MMA320 Introduction to Algebraic Geometry Exercises for Chapter 2

- **2.1.** What points in \mathbb{P}^2 do not belong to two of the three sets \mathbb{A}_0^2 , \mathbb{A}_1^2 , \mathbb{A}_2^2 ?
- 2.2. a) Describe the curve C₁: 2X + Y² = 1 in the other two standard coordinate charts on P²(C). Hint: first homogenise the equation with the coordinate Z.
 b) Let C₂ be defined by the equation Y = X³ in the affine chart Z = 1. What does C₂ look like at infinity? Give its equation and draw its real part.
 c) Find all the points of P² which lie on both curves C₁ and C₂.
- 2.3. a) Let C₁: y = x² + 1 and C₂: y = 0. What is C₁ ∩ C₂ in A²(ℝ) respectively A²(ℂ)? Does anything change if we make the equations homogeneous and think of the curves as lying in P². Explain this in terms of 'asymptotic directions'.
 b) Let C_k be the circle x² + y² = k² in A²(ℝ). Show that C₁ ∩ C₂ = Ø. What happens if we replace ℝ with ℂ? What about P²(ℂ)?
- 2.4. Two conics in P²(C) have four intersection points (counted with multiplicity). Give an example of two conics in P²(R) which only intersect in 2 points. Find the extra intersection points when you use the same equations to define conics in P²_C. [This may or may not be difficult depending on your choice of equation.] Why can you deduce that these intersection points are distinct (even without calculating them)?
- **2.5.** Let $k = \mathbb{Z}/(2)$ be the field with two elements. How many points has $\mathbb{P}^2(k)$? How many lines pass through P = (1 : 0 : 0)? How many points lie on each of these lines? Draw all points and lines. Hint: choose (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) as vertices in a triangle and (1 : 1 : 1) as interior point.
- **2.6.** Duality. Let $\{e_0, e_1, e_2\}$ be a basis of $V \cong \mathbb{R}^3$ and let $(X_0 : X_1 : X_2)$ be corresponding homogeneous coordinates on $\mathbb{P}(V) \cong \mathbb{P}^2(\mathbb{R})$. Let $\{e_0^*, e_1^*, e_2^*\}$ be the dual basis in V^* , and $(U_0 : U_1 : U_2)$ corresponding homogeneous coordinates on $\mathbb{P}(V^*) \cong \mathbb{P}^2(\mathbb{R})$. Let $P = (a_0 : a_1 : a_2)$ be a point in $\mathbb{P}(V)$. Describe the pencil of all lines in $\mathbb{P}(V)$ through P in the coordinates $(U_0 : U_1 : U_2)$.
- **2.7**. Let l_1 and l_2 be two disjoint lines in \mathbb{P}^3 , and let $P \in \mathbb{P}^3 \setminus (l_1 \cup l_2)$ be a point. Show that there is a unique line $l \subset \mathbb{P}^3$ through P, intersecting l_1 and l_2 and P.
- **2.8.** Let P_0 , P_1 , P_2 (resp. Q_0 , Q_1 , Q_2) be three points in \mathbb{P}^2 not lying on a line. Show that there is a projective change of coordinates $T \colon \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(P_i) = Q_i$, i = 0, 1, 2. Extend this to n points in \mathbb{P}^n , not lying on a hyperplane.
- **2.9.** Let l_0 , l_1 , l_2 (resp. m_0 , m_1 , m_2) be lines in \mathbb{P}^2 that do not all pass through one and the same point. Show that there is a projective change of coordinates $T: \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(l_i) = m_i$, i = 0, 1, 2. (Hint: Let $P_i = L_j \cap L_k$, $Q_i = m_j \cap m_k$.).
- **2.10.** Let $f \in k[X_0, \ldots, X_n]$. Define the (formal) derivative $\frac{\partial f}{\partial X_i} \in k[X_0, \ldots, X_n]$, for any field k. (Hint: product rule).

2.11. Let $f \in k[X_0, \ldots, X_n]$ be a homogeneous polynomial of degree m. Show Euler's formula

$$\sum_{i=0}^{n} X_i \frac{\partial f}{\partial X_i} = mf . \tag{*}$$

When does the converse hold: for which fields does (*) imply that $f \neq 0$ is homogeneous of degree m.

- **2.12.** Let $I \subset k[X_0, \ldots, X_n]$ be a homogeneous ideal. Show that I is prime if and only if for every two homogeneous elements $f, g \in I$ we have that $fg \in I$ implies $f \in I$ or $g \in I$.
- 2.13. The sum, product, intersection and radical of homogeneous ideals are also homogeneous ideals.
- **2.14.** Show that an ideal $I \subset k[X_1, \ldots, X_n]$ is prime if and only if its homogenisation $\overline{I} \subset k[X_0, \ldots, X_n]$ is prime.
- **2.15.** Find I^{sat} , where $I = (X^2, XY) \subset k[X, Y]$.
- **2.16.** Let $k = \mathbb{Z}/(2)$ be the field with two elements. Determine for $V(x^2+yz) \subset \mathbb{A}^3(\mathbb{Z}/(2))$ the ideal $I(V(x^2+yz)) \subset \mathbb{Z}/(2)[x,y,z]$. Now consider the same equation in the projective plane: $V(X^2+YZ) \subset \mathbb{P}^2$ and find the homogeneous ideal $J(V(X^2+YZ)) \subset \mathbb{Z}/(2)[X,Y,Z]$.
- **2.17**. Let $C \subset \mathbb{P}^3$ be the rational normal curve of degree 3, given by the parametrization

