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Göteborgs universitet

MMA320 Introduction to Algebraic Geometry
Exercises for Chapter 2

2.1. What points in P2 do not belong to two of the three sets A2
0 , A2

1 , A2
2?

2.2. a) Describe the curve C1 : 2X+Y 2 = 1 in the other two standard coordinate charts
on P2(C). Hint: first homogenise the equation with the coordinate Z .
b) Let C2 be defined by the equation Y = X3 in the affine chart Z = 1. What
does C2 look like at infinity? Give its equation and draw its real part.
c) Find all the points of P2 which lie on both curves C1 and C2 .

2.3. a) Let C1 : y = x2 + 1 and C2 : y = 0. What is C1 ∩ C2 in A2(R) respectively
A2(C)? Does anything change if we make the equations homogeneous and think of
the curves as lying in P2 . Explain this in terms of ‘asymptotic directions’.
b) Let Ck be the circle x2 + y2 = k2 in A2(R). Show that C1 ∩ C2 = ∅ . What
happens if we replace R with C? What about P2(C)?

2.4. Two conics in P2(C) have four intersection points (counted with multiplicity). Give
an example of two conics in P2(R) which only intersect in 2 points.
Find the extra intersection points when you use the same equations to define conics
in P2

C . [This may or may not be difficult depending on your choice of equation.] Why
can you deduce that these intersection points are distinct (even without calculating
them)?

2.5. Let k = Z/(2) be the field with two elements. How many points has P2(k)? How
many lines pass through P = (1 : 0 : 0)? How many points lie on each of these
lines? Draw all points and lines. Hint: choose (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)
as vertices in a triangle and (1 : 1 : 1) as interior point.

2.6. Duality. Let {e0, e1, e2} be a basis of V ∼= R3 and let (X0 : X1 : X2) be cor-
responding homogeneous coordinates on P(V ) ∼= P2(R). Let {e∗0, e∗1, e∗2} be the
dual basis in V ∗ , and (U0 : U1 : U2) corresponding homogeneous coordinates on
P(V ∗) ∼= P2(R). Let P = (a0 : a1 : a2) be a point in P(V ). Describe the pencil of
all lines in P(V ) through P in the coordinates (U0 : U1 : U2).

2.7. Let l1 and l2 be two disjoint lines in P3 , and let P ∈ P3 \ (l1∪ l2) be a point. Show
that there is a unique line l ⊂ P3 through P , intersecting l1and l2 and P .

2.8. Let P0 , P1 , P2 (resp. Q0 , Q1 , Q2 ) be three points in P2 not lying on a line. Show
that there is a projective change of coordinates T : P2 → P2 such that T (Pi) = Qi ,
i = 0, 1, 2. Extend this to n points in Pn , not lying on a hyperplane.

2.9. Let l0 , l1 , l2 (resp. m0 , m1 , m2 ) be lines in P2 that do not all pass through one and
the same point. Show that there is a projective change of coordinates T : P2 → P2

such that T (li) = mi , i = 0, 1, 2. (Hint: Let Pi = Lj ∩ Lk , Qi = mj ∩mk .) .

2.10. Let f ∈ k[X0, . . . , Xn] . Define the (formal) derivative ∂f
∂Xi
∈ k[X0, . . . , Xn] , for any

field k . (Hint: product rule).



2.11. Let f ∈ k[X0, . . . , Xn] be a homogeneous polynomial of degree m . Show Euler’s
formula

n∑
i=0

Xi
∂f

∂Xi

= mf . (*)

When does the converse hold: for which fields does (∗) imply that f 6= 0 is homo-
geneous of degree m .

2.12. Let I ⊂ k[X0, . . . , Xn] be a homogeneous ideal. Show that I is prime if and only
if for every two homogeneous elements f, g ∈ I we have that fg ∈ I implies f ∈ I
or g ∈ I .

2.13. The sum, product, intersection and radical of homogeneous ideals are also homoge-
neous ideals.

2.14. Show that an ideal I ⊂ k[X1, . . . , Xn] is prime if and only if its homogenisation
Ī ⊂ k[X0, . . . , Xn] is prime.

2.15. Find Isat , where I = (X2, XY ) ⊂ k[X, Y ] .

2.16. Let k = Z/(2) be the field with two elements. Determine for V (x2+yz) ⊂ A3(Z/(2))
the ideal I(V (x2 + yz)) ⊂ Z/(2)[x, y, z] . Now consider the same equation in the
projective plane: V (X2 + Y Z) ⊂ P2 and find the homogeneous ideal J(V (X2 +
Y Z)) ⊂ Z/(2)[X, Y, Z] .

