MMA320 Introduction to Algebraic Geometry

Exercises and Home work V 4

Exercises

- 1. Dolgachev 2.1, 3.1, 3.2, 3.2, 3.5.
- **2**. Let K be an algebraically closed field of characteristic p > 0. Consider the Frobenius map $F: K^n \to K^n$ given by $F(x_1, \ldots, x_n) = (x_1^p, \ldots, x_n^p)$. Show that F is regular and bijective, but not an isomorphism.

Home work, to be handed in 2010-02-03.

- **1**. Let K be an algebraically closed field extension of k. Let I be an ideal in $k[T, S] := k[T_1, \ldots, T_n, S_1, \ldots, S_m]$. By example 3.3.3 the inclusion $k[T] \subset k[T, S]$ defines the projection $p: K^{n+m} \to K^n$. Let $J = I \cap k[T]$. Show that V(J) is the Zariski closure of the image p(V(I)) of V(I) under the projection p.
- **2**. Prove that a morphism $f: X \to Y$ between two affine algebraic varieties is an isomorphism of X with a subvariety $f(X) \subset Y$ if and only if the induced map $f^*: \mathcal{O}(Y) \to \mathcal{O}(X)$ is surjective.
- **3**. Dolgachev 3.4 and 3.7