∑
d|n

n
dµ(d) = (Id ? µ)(n). Since 1 is the inverse

of µ, we multiply both sides of the equality ϕ = Id?µ by 1 and obtain the required equality
1 ? ϕ = Id. 2

A.11 Symmetric polynomials

A polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] over a ring R is called symmetric if it is
unchanged by any permutation of its variables X1, . . . , Xn. This can be expressed in terms of
the group action of the symmetric group Sn on the ring of polynomials: σ(f(X1, . . . , Xn)) =
f(Xσ(1) . . . , Xσ(n)). The polynomial f is symmetric if and only if σ(f) = f for all σ ∈ Sn.
The elementary symmetric polynomials are the polynomials s1 = X1 + · · · + Xn,
s2 = X1X2 +X1X3 + · · ·+Xn−1Xn, . . .,sn = X1X2 · · ·Xn. They are the the coefficients of
the general polynomial of degree n:
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(∗)f(T ) =
∏n
i=1(T −Xi) = Tn − s1T

n−1 + s2T
n−2 + · · ·+ (−1)n−1sn−1T + (−1)nsn

The following result has many applications in Galois theory:

A.11.1 Fundamental theorem on symmetric polynomials If R is a (commutative)
ring and f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is a symmetric polynomial, then there is a polyno-
mial g ∈ R[X1, . . . , Xn] such that f(X1, . . . , Xn) = g(s1, . . . , sn).

Thus the fundamental theorem on symmetric polynomials says that every symmetric poly-
nomial is a polynomial of the elementary symmetric ones. The idea of the usual proof of
this statement using mathematical induction with respect to the degree of the polynomial is
very simple, but its formulation needs careful definition of an ordering of monomials, which
we omit here (see e.g. [L], Chap.IV,§6). Such a proof gives a possibility to effectively find a
polynomial g for a given polynomial f .

A.11.2 Discriminant of a polynomial. Let α1, . . . , αn be the zeros of a polynomial
f(X) = Xn + a1X

n−1 + · · · + an−1X + an ∈ K[X] in a splitting field L of f(X) over K.
The discriminant of f(X) is then

∆(f) =
∏

1≤i<j≤n

(αi − αj)2.

We have ai = (−1)isi, where si are evaluated for Xk = αk, k = 1, . . . , n. It is easy to
see that the permutations of α1, . . . , αn do not affect the discriminant – it is fixed by all
permutations in the group Sn. Since the Galois group G(L/K) considered as a permutation
group is a subgroup of Sn, this property of ∆(f) implies that it is an element of the field K
(see T.9.1(b) and Ex. 9.23).

It is also possible to prove that ∆(f) ∈ K using a somewhat different argument applied to
the “general discriminant”

∆(f(T )) =
∏

1≤i<j≤n

(Xi −Xj)
2 ∈ Z[X1, . . . , Xn]

defined by the general equation above. The discriminant ∆(f(T )) is a symmetric polynomial
of X1, . . . , Xn. According to the main theorem on symmetric polynomials, there is a poly-
nomial g ∈ Z[X1, . . . , Xn] such that ∆(f(T )) = g(s1, . . . , sn). If now f(X) ∈ K[X] and L is
a splitting field of f(X) over K, then f(X) =

∏n
i=1(X−αi), where αi ∈ L. If we replace Xi

by αi in g(s1, . . . , sn), we get ∆(f) =
∏

1≤i<j≤n(αi − αj)2 = g(a1, . . . , an) ∈ K. (Formally,
we take a homomorphism of Z[X1, . . . , Xn] onto F[α1, . . . , αn], where F is the simple subfield
of K.)

In this book, we use the polynomial g mainly for n = 2, 3, 4. For n = 2, see p.2, and for
n = 3 see p.163. Already for n = 4, it is a little laborious to compute. In Maple, it is possible
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to get the discriminant using the command >discrim(f(T),T), where T is the variable in
the polynomial f(T ). For n = 4, we gave the expression of ∆(f) by the coefficients on p.79.

