
MMA320 Introduction to Algebraic Geometry

The group law on cubic curves

Let k be a field of characteristic different from 2. Consider an irreducible curve
X ⊂ P2 given by a cubic equation F (X, Y, Z) = 0, which is also irreducible over the
algebraic closure of k. Let K be an extension of k, not necessarily closed; an important
case is K = k. We shall construct a group law on the set of non-singular points
Xns(K) ⊂ X(K). Therefore we assume that this set is nonempty. We will see later
that irreducibility implies that the set of non-singular points is open in X(k̄).

We fix a point e ⊂ Xns(K), which will be the neutral element. Let x and y be
two non-singular points on X(K), with homogeneous ideal Ix and Iy in K[X, Y, Z]. If
x and y are distinct points the line passing through them is given by the unique (up to
scalars) linear form in Ix∩Iy. If y = x we consider the homogeneous ideal I = (F )+I2

x.
Its saturation contains again a linear form, which is in fact the tangent line L to X in
the point x. In this way two non-singular points determine a line, even if they coincide.
We call this the line through x and y.

As X is irreducible, the line L through x and y is not a component, and intersects
X(K) in three points: the restriction of F to the line L ∼= P1 is a homogeneous polyno-
mial of degree three in two variables, which is divisible by linear forms defining x and
y, so F |L factorises over k in three linear factors. The point defined by the third linear
factor will be called the third intersection point of L and X, and denoted by xy; it may
coincide with x or y. It is again a non-singular point.

Definition. The addition x ⊕ y on Xns(K) is determined in the following way: let xy
be the third intersection point of the line through x and y with X(K), then x⊕ y is the
third intersection point (xy)e on the line through xy and e, cf. Figure 6.1 in [Dolgachev].

Theorem. This operation makes (Xns(K),⊕) into an abelian group with neutral ele-
ment e.

Proof . Apart from associativity this is easy.
Commutativity is obvious.
Let us construct x⊕ e. Let xe be the third intersection point on the line L through

x and e. Then x is the third intersection point on the line through xe and e (which is
the line L), so x⊕ e = x.

For the inverse, let ee be the third intersection point on the tangent line at X in the
point e, then the third point x(ee) on the line through x and ee satisfies x⊕ x(ee) = e,
so −x is the point x(ee).

For associativity
(
(x⊕ y)⊕ z = x⊕ (y⊕ z)

)
it suffices to show that points (x⊕ y)z

and x(y ⊕ z) in the penultimate step of the construction coincide. There are 8 more
points involved, which we write in the following 3× 3 square.

x y ⊕ z ?
xy e x⊕ y
y yz z

The points in each row and each column are collinear. The question mark stands in
the first row for the point x(y ⊕ z), while it represents in the last column the point
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(x⊕ y)z, so the points which we want to prove to be equal. All the eight named points
in the square lie not only on X(K), but also on two other cubics, being the product
of the lines determined by the rows, respectively the columns, of the square; note that
multiple factors may occur.

First consider the case that all eight points are distinct. Then the equality (x⊕y)z =
x(y ⊕ z) follows from the following

Claim. Each cubic (distinct from X(K) itself) through eight points intersects X(K)
in one and the same point, besides the eight points; this point may coincide with one
of the eight points.

Usually one concludes the proof by appealing to continuity. But in fact the claim
holds in general, if we give the correct meaning to the phrase ‘passing through eight
points’. We require that the intersection multiplicity at each point is at least the number
of times the point occurs in the list of eight points. Apart from the proof of the claim,
which will be given later, this finishes the proof. �

We need some preparations. Let Vd be the vector space of all homogeneous poly-
nomials of degree d in X, Y and Z (plus the zero polynomial). It has dimension

(
d+2
2

)
;

a basis consists of all monomials. For d = 3 we get

Z3

XZ2 Y Z2

X2Z XY Z Y 2Z

X3 X2Y XY 2 Y 3

Each non-zero F =
∑

aijkXiY jZk defines a curve X ⊂ P2, with proportional
polynomials defining the same curve.

Definition. The space Sd of all projective plane curves is P(Vd), a projective space of
dimension d(d+3)

2 . A linear system of curves of degree d is a linear subspace of Sd.

Given a point p ∈ P2, the condition that the curve F = 0 passes through p, is
that F (p) = 0, and this gives one linear condition on the coefficients of F . The linear
systems Sd(p1, . . . , pk) of degree d curves passing through k given points, has dimension
at least d(d+3)

2 − k.
The proof of the claim will follow from the statement that the linear system

S3(e, x, y, z, xy, yz, x⊕y, y⊕z) has dimension 1. Then each cubic is of the form λF +µG,
and the intersection of such a cubic with F is given by the ideal (F,G), independent of
(λ : µ).

