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Introduction

What is algebraic geometry?

Euclidean geometry studies figures composed of lines and planes,
culminating in the classification of the Platonic solids. Already in an-
tiquity more complicated curves and surfaces were considered. Since
Descartes it is customary to describe them by equations.

We recall the possible (smooth) curves of degree two:

ellipse
x2

a2
+
y2

b2
= 1

parabola y = ax2

hyperbola
x2

a2
− y2

b2
= 1

This list gives a classification up to Euclidean transformations: we have
used coordinate transformations to place the figure in a particularly
nice position. If we are not interested in metrical properties, we do not
consider ellipses with different a, b as distinct, and we allow rescaling
of the axes. Then there is only one type of ellipse. These curves are
known as conic sections, or shortly conics. The name is explained by
the following uniform description: take an ordinary cone z2 = x2 + y2

and intersect with planes in 3-space, not passing through the origin.
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4 INTRODUCTION

The picture is from http://en.wikipedia.org, originally uploaded
by Duk, released under the GNU Free Documentation License.

If the normal vector of the plane lies inside the cone, we get an
ellipse, if it lies outside the cone an hyperbola, and finally a parabola
if the plane is parallel to a line on the cone.

Remark. We get singular conics (two intersecting lines or a double
line) by taking planes through the origin.

So in a certain sense there is only one type of nonsingular conic.
This is made precise in projective geometry. If we have two planes,
then projection from the origin sets up a correspondence between the
points of both planes, except that some points do not have an image,
while other ones are not an image, because lines parallel to a plane do
not intersect it. To get rid of these exceptions, we adjoin these points as
‘ideal points’, which are called points at infinity. In this way each line
through the origin in 3-space corresponds to a point in the projective
plane. Now two lines always intersect in one point, and there are no
parallel lines anymore. The difference between ellipse, parabola and
hyperbola only occurs if we go back to an affine (Euclidean) plane by
singling out a line as line at infinity.

We have thus one type of conic section, which might be exemplified
by the equation x2 + y2 = 1. But what about x2 + y2 = −1? This
equation also defines a curve, if we allow complex solutions. In fact,
even if one is interested in problems about real solution sets of real
equations, a good strategy is to first solve the problem over the complex
numbers, and then study the reality of the solution. Most often we will
be interested in the complex case.

We are going to study the solution sets of equations (often in projec-
tive space). In algebraic geometry this is done with algebraic methods.
In contrast to analysis, we do not have the concept of limit and con-
vergence of series. So equations have to be finite sums of terms. We
can now give a first answer to the question, what algebraic geometry
is.

Algebraic geometry studies the solution sets of systems
of polynomial equations.

The algebra needed goes under the name of commutative algebra,
which might be described as the study of systems of polynomials.

We allow coefficients in an arbitrary field: we look at systems of
polynomials in the polynomial ring

k[X1, . . . , Xn] .

Special cases are of course k = C, but also k = Q, important for number
theory. But k can also be a finite field. This case has applications to
coding theory.

http://en.wikipedia.org/wiki/File:Conic_sections_2.png
http://en.wikipedia.org
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It is probably surprising that algebraic geometry is also very much
related to theoretical physics. There are theories that the world is not
four-dimensional (space-time), but that it has some extra dimensions,
on a much smaller scale, making them not directly observable. Accord-
ing to one theory, the world is 10-dimensional, with the six extra real
dimensions accounted for by compact complex 3-dimensional algebraic
manifolds.

In this course we will develop the general theory of affine and pro-
jective varieties (in arbitrary dimensions), but the concrete applications
will be to curves and surfaces. The first one concerns cubic curves. It
turns out that they are not only points sets, but also have the structure
of an abelian group. This makes them relevant for coding theory. The
second concrete case is that of cubic surfaces.

In the following picture (by Oliver Labs, from The Cubic Surface
Homepage) one can see some straight lines on such a surface. In fact
there are always exactly 27 (again allowing complex solutions). To
prove this, we first develop some more general theory.

Due to lack of time we do not treat the resolution of curve singu-
larities, mentioned in the course syllabus.

http://cubics.algebraicsurface.net
http://cubics.algebraicsurface.net




CHAPTER 1

Affine algebraic varieties

In these notes a ring will always be a commutative ring with unit.

1.1. Algebraic sets

We want to study solutions of polynomial equations in several vari-
ables.

Definition 1.1. Let k be a field. The affine n-space over k, de-
noted by An(k) or simply An, if the field k is understood, is the set of
n-tuples of elements of k:

An(k) = {(a1, . . . , an) | ai ∈ k for 1 ≤ i ≤ n} .

Let k[X1, . . . , Xn] be the ring of polynomials in n variables with
coefficients in k. A point P = (a1, . . . , an) ∈ An(k) is a zero of a
polynomial f ∈ k[X1, . . . , Xn] if f(P ) = f(a1, . . . , an) = 0.

Definition 1.2. Given a set S of polynomials in k[X1, . . . , Xn] the
zero set of S is

V (S) = {P ∈ An(k) | f(P ) = 0 for all f ∈ S} ⊂ An(k) .

A subset X ⊂ An(k) is an algebraic set if X = V (S) for some S ⊂
k[X1, . . . , Xn].

Note that different subsets of k[X1, . . . , Xn] can give rise to the
same algebraic set. If I is the ideal generated by S, that is

I = {f ∈ k[X1, . . . , Xn] | f =
∑l

i=1 qihi with hi ∈ S} ,
then V (I) = V (S). Therefore every algebraic set is of the form V (I)
for some ideal I.

Proposition 1.3. Every algebraic set is the common zero set of a
finite number of polynomials.

Notation. We write V (f1, . . . , fn) in stead of the more correct
V ({f1, . . . , fn}).

The proposition follows from a theorem in commutative algebra,
known as Hilbert basis theorem, which we prove below.

Proposition–Definition 1.4. Let R be a ring. The following
conditions are equivalent:

(1) every ideal I is finitely generated
7
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(2) R satisfies the ascending chain condition (a.c.c): every ascend-
ing chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ . . . is eventually stationary,
that is, for some m we have Im = Im+1 = Im+2 = . . . .

If R satisfies these conditions, it is called Noetherian.

Proof.
(1) ⇒ (2). Given I1 ⊂ I2 ⊂ I3 ⊂ . . . , we set I :=

⋃
i Ii. Then I is

an ideal, generated by finitely many elements f1, . . . , fk. Each fj is
contained in some Im(j). Set m = max{m(j)}. Then fj ∈ Im(j) ⊂ Im
for all j, so Im = I and therefore Im = Im+1 = Im+2 = . . . .
(2) ⇒ (1). Assume that there is an ideal I that cannot be generated
by finitely many elements. We construct inductively a sequence of
elements fj ∈ I by taking f1 arbitrary and fj+1 ∈ I \(f1, . . . , fj). Then
the sequence (f1) ⊂ (f1, f2) ⊂ (f1, f2, f3) ⊂ . . . is not stationary. �

Example 1.5. A field k is a Noetherian ring, as the only ideals are
(0) and (1) = k.

Theorem 1.6 (Hilbert Basis Theorem). If R is a Noetherian ring,
then R[X] is Noetherian.

Remark 1.7. From the example and Hilbert’s Basis Theorem it
follows by induction that every ideal in k[X1, . . . , Xn] can be generated
by a finite set of elements. In old-fashioned terminology an ideal basis
is a finite generating set, so the previous statement can be formulated
as: every ideal in k[X1, . . . , Xn] has a basis. This explains the name of
the theorem.

Proof of the Theorem. Suppose I ⊂ R[X] is not finitely gen-
erated. We define a sequence fj ∈ I: let f1 be a polynomial of minimal
degree d1, and pick fj+1 of lowest degree dj+1 in I \ (f1, . . . , fj). For all
j let cj be the leading coefficient of fj (i.e., fj = cjX

dj +c′jX
dj−1 + . . . ).

The chain of ideals (c1) ⊂ (c1, c2) ⊂ . . . in the Noetherian ring R is
eventually stationary, so there is an m with cm+1 ∈ (c1, . . . , cm). Let
cm+1 =

∑m
i=1 rici for some elements ri ∈ R. Then the polynomial

fm+1 −
m∑
i=1

riX
dm+1−difi

is not contained in (f1, . . . , fm), but has lower degree than fm+1, con-
tradicting the choice of fm+1. Therefore R[X] is Noetherian. �

We note the following properties of algebraic sets.

Lemma 1.8.
(1) V (0) = An(k), V (k[X1, . . . , Xn]) = V (1) = ∅
(2) if I ⊂ J , then V (I) ⊃ V (J)
(3) V (I1 ∩ I2) = V (I1) ∪ V (I2)
(4) V (

∑
λ∈Λ Iλ) =

⋂
λ∈Λ V (Iλ)
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Proof. Only the third property is not obvious. As Ii ∩ I2 ⊂ I1,
we have V (I1) ⊂ V (Ii ∩ I2). Also V (I2) ⊂ V (Ii ∩ I2), which gives the
inclusion ‘⊂’. For the opposite inclusion, suppose that P ∈ V (Ii ∩ I2),
but P /∈ V (I1). Then there exists an f ∈ I1 with f(P ) 6= 0. For all
g ∈ I2 we have fg ∈ I1 ∩ I2, so f(p)g(p) = 0 and therefore g(P ) = 0.
This means that P ∈ V (I2). �

The properties (1), (3) and (4) are the defining properties of a
topology by means of closed sets.