A.12 Roots of unity

Roots of unity are complex numbers which are solutions of the equations Xn = 1 for
n = 1, 2, . . .. We meet these numbers in many places in this book, so let us recall some of
their properties.

All complex solutions of the equation Xn = 1, that is, all n-th roots of 1 form a group
of order n. This group (often denoted by Un or Cn) is cyclic and consists of the numbers

εk = e
2πik
n = cos 2πk

n + i sin 2πk
n for k = 0, 1, . . . , n − 1 (in fact, we know that every finite

subgroup of a field is cyclic by A.4.2, so it is just a good illustration of this fact). This
cyclic group has ϕ(n) generators given by εk for k relatively prime to n (see A.2.2). A usual
choice of a generator is ε1 for which we have εk = εk1 according to de Moivre’s formula.

A.13 Transitive subgroups of permutation groups

As a permutation group, the Galois group G(Kf/K) of an irreducible polynomial f(X) ∈
K[x] is transitiv. A permutation group G ⊆ Sn is called transitive if for any pair i, j ∈
{1, 2, . . . , n} there is a permutation σ ∈ G such that σ(i) = j. This property is valid for
Galois groups of irreducible polynomials, since by Ex. 7.4(a) there is always an automorphism
which maps any given zero of f(X) onto any other zero of this polynomial.

The symmetric group S3 of all permutations of 1, 2, 3 consists of 3! = 6 elements. We can
represent each permutation as an isometry of the plane mapping the equatorial triangle with
vertices in the points 1, 2, 3 on itself. If {a, b, c} = {1, 2, 3}, then there are 3 rotations: the
identity (1), the rotations ±1200: (1, 2, 3), (1, 3, 2) and 3 symmetries in the three heights of
the triangle: (1, 2), (2, 3), (1, 3). There are only two transitive subgroups of S3: the group S3

itself and the subgroup of the rotations (all even permutations) A3 = {(1), (1, 2, 3), (1, 3, 2)}.
All these facts are very easy to check (e.g. by listing all the subgroups of S3).

The symmetric group S4 of all permutations of 1, 2, 3, 4 consists of 4! = 24 elements. We
can represent each permutation as an isometry of the space mapping the tetrahedron with
vertices in the points 1, 2, 3, 4 on itself. If {a, b, c, d} = {1, 2, 3, 4}, then each non-identity
permutation can be written as a cycle or a composition of them:

6 symmetries (a, b) of order 2: in the planes through the vertices c, d and the middle of the
side between a and b;

8 rotations (a, b, c) of order 3: around the axis through the vertex d perpendicularly to the
plane through the points a, b, c;

3 rotations (a, b)(c, d) of order 2: 180 degrees around the axis through the middles of the
sides a, b and c, d. Notice that these rotations together with the identity (1) form a transitive
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group of order 4. It is a transitive presentation of Klein’s four group, which is usually denoted
by V4, that is,

V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

6 cycles (a, b, c, d) of order 4: compositions of the rotation (a, b, c) with the symmetry (c, d).

Together with the identity (1), we have 24 possible isometric mappings of the tetrahedron
on itself. Notice that the even permutations are exactly the 12 rotations, and the odd
permutations are the 6 symmetries and the 6 compositions of a rotation of order 3 and
a symmetry.

Now observe that a every transitive subgroup of S4 has at least 4 elements. As its order
divides 24, the allowed orders are 4, 6, 8, 12, 24. Of course, S4 and A4 are transitive. By
A.9.2, the even permutations A4 are the only subgroup of S4 of order 12.

In order to describe all transitive subgroups of S4, notice that in any subgroup G, which
contains at least one odd permutation σ, the half of the elements are odd permutations,
and the other half are even. In fact, if G0 denotes all even permutations in G, then G0 is a
(normal) subgroup of G and G = G0 ∪ σG0, since every permutation τ in G is either even
or, if it is odd, then σ−1τ is even (that is, in G0).