2.17. Let C ⊂ P3 be the rational normal curve of degree 3, given by the parametrization

P1 → P3, (S : T ) 7→ (X : Y : Z : W ) = (S3 : S2T : ST 2 : T 3) .

Let P = (0 : 0 : 1 : 0) ∈ P3 , and let H be the hyperplane defined by Z = 0. Let
π be the projection from P to H , i.e. the map associating to a point Q of C the
intersection point of H with the unique line through P and Q .
a) Show that π is a morphism.
b) Determine the equation of the curve π(C) in H ∼= P2 .
c) Is π : C → π(C) an isomorphism onto its image?

2.18. Show that the curve C = V (X3 − ZY 2) ⊂ P2 , defined over an algebraically closed
field k , is birational to P 1 . Consider the affine chart U0 = {Z 6= 0} . Are the
coordinate rings of the affine curve C ∩ U0 and A1 isomorphic?
Does there exist an affine chart U1 such that C∩U1 has coordinate ring, isomorphic
to k[t]?

2.19. Show that there is only one conic passing through the five points (0 : 0 : 1),
(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1), and (1 : 2 : 3); show that it is nonsingular, if
char k 6= 2, 3.

2.20. Consider the nine points (0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 1), (0 : 2 : 1),
(2 : 0 : 1), (1 : 2 : 1), (2 : 1 : 1), and (2 : 2 : 1) in P2 ; it might help to make a
picture. Show that there are infinitely many cubics passing through these points (if
the field k is infinite).



2.21. Let L be the vector space of homogeneous polynomials of degree 2 in k[X : Y : Z]
and let P(L) be the linear system of conics.
a) Let P1 , P2 , P3 and P4 be four points in P2 and let P(L(P1, P2, P3, P4)) be the
linear system of conics passing through these points.
Show that dimP(L(P1, P2, P3, P4)) = 2 if the four points lie on a line, and that
dimP(L(P1, P2, P3, P4)) = 1 otherwise.
b) Show that the space of irreducible conics in P2 is an open subset U ⊂ P(L).
What geometric objects can be associated to the points in P(L) \ U ?

2.22. Show that the plane curves C1 = V (ZY 2−X3 +XZ2) and C2 = V (X3Z−Y 2Z2 +
X2Y 2) are birational (hint: standard Cremona transformation). Describe occurring
singularities.

2.23. Let Hd ⊂ Pn be a hypersurface of degree d . Show that the complement Pn \Hd is
an affine variety.

2.24. Let f(X0, . . . , Xn) = X0g(X1, . . . , Xn) + h(X1, . . . , Xn), where g is a homogene-
ous polynomial of degree d − 1 and h is a homogeneous polynomial of degree d .
Assuming that f is irreducible, prove that the variety V (f) is rational.

2.25. Show that every isomorphism f : P1 → P1 is a projective transformation.

2.26. Is the union (resp. the intersection) of quasi-projective algebraic sets a quasipro-
jective algebraic set?

2.27. Let V be a projective variety over an algebraically closed field k . Show that O(V ) =
k , that is, every rational function, regular on the whole of V , is constant. Hints:
show that on each standard open affine set Vi an r ∈ O(V ) has the form r = fi/X

Ni
i

with fi ∈ SNi
(V ) homogeneous of degree Ni . Show that for N sufficiently large

multiplication with r is an endomorphism of the vector space SN(V ). Use the
Theorem of Cayley–Hamilton to conclude that r is a root of a polynomial with
coefficients in k ; alternatively, consider an eigen vector and show that r equals the
eigen value.

2.28. Show that every regular map from a projective variety to an affine variety maps to
a point.

2.29. Let C = V (f) ⊂ A2(C) and consider the blow up σ : Bl0A2 → A2 . Put f̃ = f ◦ σ .
If 0 ∈ V (f), then the exceptional curve E is an irreducible component of V (f̃),
and the closure of V (f̃) \ E is the strict transform C̄ of C . Compute an equation
for C̄ for the following curves:
a) x2 − y2 ,
b) x2 − y3 ,
c) x2 − yn , n ≥ 4,
d) x4 − y4 .