Definition 1.9. The Zariski topology on An is the topology whose
closed sets are the algebraic sets.

Remark 1.10. The Zariski topology is not Hausdorff. E.g., a closed
subset of A1(k) consists of finitely many points. An open sets is there-
fore the complement of finitely many points. If the field k is infinite,
two non-empty open sets always have an non-empty (in fact infinite)
intersection.

1.2. Hilbert’s Nullstellensatz

We associated to an ideal a zero set by the operation V (−). In this
section we consider the question to which extent the zero set determines
the ideal.

Definition 1.11. Let X be a subset of An(k). The ideal of X is
I(X) = {f ∈ k[X1, . . . , Xn] | f(P ) = 0 for all P ∈ X} .

Example 1.12. Let X be the subset of A1(R), consisting of all
points with integer coordinate. Then I(X) = (0).

Proposition 1.13.
(1) X ⊂ Y ⇒ I(X) ⊃ I(Y ),
(2) X ⊂ V (I(X)) with equality if and only if X is an algebraic

set,
(3) J ⊂ I(V (J)).

Proof. We prove only the equality statement in (2). If X = V (J),
then J ⊂ I(X) and we get X ⊂ V (I(X)) ⊂ V (J) = X. Conversely, if
X = V (I(X), then X is an algebraic set defined by the ideal I(X). �

What about equality in (3)? There are two ways in which it can go
wrong.

Example 1.14. Let k = R, J = (X2 + 1) ⊂ R[X]. Then V (J) = ∅,
but J 6= I(∅) = R[X]. So if the field is not algebraically closed, there
might not be enough zeroes.

Example 1.15. Let k be algebraically closed, and f a polynomial
in k[X1, . . . , Xn]. Then f(P ) = 0⇔ f 2(P ) = 0, so V (f) = V (f 2), but
(f 2) 6= (f).
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Definition 1.16. Let I be an ideal in a ring R. The radical of I is

rad(I) =
√
I = {f ∈ R | fn ∈ I for some n} .

An ideal I is called radical, if I =
√
I.

Remark 1.17. The radical is again an ideal. Suppose f, g ∈
√
I, so

fm ∈ I and gn ∈ I. Then (f +g)r =
∑(

r
k

)
fkgr−k ∈ I if r ≥ n+m−1.

Remark 1.18. Obviously V (I) = V (
√
I).

Theorem 1.19 (Nullstellensatz). Let k be an algebraically closed
field. For every ideal J ⊂ k[X1, . . . , Xn] one has

I(V (J)) =
√
J .

This theorem follows from the weak form of the Nullstellensatz,
with Rabinowitsch’ trick.

Theorem 1.20 (Weak form of the Nullstellensatz). If J 6= (1) is
an ideal in k[X1, . . . , Xn], k algebraically closed, then V (J) 6= ∅.

Proof of the nullstellensatz from its weak form.
Obviously

√
J ⊂ I(V (J)). Now let f ∈ I(V (J)), so f(P ) = 0 for

all P ∈ V (J). Consider the ideal J̄ ⊂ k[X1, . . . , Xn, T ] generated by
Tf − 1 and J . Then J̄ has no zero in An+1(k), as f(P ) = 0 for all
common zeroes P of J . Therefore, by the weak Nullstellensatz, 1 ∈ J̄ ,
so we can write

1 =
m∑
i=1

ai(X1, . . . , Xn, T )fi + b(X1, . . . , Xn, T )(Tf − 1) ,

where (f1, . . . , fm) are generators of J . Let N be the highest power
of T appearing in the ai and b. Multiplying the above identity by fN
gives a relation of the form

fN =
m∑
i=1

a′i(X1, . . . , Xn, T f)fi + b′(X1, . . . , Xn, T f)(Tf − 1) .

Now substitute T = 1/f , that is Tf = 1. We find that

fN =
m∑
i=1

a′i(X1, . . . , Xn, 1)fi ,

so fN ∈ J . �

In the older literature the weak form is shown using elimination
theory. Following André Weil’s slogan

eliminate elimination theory
most books now follow Artin–Tate and Zariski, and reduce it to an
algebraic fact, that a field, which is finitely generated as k-algebra, is
algebraic over k. The advent of computer algebra has led to renewed
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interest for older methods. We now give a proof using elimination.
We need to recall some facts about resultants, which we use again in
Chapter 3 .

1.3. The resultant

Let k be a field. Then the polynomial ring k[X] in one variable is
a unique factorisation domain (UFD). Another example of a UFD is
the ring of integers Z. There is a strong analogy between primes and
irreducible polynomials. In general, given an integral domain A, one
has the concepts of prime and irreducible: let p ∈ A, p 6= 0, p not a
unit, then p is irreducible if p = ab implies a or b is a unit, and p is
prime if p|ab implies p|a or p|b. Every prime element is irreducible, but
the converse is false in general.

Example 1.21. Let A = C[X, Y, Z]/(Z2 − XY ). The class z of
Z is irreducible, but not prime, as z|xy but neither z|x nor z|y. The
ring A is an integral domain, but not a UFD: the element z2 has two
different factorisations: z2 = z · z and z2 = x · y.

In a UFD every irreducible element is prime. If A is a UFD, also
A[X] is a UFD (see the exercises), and by induction we obtain for a
field k that k[X1, . . . , Xn] is a UFD.

Let A be a unique factorisation domain. We are interested in the
question when two polynomials f(X), g(X) ∈ A[X] have a common
factor. Cases of interest are A = k, but also A = k[Y, Z]. Let:

f = a0X
m + a1X

m−1 + · · ·+ am,

g = b0X
n + b1X

n−1 + · · ·+ bn,

where the case that either a0 = 0 or b0 = 0 (but not both) is allowed.

Proposition 1.22. The polynomials f and g in A[X] have a non-
constant factor h in common, if and only there exist polynomials u
and v of degree less than m, resp. n, not both vanishing, such that
vf + ug = 0.

Proof. Wemay suppose that a0 6= 0, som = deg f . All irreducible
factors of f have to occur in ug, and not all can occur in u, because
deg u < deg f ; therefore f and g have a factor in common. Conversely,
given h one finds a v and a u of degree less than n and m, such that
f = −uh and g = vh, so the equation vf + ug = 0 is satisfied. �

Now put:

u = u0X
m−1 + · · ·+ um−1,

v = v0X
n−1 + · · ·+ vn−1,

and consider the coefficients as indeterminates. Comparison of coeffi-
cients of powers of X in vf+ug = 0 gives the system of linear equations
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for the ui and vi:

a0v0 + b0u0 = 0

a1v0 + a0v1 + b1u0 + b0u1 = 0

...
amvn−1 + bnum−1 = 0 .

This system has a solution if and only if the determinant of the coeffi-
cient matrix vanishes: the vanishing of the determinant is a necessary
and sufficient condition for the existence of a solution over the quotient
field Q(A) of A, and by clearing denominators we get a solution over
A. After transposing we get the following determinant R(f, g), which
is called the resultant of f and g:

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . am
a0 a1 a2 . . . am

. . . . . . . . . . . . . . . . . . . . . . . . . . .
a0 a1 a2 . . . am

b0 b1 . . . bn−1 bn
b0 b1 . . . bn−1 bn

. . . . . . . . . . . . . . . . . . . . . . . . .
b0 b1 . . . bn−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From Proposition 1.22 follows:

Proposition 1.23. The polynomials f and g have a non-constant
factor h in common, if and only R(f, g) = 0 ∈ A.

Remark 1.24. Writing the resultant as the determinant of the
transpose of the coefficient matrix is traditional. A different way to
find the matrix is the following. Consider the free module A[X]n+m−1

of polynomials of degree at mostm+n−1 and write polynomials as row
vector of coefficients. The existence of a relation vf + ug = 0 is equiv-
alent to the fact that the polynomials f , Xf , . . . , Xn−1f , g, Xg, . . . ,
Xm−1g are linearly dependent row vectors in the (m+ n)-dimensional
vector space Q(A)[X]n+m−1. The resultant is the determinant express-
ing this fact.

Remark 1.25. If A is a polynomial ring, and ai and bi are homo-
geneous polynomials of degree i, then R(f, g) ∈ A is a polynomial of
degree mn.

Remark 1.26. The resultant is in fact a universal polynomial in
the ai and bj with integral coefficients.

The left-hand side of the last equation amvn−1 + bnum−1 = 0 is the
coefficient of the constant term in vf + ug. So the first m + n − 1
equations describe the condition that vf + ug does not involve X. A
solution (v, u) for this system of m + n − 1 linear equations in m +
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n variables is given by the maximal minors of the coefficient matrix.
Inserting this solution in the last equation computes the determinant
R(f, g). This shows:

Proposition 1.27. For any two polynomials f and g there exist
polynomials u and v with deg u < deg f and deg v < deg g, such that:

vf + ug = R(f, g).