We describe Sd(p1, . . . , pk) in a different way. Let Ii be the radical homogeneous
ideal defining the point pi, and set I = I1 ∩ . . . ∩ Ik. Then

Sd(p1, . . . , pk) = {[F ] ∈ Sd | F ∈ I} = P(Vd ∩ I) .

The last formula can be generalised by allowing saturated, non-radical ideals.
We consider only so called curvilinear fat points: points lying on a locally smooth

curve. In affine coordinates (x, y) with the point at the origin, and tangent of the
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curve the x-axis, the ideal of a point of multiplicity m looks like (y + f2(x, y) +
. . . fd(x, y), ym, ym−1x, . . . , xm). One can write y = g(x) mod (xm), so other genera-
tors for the ideal are (y − g(x), xm). Let I be the intersection of a finite number of
saturated homogeneous ideal, defining points pi with multiplicity mi, with total multi-
plicity

∑
mi = k. Then

Sd(m1p1, . . . ,mjpj) = P(Vd ∩ I) .

We need some assumptions which guarantee that the conditions imposed by the
points are independent. This is obviously not the case if all points lie on one and the
same line.

Definition. We say that n points of the variety defined by I are collinear, i.e., lie
on a line, if there exists a line L with equation H = 0 such that the restriction of I
to L defines a collection of points of multiplicity at least n; this means that the ideal
(H) + I defines such a collection. We say that n points are conconic, if they lie on a
nondegenerate conic Q = 0: if (Q) + I defines points with total multiplicity at least n.

Let I define a collection of points (with multiplicities) on an irreducible cubic F = 0.
Then by Bézout no four points are collinear and no seven points are conconic.

Proposition. Let I be the ideal of a curvilinear fat point
∑

mipi with total multiplicity
8. Assume that no four points are collinear and no seven points conconic. Then the
linear system S3(m1p1, . . . ,mjpj) has dimension 1.

Proof . As the dimension cannot go down under field extension, we may assume that
K is infinite. Suppose for a contradiction that the linear system has dimension at least
two.

We first assume that no three points are collinear and no six conconic. (This holds
if the points are in general position.) Let L:H = 0 be a line through two points (either
through two distinct points, or tangent to a multiple point). We choose two points
p9, p10 on L outside the eight given points; this is possible as K is infinite. Then
there is a cubic G ∈ S3(m1p1, . . . ,mjpj , p9, p10). As L intersects it with multiplicity
at least four, the line is a component, so we can write G = HQ. The remaining six
of the original eight points have to lie on Q = 0. In the case of multiple points this
means: the remaining points are given by the ideal I ′ = I : H, which by definition is
I : H = {G ∈ K[x, y] | GH ∈ I}. In local coordinates as above, if L is tangent, then
we have the ideal (y − ax2 + . . . , xm) with a 6= 0, and H = y; then xm−2 ∈ I : H. So
indeed the ideal I ′ defines points of total multiplicity 6. According to our assumption
Q has to be a degenerate conic, either two lines, or a double line. But then there must
be a line containing at least three points.

Now suppose that three points are collinear, lying on a line L:H = 0. Choose a
point P9 ∈ L. The linear system S3(m1p1, . . . ,mjpj , p9) has dimension at least one.
Every element is reducible, of the form HQ. The Q form a linear system of conics
throug five points, of dimension at least one. Two elements have therefore a line in
common, which cannot contain four points, so we end up with a linear system of lines
though at least two points, of dimension at least one, which is impossible.

The last possibility is that six points are conconic, on the conic Q = 0. We choose
p9 on the conic. Then every element of the linear system S3(m1p1, . . . ,mjpj , p9) is
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reducible, of the form QH, and the H form a linear system of through at two points,
given by I : Q, of dimension at least one, which we already concluded to be impossible.

�

The group law can be simplified by taking an inflection point, if the cubic has one,
as neutral element. Then the third point, in which the tangent at e intersects the curve,
is e itself. So the inverse −x is the third point on the line ex. Therefore we obtain

x + y + z = 0 ⇔ x, y and z collinear .

We can take coordinates with the flex being the line at infinity and the inflection point
(0 : 1 : 0). By completing the square (charK 6= 2) we get an equation of the form
y2 = x3 + px2 + qx + r, which if charK 6= 3 can be simplified further to

y2 = x3 + ax + b .

If z = (x, y), then −z = (x,−y).
Over the compex numbers a non-singular cubic curve is a Riemann surface of genus

1, so topologically a torus. Let τ be a point in the upper half plane. Then the Riemann
surface is C/(Z ⊕ Zτ). The group structure comes from addition on C. Meromorphic
functions on the Riemann surface are doubly periodic functions in the complex plane.
In particular, one has the Weierstraß ℘ function given by

℘(z) =
1
z2

+
∑

(m,n) 6=(0,0)

(
1

(z −m− nτ)2
− 1

(m + nτ)2

)
.

It satisfies the equation

(℘′(z))2 = 4 (℘(z))3 − g2℘(z)− g3 .
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