 $\mathbb{P}^1 \to \mathbb{P}^3, \qquad (S:T) \mapsto (X:Y:Z:W) = (S^3:S^2T:ST^2:T^3) \; .$

Let $P = (0:0:1:0) \in \mathbb{P}^3$, and let H be the hyperplane defined by Z = 0. Let π be the projection from P to H, i.e. the map associating to a point Q of C the intersection point of H with the unique line through P and Q.

- a) Show that π is a morphism.
- b) Determine the equation of the curve $\pi(C)$ in $H \cong \mathbb{P}^2$.
- c) Is $\pi: C \to \pi(C)$ an isomorphism onto its image?
- **2.18.** Show that the curve $C = V(X^3 ZY^2) \subset \mathbb{P}^2$, defined over an algebraically closed field k, is birational to P^1 . Consider the affine chart $U_0 = \{Z \neq 0\}$. Are the coordinate rings of the affine curve $C \cap U_0$ and \mathbb{A}^1 isomorphic? Does there exist an affine chart U_1 such that $C \cap U_1$ has coordinate ring, isomorphic to k[t]?
- **2.19.** Show that there is only one conic passing through the five points (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1), and (1 : 2 : 3); show that it is nonsingular, if char $k \neq 2, 3$.
- **2.20.** Consider the nine points (0:0:1), (0:1:1), (1:0:1), (1:1:1), (0:2:1), (2:0:1), (1:2:1), (2:1:1), and (2:2:1) in \mathbb{P}^2 ; it might help to make a picture. Show that there are infinitely many cubics passing through these points (if the field k is infinite).

- 2.21. Let L be the vector space of homogeneous polynomials of degree 2 in k[X : Y : Z] and let P(L) be the linear system of conics.
 a) Let P₁, P₂, P₃ and P₄ be four points in P² and let P(L(P₁, P₂, P₃, P₄)) be the linear system of conics passing through these points. Show that dim P(L(P₁, P₂, P₃, P₄)) = 2 if the four points lie on a line, and that dim P(L(P₁, P₂, P₃, P₄)) = 1 otherwise.
 b) Show that the space of irreducible conics in P² is an open subset U ⊂ P(L). What geometric objects can be associated to the points in P(L) \ U?
- **2.22.** Show that the plane curves $C_1 = V(ZY^2 X^3 + XZ^2)$ and $C_2 = V(X^3Z Y^2Z^2 + X^2Y^2)$ are birational (hint: standard Cremona transformation). Describe occurring singularities.
- **2.23.** Let $H_d \subset \mathbb{P}^n$ be a hypersurface of degree d. Show that the complement $\mathbb{P}^n \setminus H_d$ is an affine variety.
- **2.24.** Let $f(X_0, \ldots, X_n) = X_0 g(X_1, \ldots, X_n) + h(X_1, \ldots, X_n)$, where g is a homogeneous polynomial of degree d 1 and h is a homogeneous polynomial of degree d. Assuming that f is irreducible, prove that the variety V(f) is rational.
- **2.25.** Show that every isomorphism $f: \mathbb{P}^1 \to \mathbb{P}^1$ is a projective transformation.
- **2.26.** Is the union (resp. the intersection) of quasi-projective algebraic sets a quasiprojective algebraic set?
- **2.27.** Let V be a projective variety over an algebraically closed field k. Show that $\mathcal{O}(V) = k$, that is, every rational function, regular on the whole of V, is constant. Hints: show that on each standard open affine set V_i an $r \in \mathcal{O}(V)$ has the form $r = f_i/X_i^{N_i}$ with $f_i \in S_{N_i}(V)$ homogeneous of degree N_i . Show that for N sufficiently large multiplication with r is an endomorphism of the vector space $S_N(V)$. Use the Theorem of Cayley–Hamilton to conclude that r is a root of a polynomial with coefficients in k; alternatively, consider an eigen vector and show that r equals the eigen value.
- **2.28**. Show that every regular map from a projective variety to an affine variety maps to a point.
- 2.29. Let C = V(f) ⊂ A²(C) and consider the blow up σ: Bl₀A² → A². Put f̃ = f ∘ σ. If 0 ∈ V(f), then the exceptional curve E is an irreducible component of V(f̃), and the closure of V(f̃) \ E is the strict transform C̄ of C. Compute an equation for C̄ for the following curves:
 a) x² y²,
 b) x² y³,
 c) x² yⁿ, n ≥ 4,

c)
$$x^2 - y^n, n \ge$$

d) $x^4 - y^4.$