1.4. Hilbert’s Nullstellensatz (continued)

We will prove the Nullstellensatz by induction on the number of
variables. In the induction step the last variable will play a special role,
and we have to bring polynomials in suitable form. For an algebraically
closed field this is possible by the following lemma.

Lemma 1.28. Let f ∈ k[X1, . . . , Xn] be a polynomial of degree d
over an infinite field k. After a suitable coordinate transformation this
polynomial has a term of the form cXd

n for some non-zero c ∈ k.

Proof. Introduce new coordinates by Xi = Yi + aiXn for i < n.
Let fd be the highest degree part of f . Then
f(Y1 + a1Xn, . . . , Yn−1 + an−1Xn, Xn) = fd(a1, . . . , an−1, 1)Xd

n + · · · ,
where the dots stand for terms of lower degree in Xn. As k is infinite,
we can find values for the ai such that fd(a1, . . . , an−1, 1) 6= 0. �

Theorem 1.29 (Weak form of the Nullstellensatz). If J 6= (1) is
an ideal in k[X1, . . . , Xn], k algebraically closed, then V (I) 6= ∅.

Proof. We use induction on the number of variables. For n = 1
each proper ideal in k[X1] is principal, so the result follows because k
is algebraically closed.

Let J be a proper ideal in k[X1, . . . , Xn]. If J = (0), then V (J) =
An(k). Otherwise we can, as the algebraically closed field k is infinite,
by a suitable coordinate transformation achieve that J contains an
element f of degree d, in which the term cXd

n, c 6= 0, occurs. Let
Jn−1 = J ∩ k[X1, . . . , Xn−1] .

It consists of all polynomials in J , not involving Xn. This is an ideal
(possibly the zero ideal) in k[X1, . . . , Xn−1]. As 1 /∈ J and Jn−1 ⊂
J , we have 1 /∈ Jn−1. By the induction hypothesis V (Jn−1) 6= ∅ in
An−1(k). Let A = (a1, . . . , an−1) ∈ V (Jn−1) and consider the roots bi
of f(a1, . . . , an−1, Xn). By our assumption on the form of f there are
finitely many bi. Suppose that none of the points Pi = (a1, . . . , an−1, bi)
is a common zero of J . So for each Pi there exists a polynomial gi ∈ J
with gi(Pi) 6= 0. Therefore one can find a g ∈ J with g(Pi) 6= 0 for all i.
An explicit formula can be given with a kind of Lagrange interpolation.
Set g =

∑
i gi
∏

j 6=i(Xn − bj). By construction f(a1, . . . , an−1, Xn) and
g(a1, . . . , an−1, Xn) have no common roots, and therefore their resultant
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is non-zero. This means that the resultant R(f, g) ∈ k[X1, . . . , Xn−1]
does not vanish at A. But R(f, g) = vf+ug ∈ Jn−1, so R(f, g)(A) = 0.
This contradiction shows that at least one of the points Pi is a zero of
J . �

Proposition 1.30. A proper ideal I ⊂ k[X1, . . . , Xn], with k al-
gebraically closed, is a maximal ideal if and only if I is of the form
(X1 − a1, . . . , Xn − an) for some point P = (a1, . . . , an).

Proof. We abbreviate R = k[X1, . . . , Xn]. A proper ideal I is
maximal if and only if R/I is a field. Consider now the surjective
evaluation map R → k, f 7→ f(P ). Its kernel is the ideal (X1 −
a1, . . . , Xn − an), so we find that R/(X1 − a1, . . . , Xn − an) ∼= k, and
the ideal is maximal (this direction holds for any field).

Let now I be a maximal ideal and P = (a1, . . . , an) ∈ V (I), ex-
isting by the weak Nullstellensatz. Then I(P ) ⊃ I(V (I)) ⊃ I, so by
maximality I = I(P ). As (X1− a1, . . . , Xn− an) ⊂ I(P ), we get maps
k ↪→ R/I(P ) → R/(X1 − a1, . . . , Xn − an) ∼= k, whose composition is
an isomorphism. Therefore I(P ) = (X1 − a1, . . . , Xn − an). �

Remark 1.31. For general k there are maximal ideals, which look
differently, e.g., (X2 + 1) ⊂ R[X]. Observe that R[X]/(X2 + 1) ∼= C.

1.5. Irreducible components

For R = k[X1, . . . , Xn] we have now two operations V (−) and I(−),

{ideals of R}
V−→←−
I
{subsets of An(k)}

which for algebraically closed k induce bijections
{radical ideals of R} ⇐⇒ {algebraic subsets of An(k)}

∪ ∪
{maximal ideals of R} ⇐⇒ {points of An(k)}

Between radical ideals and maximal ideals lie prime ideals. Recall that
a proper ideal I is prime if ab ∈ I implies that a ∈ I or b ∈ I. We
discuss what this concept corresponds to on the side of algebraic sets.

Definition 1.32. An algebraic set X is irreducible, if whenever
X = X1 ∪X2 with X1, X2 algebraic, then X = X1 or X = X2.

Proposition 1.33. An algebraic set X is irreducible if and only if
its ideal I(X) is prime.

Proof.
(⇐) Suppose X = X1∪X2 is a non-trivial decomposition. As Xi 6= X
there are by Proposition 1.13(2) functions fi ∈ I(Xi) \ I(X), i = 1, 2.
As f1f2 ∈ I(X), the ideal I(X) is not prime.
(⇒) Suppose f1f2 ∈ I(X), but fi /∈ I(X). Then Xi = V (fi, I(X)) is
algebraic with Xi  X, but X ⊂ X1 ∪X2. �
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Remark 1.34. We can formulate the concept of irreducibility for
any topological space: X is reducible ifX = X1∪X2 withX1, X2 proper
closed subsets of X. For other topologies than the Zariski topology this
concept is not interesting: a Hausdorff space is always reducible unless
it consists of at most one point.

Definition 1.35. A topological space X is Noetherian if it satisfies
the descending chain condition: every descending chain X ⊃ X1 ⊃
X2 ⊃ . . . of closed subsets is eventually stationary.

Remark 1.36. An affine algebraic set is a Noetherian topological
space.

Proposition–Definition 1.37. Every Noetherian topological spa-
ce has a decomposition

X = X1 ∪ · · · ∪Xr

with the Xi irreducible, and satisfying Xi 6⊂ Xj for all i 6= j. The
Xi are called irreducible components of X. The decomposition into
irreducible components is unique (up to permutation).

Proof. Suppose that there exists a space X for which the state-
ment is false. Then X = X1 ∪X ′1 is reducible and at least one of X1,
X ′1 is reducible and does not have a decomposition into a finite number
of components, say X1. Then X1 = X2∪X ′2 with say X2 does not have
a decomposition. Continuing this way we find an infinite chain

X ! X1 ! X2 ! . . . ,

contradicting the fact that X is Noetherian.
The condition Xi 6⊂ Xj can be satisfied by omitting superfluous terms.
Uniqueness is left as an exercise. �

Definition 1.38. An irreducible algebraic subset V ⊂ An(k) is
called an affine k-variety, or affine variety .

Remark 1.39. Some authors do not include irreducibility in the
definition, and call our algebraic sets for varieties. The reason for our
(traditional) terminology will soon become clearer.

Actually, we shall later on change the definition a bit and intro-
duce (abstract) affine varieties, independent of a given embedding in a
particular affine space.
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1.6. Primary decomposition

Now we have extended our correspondence with one more layer:

{ideals of R}
V−→←−
I

{subsets of An(k)}
∪ ∪

{radical ideals of R} 1:1←→ {algebraic subsets of An(k)}
∪ ∪

{prime ideals of R} 1:1←→ {irreducible subsets of An(k)}
∪ ∪

{maximal ideals of R} 1:1←→ {points of An(k)}

where the bijections hold for k algebraically closed. We would like to
change the top line to obtain a bijection also there, that is, we would
like to associate to an arbitrary (non-radical) ideal some kind of space.
Such situations occur naturally.

Example 1.40. Consider the projection of the parabola V (X −
Y 2) ⊂ A2 onto the X-axis.

X

Y

c0

√
c

−
√
c

yπ

Over the reals there lie two points over each X > 0, one over 0 and no
points over an X < 0. In the complex case for each c 6= 0 there are
two points over X = c, namely (c,±y) with y a root of the quadratic
equation y2 = c. As usually, to make it true that a quadratic equation
always has two roots, we count them with multiplicity. We say therefore
that y2 = 0 has a double root. Also geometrically we want to say that
over each complex point X = c there lie two points, so we say that over
the origin we have a double point. It is on the Y -axis defined by the
ideal (Y 2), and in the plane by (X, Y 2).
A somewhat different, but related way to consider the situation is that
for c 6= 0 we have two points, which come together in the limit c→ 0.

Definition 1.41. A fat point P is defined by an ideal I, whose
radical is a maximal ideal, defining a single point Pred. The multiplicity
of P is dimk k[X1, . . . , Xn]/I.
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More generally, to an ideal I ⊂ k[X1, . . . , Xn] we associate a space
X. This will be called an affine k-scheme. We do not give a construc-
tion here, as we will mostly work directly with the ideal I. The radical
of I defines the algebraic set Xred.