The group S4 has 3 subgroups of order 8. All are isomorphic with the square group D4 and
are transitive. In order to prove this, assume that G is a subgroup of order 8. Then it must
consist of both even and odd permutations – all can not be even, since a group of order 8
can not be a subgroup of a group of order 12. The subgroup G0 of G consisting of the even
permutations (that is, rotations of the tetrahedron) must be G0 = V4, since all the remaining
rotations have order 3 (can not belong to a group of order 4). The odd permutations in G
can not all be of order 2. Those are exactly the symmetries of the tetrahedron. Among 4
such symmetries, there are at least 2 which shift the same vertex (of four possible), that is,
they have form (a, b) and (a, c). Then the group G contains (a, b)(a, c) = (a, c, b), which as an
element of order 3. This order is not allowed by G. Thus G must contain an odd permutation
σ of order 4. An easy direct computation shows that there are exactly 3 possibilities for σV4,
which give 3 possibilities for G:

D4 = V4 ∪ {(1, 2, 4, 3), (1, 3, 4, 2), (1, 4), (2, 3)},

D′4 = V4 ∪ {(1, 2, 3, 4), (1, 4, 3, 2), (1, 3), (2, 4)},

D′′4 = V4 ∪ {(1, 3, 2, 4), (1, 4, 2, 3), (1, 2), (3, 4)}.

It is clear that these groups are transitive. Each group gives a description of all isometries of
a square corresponding to a numbering of its vertices a, b, c, d according to the rotations of
square given by the elements of order 4 belonging to it. Notice that the groups D4, D

′
4, D

′′
4
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are all isomorphic. They consist of all isometries of a square corresponding to a numbering
of its vertices a, b, c, d (according to the rotations given by the elements of order 4 belonging
to it). Recall that such a group contains 3 subgroups of order 4: V4 (the rectangle group),
the cyclic group of the rotations of the square:

C4 = {(1), (a, b, c, d), (a, d, c, b), (a, c)(b, d)}

and a non-transitive representation of Klein’s four group (the romb group):

V ′4 = {(1), (a, b), (c, d), (a, b)(c, d)}.

There are no transitive subgroups G of S4 of order 6. In fact, such a subgroup can not
be cyclic, since there are no elements of order 6 in S4. Thus it must be isomorphic to S3.
As we know such a group has 3 elements of order 2 and 2 elements of order 3. Among
the elements of order 2 at least 2 must be symmetries (otherwise V4 is a subgroup of G,
which is impossible). They must shift a common vertex a. Otherwise, they are of the form
(a, b), (c, d) with different a, b, c, d. Then (1), (a, b), (c, d), (a, b)(c, d) is a subgroup of G, which
is impossible. If (a, b) and (a, c) are in G, then it is easy to check that G is the group of all
permutations of a, b, c. It is not transitive on the set {1, 2, 3, 4}.

Any subgroup of order 4 is either cyclic or isomorphic to Klein’s four group. A cyclic group
of order 4 is generated by an element of order 4, which is a cycle (a, b, c, d). Of course, such
a subgroups is transitive (since there are 6 such cycles and a any cyclic group of order 4 has
two of them, there are 3 cyclic subgroups of order 4).

Finally, there is only one transitive subgroup of order 4 isomorphic to the group V4. In fact,
a non-cyclic subgroup of order 4 must contain 3 elements of order 2. A similar argument to
that given above in connection with the subgroups of order 6 shows that it is impossible to
get a transitive group with two symmetries. Thus we can only have the rotations giving V4.

Summarizing, we have the following list of isomorphism types of transitive subgroups of S4:

S4, A4, D4, C4, V4.

We do not prove that the group S5 has following 5 types of transitive subgroups :

S5, A5, G5, D5, C5.