For algebraic sets we had a (unique) decomposition into irreducible
components. We want to have something similar for k-schemes. We
study the problem algebraically, purely in terms of ideals.

Definition 1.42. Let R be a Noetherian ring. An ideal I is irre-
ducible if I = I1 ∩ I2 implies I = I1 or I = I2.

Lemma 1.43. In a Noetherian ring every ideal is a finite intersec-
tion of irreducible ideals.

Example 1.44. A prime ideal is irreducible, but not every irre-
ducible ideal is prime: the ideal (X, Y 2) ⊂ k[X, Y ] is irreducible. The
ideal (X2, XY, Y 2) is not irreducible.

It turns out that the decomposition as finite intersection of irre-
ducible ideals is not unique. We need another concept.

Definition 1.45. A proper ideal in a ring R is primary if ab ∈ I
implies that a ∈ I or bn ∈ I for some n.

Proposition–Definition 1.46. Let I be a primary ideal. The
radical

√
I of I is the smallest prime ideal containing I. Set p =

√
I.

The ideal I is called p-primary.

Proof. If ab ∈
√
I, then (ab)m ∈ I for some m and therefore

am ∈ I or bmn ∈ I for some mn, that is, a ∈
√
I or b ∈

√
I, showing

that
√
I is prime. Let p ⊃ I be a prime ideal, and a ∈

√
I. Then

an ∈ I ⊂ p for some n, so a ∈ p, as p is prime. Therefore
√
I ⊂ p. �

Definition 1.47. Let I be an ideal in R and r ∈ R. The quotient
(I : r) is the ideal

(I : r) = {a ∈ R | ar ∈ I} .
Proposition 1.48. In a Noetherian ring R every irreducible ideal

is primary.

Proof. Let I be irreducible, and let ab ∈ I. Suppose a /∈ I.
Consider the sequence of ideals

I ⊂ (I : b) ⊂ (I : b2) ⊂ · · · .
By the ascending chain condition there is an n such that (I : bn) = (I :
bn+1). We show that (I + (bn))∩ (I + (a)) = I for such an n. As a /∈ I
and I is irreducible, it follows that I + (bn) = I, so bn ∈ I, showing
that I is primary. So let x ∈ I + (bn). We can write x ≡ rbn (mod I)
for some r ∈ R. If also x ∈ I + (a), then xb ∈ I as ab ∈ I. Therefore
rbn+1 ∈ I, so r ∈ (I : bn+1) = (I : bn). Thus rbn ∈ I, so also x ∈ I,
showing that (I + (bn)) ∩ (I + (a)) ⊂ I. �
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It now follows that in a Noetherian ring every ideal I has a primary
decomposition, that is, I =

⋂k
i=1 Ii, with Ii primary.

To get a sort of uniqueness of the decomposition, we can collect all
ideals with the same radical.

Lemma 1.49. If the ideals I1, . . . , Ik are p-primary then I =
⋂k
i=1 Ii

is p-primary.

Proof. First of all,
√
I =
√
∩ Ii = ∩

√
Ii = p. Now let ab ∈ I,

and suppose that a /∈ I. Then there is an j such that a /∈ Ij, hence
b ∈

√
Ij = p. So b ∈

√
I. Thus I is p-primary. �

Definition 1.50. A primary decomposition I = ∩ Ii is minimal if
all
√
Ii are distinct and Ii 6⊃

⋂
j 6=i Ij for all i.

We can achieve the first property by the lemma and the second by
omitting superfluous terms.

Lemma 1.51. Let I be a p-primary ideal. If r ∈ I, then (I : r) = R.
If r /∈ I, then (I : r) is p-primary. If r /∈ p, then (I : r) = I.

Proof. As I is an ideal, R ⊂ (I : r) if r ∈ I.
Now suppose that r /∈ I. Let a ∈ (I : r), so ar ∈ I. As r /∈ I we

have that a ∈
√
I. So I ⊂ (I : r) ⊂

√
I and therefore

√
(I : r) =

√
I =

p. Let ab ∈ (I : r) and suppose b /∈
√

(I : r) = p. As abr ∈ I and I is
primary, we have then ar ∈ I, so a ∈ (I : r). Thus (I : r) is p-primary.

If r /∈ p, and ar ∈ I, then a ∈ I, so (I : r) = I. �

Theorem 1.52. Let I = ∩ Ii be a minimal primary decomposi-
tion. Set pi =

√
I i. The ideals pi are independent of the particular

decomposition.

Proof. We show that the pi are precisely the prime ideals occur-
ring in the set of ideals

√
(I : r), with r ranging over R.

For any r ∈ R we have (I : r) = ( ∩ Ii : r) = ∩ (Ii : r). Therefore√
(I : r) = ∩

√
(Ii : r) =

⋂
r/∈Ii pi. If r is chosen such that

√
(I : r)

is prime, then
√

(I : r) must be one of the pi. Conversely, for each
i there exists an ri /∈ Ii and ri ∈

⋂
j 6=i Ij, as the decomposition is

minimal. Then
√

(I : r) = pi. �

Definition 1.53. The prime ideals pi of the theorem are associated
with I. The minimal elements of the set {pi, . . . , pk} are the isolated
prime ideals associated with I. The other ones are called embedded
prime ideals.

Let I be an ideal in k[X1, . . . , Xn], for simplicity k algebraically
closed. Then I defines a k-scheme. The radical

√
I defines the alge-

braic set Xred. The minimal primes pi correspond to the irreducible
components of Xred, and the embedded primes to subvarieties of these:
varieties embedded in irreducible components.
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Example 1.54. Let I = (X2, XY ) ⊂ k[X, Y ]. A primary decom-
position is I = (X) ∩ (X2, XY, Y 2). The zero set V (I) is obviously
the Y -axis. This is the isolated component, whereas (X, Y ) is an em-
bedded component. The primary decomposition is not unique: we can
also write I = (X) ∩ (X2, Y ).

Proposition 1.55. The isolated primary components are uniquely
determined by the ideal I.

Proof. Let I = ∩ Ii be a minimal primary decomposition. Then
the pi are uniquely determined. If the component pi is isolated, then
there exists an r /∈ pi with r ∈ pj for j 6= i. Then ∪ (I : rn) = Ii,
depending only on I and the pi. �

1.7. The ground field

As we have seen, we need an algebraically closed field (typically
C) to assure that equations have solutions. But often the coefficients
lie in a subfield (typically Q, in fact we mostly write equations with
integral coefficients). One then says that the variety is defined over the
subfield. To take this into account, we generalise the definition of the
operations V (−) and I(−).

Let k ⊂ K be a field extension. We consider ideals in k[X1, . . . , Xn],
but look at their zero sets in An(K). So given J one has

V (J) = {P ∈ An(K) | f(P ) = 0 for all f ∈ J}
and conversely for a subset X ⊂ An(K),

I(X) = {f ∈ k[X1, . . . , Xn] | f(P ) = 0 for all P ∈ X} .
This sets up a correspondence between ideals in k[X1, . . . , Xn] and
algebraic k-sets in An(K). We have a Zariski k-topology on An(K). If
X = V (J), then one says that X is defined over k and that k is the
field of definition, or ground field, of X. We regain the previous set-up
by taking k = K.

It is easy to check that the properties of V (−) and I(−) proved
above also hold in the more general situation of a field extension k ⊂
K. Also the Nullstellensatz I(V (J)) =

√
J remains true with the

same proof, starting from the weak form: if J 6= (1) is an ideal in
k[X1, . . . , Xn], then V (J) ⊂ An(K) is non-empty if K is algebraically
closed.

As consequence of the Nullstellensatz we saw that the maximal
ideals in K[X1, . . . , Xn], K algebraically closed, are of the from (X1 −
a1, . . . , Xn−an). This is no longer true if K is not algebraically closed.
E.g., the maximal ideals in Q[X] are of the form (f) with f a poly-
nomial, irreducible over Q. The algebraic theory suggests that also
for general fields maximal ideals in k[X1, . . . , Xn] define ‘points’. So
(X2 + 1) ⊂ R[X] ‘is’ two complex conjugate points.
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For simplicity (not at least of notation) we consider in the sequel,
just as before, only one field, and often we suppose it to be algebraically
closed.

1.8. Polynomial maps

Each polynomial f ∈ k[X1, . . . , Xn] defines a polynomial function
f : An(k) → k by the formula P 7→ f(P ). The polynomial function
determines the polynomial if k is infinite: if f, g ∈ k[X1, . . . , Xn] and
f(P ) = g(P ) for all P ∈ An(k), then f = g.

Definition 1.56. Let V be an algebraic set in An. A polyno-
mial function f : V → k is the restriction of a polynomial function
F : An(k)→ k to V .

Two polynomials F,G ∈ k[X1, . . . , Xn] define the same function on
V if and only if (F − G)(P ) = 0 for all P ∈ V , that is, if and only if
F −G ∈ I(V ).