The order of every transitive subgroup must be divisible by 5 according to A.8.2(d), so the
allowed orders of transitive subgroups are 5, 10, 15, 20, 30, 60, 120. As we know by A.9.2, the
subgroup A5 is the only one of order 60. It is not too difficult to exclude the orders 15 and
30 as orders of subgroups of S5. A subgroups of order 5 are the cyclic groups of this order
generated by cycles (a, b, c, d, e) of length 5. These are of course transitive and often denoted
by C5 (there are 6 such subgroups). Numbering the vertices of a regular pentagon and taking
all the symmetries of it, we get a subgroup of S5 of order 10, which is usually denoted by
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D5 and called the dihedral group (of order 10). These are all subgroups of order 10 in S5

and they are transitive (each contains 4 cycles of length 5 and there 6 different subgroups
of this type). Finally there are transitive subgroups of order 20 denoted by G5 (sometimes
by GA(1, 5) or F20 and called general affine group of order 20). They can be represented
over the field F5 as affine transformations f(x) = ax + b, a ∈ F∗5, b ∈ F5 (replacing 0 by 5
in F5 = {0, 1, 2, 3, 4}, we get a corresponding permutation in S5, for example, the mapping
f(x) = x+ 1 gives (1, 2, 3, 4, 5) and g(x) = 2x gives (1, 2, 4, 3)). There are 6 subgroups of S5

of this type (and each contains one of the subgroups of type D5, and this one contains one
of type C5).

The knowledge of transitive subgroups of Sn is used in computer programs in order to
find Galois groups of (irreducible) polynomials. For example, in Pari/GP it is possible for
irreducible polynomials up to degree 11 (in 2014).

A.14 Zorn’s Lemma

A relation ≤ on a set X is called a partial ordering if for x, y, z ∈ X, we have

(a) x ≤ x;

(b) x ≤ y and y ≤ z imply x ≤ z;

(c) x ≤ y and y ≤ x imply x = y.

When x ≤ y, then we also write y ≥ x.

A typical example is the set of real numbers R (or any of its subsets) with the usual relation
≤. Another common example is the set S(M) of all subsets of a set M with the inclusion ⊆
as the relation ≤.

If X is a set with a partial ordering ≤, then we say that an element x∗ ∈ X is maximal if
the relation x∗ ≤ x for x ∈ X implies that x = x∗. An element y0 ∈ X is called an upper
bound for a subset Y of X if y ≤ y0 for all y ∈ Y . A subset Y of X is called a chain if for
any two elements y1, y2 ∈ Y , we have y1 ≤ y2 or y2 ≤ y1.

A.14.1 Zorn’s Lemma. Let X be a nonempty partially ordered set. If every chain in X
has an upper bound, then there exists a maximal element in X. More exactly, for each x ∈ X,
there exists a maximal element x∗ such that x ≤ x∗.

Zorn’s Lemma is equivalent to the Axiom of Choice (see [Ciesielski?]).

As an example and an important tool, which we use in order to prove the existence of
algebraic closure of any field, we prove the following result:

A.14.2 Every proper ideal in a commutative ring with identity is contained in a maximal
ideal.
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Proof. Let R be a ring and I0 a proper ideal (that is, I0 6= R). Let X be the set of all
ideals in R, which contain I0. The set X is nonempty, since I0 ∈ X. We consider X with the
inclusion as a partially ordered set. Let Y be a chain in X and let J =

⋃
I∈Y I. We claim

that J is a proper ideal. Let r1, r2 ∈ J , so that r1 ∈ I1 ∈ Y and r2 ∈ I2 ∈ Y2, where I1 ⊆ I2
or I2 ⊆ I1. Thus r1 − r2 ∈ I1 or r1 − r2 ∈ I2, which gives r1 − r2 ∈ J . If r ∈ R and r′ ∈ J ,
that is, r′ ∈ I for some I ∈ Y , then rr′ ∈ I ⊆ J . Thus J is an ideal that contains I0 (since
I0 ⊆ I ∈ Y ). The ideal J is proper, since 1 6∈ J . Moreover, the ideal J is an upper bound for
Y . By Zorn’s Lemma, there exists a maximal element I?, which means that I∗ is a maximal
ideal containing I0. 2

A.15 Dual abelian groups

Let A,B,C be abelian groups and let ϕ : A×B → C be a bilinear map, that is,

ϕ(a1 + a2, b) = ϕ(a1, b) + ϕ(a2, b), ϕ(a, b1 + b2) = ϕ(a, b1) + ϕ(a, b).