Definition 1.57. The coordinate ring of V is the k-algebra k[V ],
which is the quotient

k[V ] = k[X1, . . . , Xn]/I(V ) .

The coordinate ring is the smallest ring, containing containing the
coordinate functions, explaining the traditional terminology. It is nat-
urally a k-algebra; recall that an algebra A over a field k (or shortly a
k-algebra) is a ring, which with its additive group structure is also a
vector space over k, while scalar multiplication is compatible with the
multiplication in the ring: (λa)b = a(λb) = λ(ab) for all λ ∈ k and
a, b ∈ A.

Let X ⊂ V be an affine algebraic set, then I(V ) ⊂ I(X) and
I(X)/I(V ) is an ideal in k[V ] = k[X1, . . . , Xn]/I(V ). So also on V we
have operations V (−) and I(−), and a Zariski topology.

Let now V ⊂ An(k) and W ⊂ Am(k) be algebraic sets and write
X1, . . . , Xn for the coordinates on An(k), and Y1, . . . , Ym for those on
Am(k).

Definition 1.58. A map f : V → W is a polynomial map if there
are polynomials F1, . . . , Fm ∈ k[X1, . . . , Xn], such that

f(P ) = (F1(P ), . . . , Fm(P )) ∈ W ⊂ Am(k)

for all P ∈ V .

Lemma 1.59. A map f : V → W is a polynomial map if and only
if fj := Yj ◦ f ∈ k[V ] for j = 1, . . . ,m.

Proof. If f is a polynomial map, then we can write fj(P ) = Fj(P )
for some polynomials, determined up to I(V ), so fj is a well-determined
element of k[V ].
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Conversely, if fj = Yj ◦ f ∈ k[V ], then by definition there exists a
polynomial Fj with Fj(P ) = fj(P ), so f(P ) = (F1(P ), . . . , Fm(P )). �

The composition of polynomial maps is defined in the obvious way.

Definition 1.60. A polynomial map f : V → W is an isomor-
phism, if f is a bijection with polynomial inverse: if there exists a
polynomial map g : W → V with f ◦ g = idW and g ◦ f = idV .

Example 1.61. Let V = A1(k), W = V (Y 2
1 − Y 3

2 ) ⊂ A2(k). The
polynomial map f : V → W , given by (Y1, Y2) = (X3, X2), is a bijec-
tion, but its inverse X = Y1/Y2 is not a polynomial map.

Theorem 1.62. Let V ⊂ An(k) and W ⊂ Am(k) be as above.
(1) A polynomial map f : V → W induces a k-algebra homomor-

phism f ∗ : k[W ]→ k[V ], given by f ∗(g) = g ◦ f .
(2) Any k-algebra homomorphism Φ: k[W ]→ k[V ] is of the form

Φ = f ∗ for a uniquely determined polynomial map f : V → W .

Proof.
(1) One has f ∗(g1 +g2) = (g1 +g2)◦f = g1◦f+g2◦f = f ∗(g1)+f ∗(g2)
and f ∗(g1g2) = (g1g2)◦f = (g1◦f)(g2◦f) = (f ∗g1)(f ∗g2). Furthermore
f ∗(a) = a for a ∈ k.
(2) Let yi = Yi mod I(W ) be the i-th coordinate function. We have
to define yi = fi(x1, . . . , xn), and we do this by fi(x1, . . . , xn) = Φ(yi).
Then f = (f1, . . . , fm) is a polynomial map f : V → An(k). We have
to show that f(V ) ⊂ W , or I(W ) ⊂ I(f(V )). Let G ∈ I(W ). Then
G ◦ f is a polynomial in the fi = Φ(yi). As Φ is a homomorphism,
G ◦ f = Φ(G) = Φ(0) = 0. So G ◦ f ∈ I(V ) and G ∈ I(f(V )). An
homomorphism is determined by its values on generators, so Φ = f ∗

and this determines f . �

Lemma 1.63.
(1) If U f−→ V

g−→ W , then (g ◦ f)∗ = f ∗ ◦ g∗.
(2) f : V → W is an isomorphism if and only if f ∗ : k[W ]→ k[V ]

is an isomorphism.

Remark 1.64. If I ⊂ k[X1, . . . , Xn] is an arbitrary ideal, then we
also call k[X1, . . . , Xn]/I =: k[X] the coordinate ring of the associated
k-scheme X. In particular, if X is a fat point, then k[X] is a finite-
dimensional k-algebra. A polynomial map f : X → Y is as before
given by restriction of a polynomial map An → Am and the correspon-
dence between polynomial maps and k-algebra homomorphims works
as above.

1.9. Regular and rational functions

In the remaining sections let k be an algebraically closed field.
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Definition 1.65. Let V be an affine algebraic set and f ∈ k[V ].
The set

D(f) = {P ∈ V | f(P ) 6= 0}
is a basic open set .

Definition 1.66. Let U be an open subset of V . A function
r : U → k is regular in P ∈ U if there exist elements g, h ∈ k[V ] such
that P ∈ D(h) ⊂ U and r = g/h on D(h). We denote the k-algebra of
all functions, regular on the whole of U , by O(U).

Remark 1.67. The representation r = f/g need not be unique.
For an example see the exercises.

Theorem 1.68. For a basic open set D(f) one has O(D(f)) =
k[V ][ 1

f
], where k[V ][ 1

f
] is the ring of polynomials in 1

f
with coefficients

in k[V ].

Corollary 1.69. O(V ) = k[V ].

Proof of the theorem. Let r ∈ O(D(f)). Consider the ideal
of denominators of r

∆r = {0} ∪ {h ∈ k[V ] | D(h) ⊂ D(f), r =
g

h
on D(h)} .

This is an ideal, as g/h = gk/hk, and if r = g/h = k/l, then also
r = (g + k)/(h + l). For all P ∈ D(f) we have r(P ) = g(P )

h(P )
with

h(P ) 6= 0, so P /∈ V (∆r), therefore V (∆r) ⊂ V (f), that is f vanishes
on V (∆r) and thus fn ∈ ∆r, by the Nullstellensatz. This implies that
r = g/fn on D(fn) = D(f). �

Lemma 1.70. Let U1 and U2 be open sets of V , r1 ∈ O(U1), r2 ∈
O(U2). Suppose that r1|U = r2|U on an open dense subset U with
U ⊂ U1 ∩ U2. Then r1|U1∩U2 = r2|U1∩U2.

Proof. Set A = {P ∈ U1∩U2 | r1|U1∩U2(P ) = r2|U1∩U2(P )}. It is a
closed subset of U1∩U2: if P ∈ U1∩U2\A and r1|U1∩U2−r2|U1∩U2 = f/g
on D(g) ⊂ U1 ∩ U2, then f(P ) 6= 0 and f/g 6= 0 on D(f) ∩D(g). As
U ⊂ A and U is dense in V , we have A = U1 ∩ U2. �

Corollary 1.71. Let U ⊂ V be dense and open and r ∈ O(U).
Then there are a uniquely determined dense open subset U ′ with U ⊂ U ′

and an r′ ∈ O(U ′) with r′|U = r, such that r′ cannot be extended to a
strictly larger open dense subset.

Definition 1.72. A regular function r, defined on an open dense
subset U ⊂ V , is called a rational function on V . The maximal open
subset U ′ to which r can be extended, is called the domain of definition
dom(r) of r, and V \ dom(r) its polar set.
One adds, subtracts and multiplies rational functions by doing this on
the intersection of their domains of definition. This makes the set R(V )
of all rational functions on V into a k-algebra.
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Theorem 1.73. Let V =
⋃k
i=1 Vi be the decomposition of V into

irreducible components. The map

R(V )→ R(V1)× · · · ×R(Vk) , r 7→ (r|V1 , . . . , r|Vk)

is an isomorphism of k-algebras.

Proof. We first show that the map is well-defined. Let r ∈ R(V ).
If W is an irreducible component of V , then dom(r) ∩W is open and
dense in W , and the restriction of r is regular on dom(r) ∩W : just
represent r locally as f/g with f, g ∈ k[V ], then r = f̄/ḡ with f̄ , ḡ the
residue classes of f and g in k[W ] = k[V ]/I(W ).

Now let (r1, . . . , rk) ∈
∏
R(Vi) and consider for all i the restriction

r′i of ri to (Vi \
⋃
j 6=i) ∩ Ui = U ′i . Then U ′i is open and dense in Vi and

U ′i ∩ U ′j = ∅ for i 6= j. The r′i define a regular function on the open
and dense subset ∪ Ui of V and therefore a rational function r on V .
Lemma 1.70 implies that the map (r1, . . . , rk) 7→ r is the inverse of the
map in the statement. �

If V is an (irreducible) variety, its ideal is prime, and the ring k[V ]
does not contain zero divisors. Therefore this ring has a quotient field
k(V ).

Theorem 1.74. Let V be an affine variety. Then R(V ) is isomor-
phic to the quotient field k(V ).

Proof. Each f/g ∈ k(V ) defines a rational function, as f/g is
regular on the open and dense set D(g). Conversely, let r be defined on
U . Then the closed set V \U is of the form V (g1, . . . , gk), so U ⊃ D(g)
for some polynomial g. By theorem 1.68 the restriction of r to D(g) is
of the form f/gn for some n. �

1.10. The local ring of a point

Let P ∈ V be a point of an affine algebraic set. Consider the
collection U of all open subsets of V containing P . On

⋃
U∈UO(U) we

define the equivalence relation r1 ∈ O(U1) ∼ r2 ∈ O(U2) if there exists
an U ⊂ U1 ∩ U2 ∈ U such that r1|U = r2|U . An equivalence class is
called a germ of a regular function at P .

Definition 1.75. Let P ∈ V be a point of an affine algebraic set.
Its local ring is the ring of germs of regular functions at P ∈ V

Remark 1.76. If V is irreducible, then

OV,P = {r ∈ R(V ) | r is regular in P} .

Lemma 1.77. The ring OV,P is a local ring, that is, it has exactly
one maximal ideal, which is

mV,P = {r ∈ OV,P | r(P ) = 0} .



24 1. AFFINE ALGEBRAIC VARIETIES

Proof. Let I ⊂ OV,P be an ideal which contains an f with f(P ) 6=
0. Then 1/f ∈ OV,P and 1 = (1/f) · f ∈ I. �

We recall the concept of localisation in rings.

Definition 1.78. Let R be a ring. A multiplicative system in R is
subset S ⊂ R∗ = R \ 0 with the properties that 1 ∈ S and if a, b ∈ S,
then ab ∈ S.

Example 1.79. An ideal I is prime if and only if R \ I is a multi-
plicative system. A ring R is an integral domain if and only if the zero
ideal is prime, that is if and only if R∗ is a multiplicative system.

We now allow elements of S in the denominator. Define the follow-
ing equivalence relation on R× S:

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃ s ∈ S : s(r1s2 − r2s1) = 0 .

An equivalence class is denoted by r
s
and the set of equivalence classes

by RS. With the usual addition and multiplication
r1

s1

+
r2

s2

=
r1s2 + r2s1

s1s2

,
r1

s1

r2

s2

=
r1r2

s1s2

RS becomes a ring with identity 1 = 1
1
and the map R→ RS, r 7→ r

1
is

a ring homomorphism. It is injective if and only if S does not contain
zero divisors.

Definition 1.80. The ring RS is the localisation of R with respect
to the multiplicative system S.

Example 1.81. If R is an integral domain and S = R∗, then RS is
the field of fractions Q(R). If R is arbitrary, and S the multiplicative
system of non-zero-divisors, then RS is the total ring of fractions , also
denoted by Q(R).

For an affine algebraic set V is R(V ) isomorphic to the total ring
of fractions Q(k[V ]).

Example 1.82. For an integral domain and an f ∈ R let Sf =
{fn | n ≥ 0}. We set Rf := RSf

. Then Rf = R[1/f ].

Notation. Let p be a prime ideal in R and Sp = R \ p. We set
Rp := RSp .

The ring Rp is a local ring with maximal ideal pRp.

Lemma 1.83. Let MP = {f ∈ k[V ] | f(P ) = 0} be the maximal
ideal defining a point P ∈ V The local ring OV,P of a point P is the
localisation of k[V ]MP

.

Proof. The condition that two fractions f/h ∈ O(U1) and g/k ∈
O(U2) represent the same germ is that they agree on the intersection
with an open subset of the type D(w) for some w ∈ k[V ] \MP , that
is whk(f/h− g/k) = w(fk − gh) = 0 ∈ k[V ]. This is the definition of
localisation with respect to k[V ] \MP . �
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1.11. Rational maps

Just as rational functions, which are not functions in a set-theoretic
sense, as they are not everywhere defined, we often need maps, which
are only defined on dense open subsets.

Definition 1.84. A rational map f : V 99K W ⊂ Am(k) between
algebraic sets is a map, defined on a dense open subset U ⊂ V , as
f = (f1, . . . , fm) with fi ∈ O(U) and f(U) ⊂ W .

For the definition of the composition of two rational maps f : V 99K
W and g : W 99K X one has to be careful. What should be g(f(P ))
if f(P ) lies outside the domain of definition of g? In particular, if the
whole image of V lies outside, we are in trouble. If we want to define
the composition for all g, we need that the image is dense.

Definition 1.85. A rational map f : V 99K W is dominant if
f(dom(f)) is a Zariski dense subset of W .

We now investigate what this means algebraically. As rational maps
can be defined on each irreducible component independently, we do this
only for varieties.

Proposition 1.86. A rational map f : V 99K W between varieties
is dominant if and only if the induced map f ∗ : k[W ]→ k(V ) is injec-
tive.

Proof. The map f ∗ is defined, as we always can replace yi by fi
in a polynomial. Then g ∈ ker f ∗ if and only if g(f(P )) = 0 for all
P ∈ dom(f) if and only if f(dom(f)) ⊂ V (g). So f ∗ is not injective if
and only if f(dom(f)) is a proper algebraic subset. �

If f ∗ is injective, we can also replace the yi by fi in denominators,
so we get a map f ∗ : k(W )→ k(V ) between function fields. Similar to
theorem 1.62 we have

Theorem 1.87.
(1) A dominant rational map f : V 99K W between varieties in-

duces a field homomorphism f ∗ : k(W )→ k(V ).
(2) Any field homomorphism Φ: k(W )→ k(V ) is of the form Φ =

f ∗ for a uniquely determined dominant map f : V 99K W .

Definition 1.88. A dominant rational map f : V 99K W between
varieties is a birational isomorphism if f ∗ is an isomorphism.

Definition 1.89. A variety V is rational if its function field k(V )
is isomorphic to k(X1, . . . , Xn).

Example 1.90. An irreducible conic (with a point P defined over
k) is k-rational: parametrise using the pencil of lines through P .
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1.12. Quasi-affine and affine varieties

Definition 1.91. A quasi-affine variety is an open subset of an
affine variety.
A morphism f from a quasi-affine variety U1 ⊂ V to U2 ⊂ W is a
rational map f : V 99K W , which is regular at every point P ∈ U1,
such that f(U1) ⊂ U2.
An isomorphism is a morphism f : U1 → U2 with inverse morphism:
there exists a morphism g : U2 → U1 with g ◦f = idU1 and f ◦ g = idU2 .

Example 1.92. A basic open set D(f) ⊂ V is a quasi-affine va-
riety. It is isomorphic to an affine variety, namely Γf ⊂ V × A1, the
graph of 1/f . If V = V (I) with I ⊂ k[X1, . . . , Xn], then Γf is de-
fined by the ideal I + (Tf − 1) ⊂ k[X1, . . . , Xn, T ]. The maps Γf →
D(f), (x1, . . . , xn, t) 7→ (x1, . . . , xn), and D(f) → Γf , (x1, . . . , xn) 7→
(x1, . . . , xn, 1/f(x1, . . . , xn)), are each other’s inverse.

We would like to say that D(f) is an affine variety. We extend
the concept of variety to be independent of a particular embedding in
affine space.

Definition 1.93. An (abstract) affine variety is a set V together
with a finitely generated k-algebra k[V ] of functions f : V → k, such
that for some choice of generators x1, . . . , xn the map V → An(k),
P 7→ (x1(P ), . . . , xn(P )) gives a bijection between V and an affine
variety im(V ) ⊂ An(k).
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Projective varieties

2.1. Projective space

Let V be a (finitely-dimensional) vector space over k. We define
the projectivisation of V as the space of all lines through the origin
(that is, all 1-dimensional linear subspaces).

Definition 2.1. Let V be a k-vector space. Consider on V \ {0}
the equivalence relation

v ∼ w ⇐⇒ ∃ λ ∈ k∗ : v = λw .

The projective space P(V ) associated to V is the quotient

P(V ) := (V \ {0})/ ∼ .

The dimension of P(V ) is dimV − 1.

In particular, if V = kn+1, we get projective n-space Pn = P(kn+1).
Its elements are called points. Two points (a0, . . . , an) ∈ kn+1 and
(λa0, . . . , λan) ∈ kn+1, λ ∈ k∗, define the same point in Pn, so only the
ratios of ai have a meaning. We write therefore (a0 : · · · : an).

Definition 2.2. If X0, . . . , Xn are coordinates on kn+1, then their
ratios are homogeneous coordinates on Pn, denoted by (X0 : · · · : Xn).

We can embed An in Pn by (X1, . . . , Xn) 7→ (1 : X1 : · · · : Xn). In
fact, for every 0 ≤ i ≤ n we have a standard way to decompose Pn into
affine space Ani and a hyperplane at infinity Hi = {(X0 : · · · : Xn) |
Xi = 0}; we embed An by (X1, . . . , Xn) 7→ (X1 : · · · : Xi : 1 : Xi+1 :
· · · : Xn). The image Ani is given by Xi 6= 0.

Example 2.3. Take n = 1. Over the reals we have RP1 ∼= A1∪{∞}.
Topologically, we get RP1 by identifying opposite points on the circle.
So RP1 is homeomorphic to S1.

In the complex case we have something similar: CP1 ∼= C ∪ {∞},
also known as the Riemann sphere. Stereographic projection maps
S2\{north pole} conformally onto C and can be extended to S2 → CP1.