By the left kernel of ϕ, we mean the subgroup of A:

kerl(ϕ) = {a ∈ A|ϕ(a,B) = 0}

The right kernel of ϕ is defined similarly. For every element a ∈ A, we have a homomor-
phism ϕa : B → C such that ϕa(b) = ϕ(a, b). Denote A′ = kerl(ϕ) and B′ = kerr(ϕ).
If b ∈ B′, then ϕa(b) = 0. Thus ϕa induces a homomorphism, which we denote with the
same symbol ϕa : B/B′ → C. Now note that a 7→ ϕa is a homomorphism defined on A/A′,
since ϕa = 0 if a ∈ A′. Thus, we have a homomorphism, which maps ā onto ϕa, where
ϕa(b̄) = ϕ(a, b):

A/A′ → Hom(B/B′, C) (A.1)

In fact, this is an injection, since ϕa = 0 if and only if ϕa(b) = 0 for each b ∈ B, which is
equivalent a ∈ A′, so ā = 0. Similarly, we have an injection

B/B′ → Hom(A/A′, C) (A.2)

in which b̄ maps on ϕb, where ϕb(ā) = ϕ(a, b). The dual of an abelian group X with respect
to C is defined as Hom(X,C). It will be denoted by X∗C or, when C is clear from the context,
simply by X∗. If X is a finite group and C is finite cyclic, then |X| = |X∗|. In fact,

A.15.1 Lemma. Let ϕ : A × B → C be a bilinear mapping such that A/ kerl(ϕ) or
B/ kerr(ϕ) is finite. Assume that C is a finite cyclic group. Then both these groups are
finite and each is isomorphic to the dual group of the other one with respect to C.
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Proof. Since we have injections (A.1) and (A.2), it is clear that if one of the groupsA/ kerl(ϕ)
or B/ kerr(ϕ) is finite, then the other is also finite. Moreover, the same injections show that

|A/A′| ≤ |(B/B′)∗| ≤ |(A/A′)∗|
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[GV] D. Gay, W. Y. Vélez, On the degree of the splitting field of an irreducible binomial,
Pacific J. Math. 78 (1978), 117120.

[L] S. Lang, Algebra, Third Edition, Addison-Wesley, 1993.

[MM] G. Malle, B. H. Matzat, Inverse Galois Theory, Springer, 1999.

[R] S. Roman, Field Theory, Second Edition, Graduate Texts in Mathematics, Springer,
2006.

[S] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Math-
ematics and its Applications 77, Cambridge University Press, 2000.

[T] J.-P. Tignol, Galois’ Theory of Algebraic Equations, World Scientific, 2001.

264



List of notations

[L : K], degree of L over K, 18
C, complex numbers, 1
Q, rational numbers, 9
R, real numbers, 6



266



Index

abelian group, 222
algebraic number, 17
arithmetical function

multiplicative, 254
Artin’s Lemma, 30
associated elements, 232

Burnside’s lemma, 247

Cauchy’s theorem, 249
Cayley’s theorem, 253
class formulae, 248
compositum of fields, 9
coset, 225
cyclic

group, 223
module, 244

Dedekind’s Lemma, 30
degree

field extension, 18
polynomial, 1

discriminant
polynomial, 258
quadratic polynomial, 2

Eisentein’s criterion, 15
equation

cubic, 2
de Moivre’s quintic, 6
quadratic, 2

quartic, 4
Euler’s function, 256

field
compositum, 9
perfect, 39
prime, 9, 238

Galois group, 30
greatest common divisor, 233
group

abelian, 222
cyclic, 223
Galois, 30
isomorphism, 227
quotient, 226

integral domain, 231
inverse Galois problem, 46
isomorphism

groups, 227

Kronecker’s theorem, 24

Lagrange’s Theorem, 225
least common multiple, 233

Möbius function, 255
Möbius inversion formula, 255
minimal polynomial, 17
module

cyclic, 244



multiplicity of a root, 1

normal closure, 35

perfect field, 39
polynomial

contents, 93
discriminant, 258
elementary symmetric, 257
minimal, 17
separable, 39

quotient group, 226

separable
field extension, 39

splitting field, 23

transcendental number, 17

zero divisor, 231
Zorn’s Lemma, 262
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