27
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X0

X1

1

Example 2.4. For n = 2 we have that a line through the origin
intersects the affine plane V (X0 − 1) ⊂ k3 in a point, except when it
is parallel to this plane, that is, when it lies in V (X0). The space of
lines in this plane is a P1, also called the line at infinity. So we have a
decomposition P2 = A2 ∪ P1. Two lines in A2 with the same direction
are parallel in A2, but share the same point at infinity (represented by
the line through their common direction vector). Therefore two lines
in P2 always intersect.

X2

X1

1

X0

Definition 2.5. A projective subspace of P(V ) is a subset of the
form P(W ) for W a linear subspace W ⊂ V .

Lemma 2.6. Let P(W1) and P(W2) be projective subspaces of P(V ).
If dimP(W1) + dimP(W2) ≥ dimP(V ), then P(W1) ∩ P(W2) 6= ∅.
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Proof. We have P(W1) ∩ P(W2) = P(W1 ∩ W2) and dimW1 ∩
W2 − 1 ≥ dimW1 + dimW2 − dimV − 1 = dimP(W1) + dimP(W2)−
dimP(V ) ≥ 0. �

We want to look at zeroes in Pn of polynomials. The condition
that f ∈ k[X0, . . . , Xn] has a zero in (a0 : · · · : an) ∈ Pn means
that f vanishes on the whole line through (a0, . . . , an) ∈ An+1, that
is f(λa0, . . . , λan) = 0 for all λ ∈ k∗.

Definition 2.7. A polynomial f ∈ k[X0, . . . , Xn] is homogeneous
(of degree d) if all monomials in f have the same degree (namely, d).

Lemma 2.8. We have f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all
λ ∈ k, if f is homogeneous of degree d. The converse holds if k is infi-
nite. For all fields holds that f is homogeneous of degree d if and only if
f(λX0, . . . , λXn)−λdf(X0, . . . , Xn) as a polynomial in k[X0, . . . , Xn, λ]
is the zero polynomial.

Now write f = f0 + · · ·+ fd as a sum of homogeneous components.
Then f(λa0, . . . , λan) = f0(a0, . . . , an) + · · · + λdfd(a0, . . . , an) and if
f(λa0, . . . , λan) = 0 for infinitely many λ, then f0(a0, . . . , an) = · · · =
fd(a0, . . . , an) = 0. This means that (a0 : · · · : an) ∈ Pn is a zero of
homogeneous polynomials.

Remark 2.9. While the zero set of a homogeneous polynomial in
Pn is thus well defined, the value of a polynomial function in a point
makes no sense. In fact the only regular functions on Pn, and more
generally on projective varieties, are the constant functions.

Let f̄(X0, . . . , Xn) be a homogeneous polynomial and consider an
affine subspace An ⊂ Pn, say the one given by X0 6= 0. Putting X0 = 1
in f̄ gives a polynomial f(X1, . . . , Xn) = f̄(1, X1, . . . , Xn) in inhomo-
geneous coordinates (X1, . . . , Xn). Conversely, given V = V (f) ⊂ An
we find an equation f̄ for the projective closure V̄ by homogenising:
replace Xi by Xi/X0 and multiply with Xd

0 to clear denominators.
So if f(X1, . . . , Xn) = f0(X1, . . . , Xn) + · · · + fd(X1, . . . , Xn), then
f̄(X0, X1, . . . , Xn) = Xd

0f0(X1, . . . , Xn) + · · ·+ fd(X1, . . . , Xn).

Example 2.10. Consider the plane cubic curve C : Y 2 = X3 −X.
We study how it looks like at infinity. We first homogenise: the curve
C̄ ⊂ P2 is given by ZY 2 = X3 −XZ2. We look at the two other affine
charts, namely X = 1 and Y = 1. In X = 1 we have ZY 2 = 1 − Z2

and Z = X3 −XZ2 in Y = 1. The only point at infinity is the origin
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of the chart Y = 1. It is an inflection point.

Y 2 = X3 −X ZY 2 = 1− Z2 Z = X3 −XZ2

Coordinate transformations of Pn should come from coordinate
transformations in kn+1, which map lines through the origin to lines
through the origin. We also want them to be algebraic. The easiest
way to achieve this is to take linear transformations in kn+1, given
by an invertible (n + 1) × (n + 1)-matrix. These are in fact the only
automorphisms of Pn.

Definition 2.11. The group of projective transformations of Pn is
PGl(n+ 1, k) = Gl(n+ 1, k)/k∗.

2.2. Algebraic subsets

Definition 2.12. An ideal I ⊂ k[X0, . . . , Xn] is homogeneous if
for all f ∈ I the components fj of the homogeneous decomposition
f = f0 + · · ·+ fd satisfy fj ∈ I.

Proposition 2.13. An ideal is homogeneous if and only if it can
be generated by homogeneous elements.

Proof. The collection of homogeneous components of a set of gen-
erators also generate the ideal.

Conversely, if I is generated by homogeneous elements f (i) of degree
di, and f =

∑
r(i)f (i), we can decompose the r(i) into homogeneous

components r(i)
j and the homogeneous component of f of degree k is∑

r
(i)
k−dif

(i) ∈ I. �

Now we can define the homogeneous V –I correspondences between
homogeneous ideals and subsets of Pn.

V (J) = {P ∈ Pn | f(P ) = 0 for all homogeneous f ∈ J} ,
I(X) = {f ∈ k[X0, . . . , Xn] | f(P ) = 0 for all P ∈ X} .

Definition 2.14. An algebraic subset of Pn is a set of the form
V (J). The Zariski topology on Pn has the algebraic subsets as closed
sets.

With the Zariski topology Pn is a Noetherian topological space. In
particular, the concept of irreducibility is defined.
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We want to give the projective version of the Nullstellensatz. It
follows from the affine case: the zero set of a homogeneous ideal I ⊂
k[X0, . . . , Xn] is, considered in An+1, a cone with vertex at the origin.
There is one problem: whereas in An+1 the empty set is defined by the
ideal (1), this is not the only ideal with V (I) = ∅ ⊂ Pn.

Proposition 2.15. Let I ⊂ k[X0, . . . , Xn], k algebraically closed,
be a homogeneous ideal. Then

V (I) = ∅ ⊂ Pn ⇐⇒ (X0, . . . , Xn) ⊂
√
I .

Proof. Let Vaff(I) be the zero set of I in An+1. Then V (I) = ∅
if and only if Vaff(I) ⊂ {0}, and Vaff(I) = {0} if and only if

√
I =

(X0, . . . , Xn). �

Definition 2.16. A homogeneous ideal I ⊂ k[X0, . . . , Xn] with√
I = (X0, . . . , Xn) is called irrelevant .

If J is a homogeneous ideal and I is an irrelevant ideal, then V (J) =
V (I ∩ J). We can get rid of I by taking the radical, but this will not
do if we care about multiple structures.

Example 2.17. The ideal J = (X2) defines a ‘double line’ in P2.
There are many other ideals, which do the same, e.g.,

(X5, X2Y 3, X2Z3) = (X2) ∩ (X3, Y 3, Z3) .

In terms of primary decomposition, the affine cone over the double line
(a double plane in 3-space) has now an embedded component at its
vertex.

Definition 2.18. The saturation of a homogeneous ideal I is

Isat = {f ∈ k[X0, . . . , Xn] | ∃s ∀g ∈ (X0, . . . , Xn)s : gf ∈ I} .

In the sequel we consider mainly saturated homogeneous ideals.

Theorem 2.19 (projective Nullstellensatz). Let k be algebraically
closed. For every homogeneous ideal J ⊂ k[X0, . . . , Xn] with V (J) 6= ∅
we have I(V (J)) =

√
J .

Proof. If V (J) 6= ∅ then f ∈ I(V (J)) ⇔ f ∈ I(Vaff(J)) ⇔ f ∈√
J . �
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If we associate the irrelevant prime ideal (X0, . . . , Xn) to the empty
set, we obtain as before bijections (k algebraically closed) between ho-
mogeneous ideals of k[X0, . . . , Xn] and subsets in Pn:

{proper homog. saturated ideals} 1:1←→ {proj. k-schemes}
∪ ∪

{proper homog. radical ideals} 1:1←→ {proj. algebraic sets}
∪ ∪

{proper homog. prime ideals} 1:1←→ {proj. varieties}
∪ ∪

{proper homog. maximal ideals} 1:1←→ {points}

Besides taking the affine cone there is another important operation
between affine and projective geometry, of taking the projective closure.

Definition 2.20. Let An ⊂ Pn be the open subset with X0 6=
0. The projective closure V̄ of an affine algebraic set V ⊂ An is the
smallest closed subset containing V .

Definition 2.21. Let f ∈ k[X1, . . . , Xn] with homogeneous decom-
position f0(X1, . . . , Xn) + · · ·+ fd(X1, . . . , Xn), fd 6= 0. The homogeni-
sation of f with respect to the variable X0 is the homogeneous poly-
nomial f̄(X0, X1, . . . , Xn) = Xd

0f0(X1, . . . , Xn) + · · ·+ fd(X1, . . . , Xn).
The homogenisation of an ideal I ⊂ k[X1, . . . , Xn] is the ideal in

k[X0, . . . , Xn], generated by the homogenisations of all elements of I:

Ī = (f̄ | f ∈ I) .

Remark 2.22. For a principal ideal I = (f) one has Ī = (f̄), but
in general Ī is not generated by the homogenisations of the generators
of I. As an example, consider the generators X2

1 +X3
2 , X2

1 +X3
2 +X3

of the ideal I = (X2
1 + X3

2 , X3). Then Ī = (X0X
2
1 + X3

2 , X3), but
homogenising only the generators gives the ideal (X0X

2
1 +X3

2 , X0X
2
1 +

X3
2 + X2

0X3) = (X0X
2
1 + X3

2 , X
2
0X3). This ideal has an irreducible

component, contained in the hyperplane at infinity.
A set of generators (f1, . . . , fk) of I such that Ī = (f̄1, . . . , f̄k), is

called a standard basis . Buchberger’s algorithm finds standard bases.
It is implemented in computer algebra systems like Singular and
Macaulay 2.

Proposition 2.23. The ideal of the projective closure V̄ of an
affine algebraic set V with I(V ) = I is Ī.

Proof. Write g(1,−) for the polynomial in k[X1, . . . , Xn] obtained
by substituting X0 = 1 in g(X0, . . . , Xn). If g ∈ Ī, then g(1,−) ∈ I,
for if g =

∑
rif̄i, where fi ∈ I, then g(1,−) =

∑
ri(1,−)fi ∈ I. So

g(1,−) vanishes on V and therefore its homogenisation (which is g/Xa
0

for some a ≥ 0) vanishes on the closure V̄ . This shows that Ī ⊂ I(V̄ ).
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Conversely, if g ∈ I(V̄ ), then g(1,−) vanishes on V , so g(1,−) ∈ I
and its homogenisation is contained in Ī, by definition. Therefore g ∈
Ī �

An ideal I ⊂ k[X1, . . . , Xn] is prime if and only if its homogenisation
Ī ⊂ k[X0, . . . , Xn] is prime (see the exercises).

Proposition 2.24. The map V 7→ V̄ , which associates to an affine
algebraic set V its projective closure, is a bijection between the set of
non-empty affine algebraic sets in An and the set of projective alge-
braic sets in Pn without irreducible components, totally contained in
the hyperplane at infinity.

The set V is irreducible if and only if V̄ is irreducible.

2.3. Rational maps

We now define when a function is regular. This goes analogously to
the affine case (section 1.9). We suppose k to be algebraically closed.

Definition 2.25. Let V be a projective algebraic set, with ideal
I(V ) ⊂ k[X0, . . . , Xn]. The homogeneous coordinate ring of V is the
quotient

k[V ] = k[X0, . . . , Xn]/I(V ) .

Definition 2.26. Let V be a projective algebraic set and f ∈ k[V ].
The set

D(f) = {P ∈ V | f(P ) 6= 0}
is a basic open set .

Definition 2.27. Let U be an open subset of V . A function
r : U → k is regular in P ∈ U if there exist homogeneous elements
g, h ∈ k[V ] of the same degree such that P ∈ D(h) ⊂ U and r = g/h
on D(h). We denote the k-algebra of all functions, regular on the whole
of U , by O(U).

Now lemma 1.70 and corollary 1.71 hold with the same proof.

Definition 2.28. A regular function r, defined on an open dense
subset U ⊂ V , is called a rational function on V . The maximal open
subset U ′ to which r can be extended, is called the domain of definition
dom(r) of r, and V \ dom(r) its polar set.
One adds, subtracts and multiplies rational functions by doing this on
the intersection of their domains of definition. This makes the set R(V )
of all rational functions on V into a k-algebra.

We can study the ring of rational functions projective varieties by
looking at affine pieces. Let V̄ be a projective algebraic set. Then
there exists a linear function l such that no irreducible component of
V̄ is contained in V (l): if l ∈ I(V̄i) for all l, then (X0, . . . , Xn) ⊂ I(V̄i)
so V̄i = ∅. So l /∈ I(V̄i) for all l in an open and dense set in the space
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of linear forms. Take now a linear form in the intersection of these
open sets. By a (linear) coordinate transformation we can assume that
l = X0.

Let U be an open and dense set in V and therefore also in V̄ .
Let OV (U) be the ring of affine regular functions on U and OV̄ (U)
that of projective rational functions, regular on U . Every r ∈ OV (U)
can be considered as element of OV̄ (U): represent r = F/G on U
with F,G ∈ k[X1, . . . , Xn]. Now make F and G homogeneous of the
same degree; this makes r = f̄/ḡ for some f̄ , ḡ ∈ k[V̄ ]. Conversely,
dehomogenising by setting X0 = 1 shows that OV̄ (U) ⊂ OV (U). We
conclude:

Lemma 2.29. Let U be an open set in an affine algebraic set V with
projective closure V̄ . Then OV (U) = OV̄ (U).

Theorem 2.30. Let V̄ be the projective closure of a non-empty
affine algebraic set V . Then R(V̄ ) ∼= R(V ). If V̄ is irreducible, then
R(V̄ ) is a field.

Definition 2.31. A rational map f : V 99K Am from a projective
algebraic set V to affine space is a (partially defined map), given by
P 7→ (f1(P ), . . . , fm(P )) with fi ∈ R(V ). A rational map f : V 99K
W ⊂ Am is given by a rational map f : V 99K Am with f(dom f) ⊂ W .

Given a rational map f : V 99K Am we can consider it as a map
f : V 99K Am ⊂ Pm and clear denominators.

Definition 2.32. A rational map f : V 99K Pm from a projective
algebraic set V to projective space is a (partially defined map), given
by P 7→ (f0(P ) : · · · : fm(P )) with the fi ∈ k[V ] homogeneous of the
same degree.

There is a bijection between the set of rational maps f : V 99K Am
and the set of rational maps f : V 99K Pm with the property that
f(V ) 6⊂ (X0 = 0). We get the following characterisation of regularity.

Proposition–Definition 2.33. A rational map f : V 99K Pm
is regular at a point P ∈ V if there is a representation f = (f0 :
· · · : fm) such that there is at least one i with fi(P ) 6= 0, that is
P /∈ V (f0, . . . , fm). The open set, where f is regular, is the domain of
definition dom f of f .

Definition 2.34. A rational map f : V 99K W ⊂ Pm is given by a
rational map f : V 99K Pm with f(dom f) ⊂ W

Example 2.35 (The rational normal curve of degree n in Pn). De-
fine f : P1 → Pn by (S : T ) 7→ (Sn : Sn−1T : · · · : T n). This is a regular
map. Its image is given by

(
n
2

)
equations, conveniently written as

Rank

(
X0 X1 . . . Xn−1

X1 X2 . . . Xn

)
≤ 1 ,
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meaning that the 2× 2 minors XiXj+1 −Xi+1Xj vanish.

Definition 2.36. A rational map f : V 99K W between (affine or
projective) algebraic sets is birational , or a birational equivalence, if f
has a rational inverse g : W 99K V , i.e., f ◦ g = idW and g ◦ f = idV .

Proposition 2.37. A map f : V 99K W between varieties is bira-
tional if and only if f is dominant and f ∗ : k(W ) → k(V ) is an iso-
morphism. This is the case if and only if there exist open sets V0 ⊂ V
and W0 ⊂ W such that f |V0 : V0 → W0 is an isomorphism.

Proof. The only problem is to find V0 and W0. As Miles Reid
remarks in his book, you should skip this proof if you want to avoid
an headache. We have that f |dom f : dom f → W is regular, just as
g|dom g : dom g → V , where g is the inverse to f . We set

V0 = (f |dom f )
−1
(
(g|dom g)

−1(dom f)
)
,

W0 = (g|dom g)
−1
(
(f |dom f )

−1(dom g)
)
.

Note that V0 ⊂ dom f . So f |dom f (P ) ∈ (g|dom g)
−1(dom f) for P ∈ V0.

We observe that on (g|dom g)
−1(dom f) ⊂ dom g the map f ◦ g is a

composition of regular maps. As it equals the identity as rational map,
we get f |dom f ◦g|dom g(Q) = Q for all Q ∈ (g|dom g)

−1(dom f). Therefore
f |dom f (P ) = f |dom f ◦ g|dom g ◦ f |dom f (P ) and f |V0(P ) ∈ W0. The map
f |V0 : V0 → W0 is regular with inverse g|W0 : W0 → V0. �

We have now two types of isomorphism. Birational equivalence
gives a coarse classification, which is refined by biregular isomorphy.
Classical Italian algebraic geometry was mostly birational geometry.

Our earlier definition of rational varieties can be formulated as: a
variety is rational if it is birational to some Pn.

Example 2.38. The map f : P1 → C := V (ZY 2−X3) ⊂ P2, given
by (S : T ) 7→ (ST 2 : T 3 : S3), is birational. The restriction

f0 : P1 \ {(1 : 0)} ∼= A1 → C \ {(0 : 0 : 1)}
is an isomorphism.

Example 2.39 (Projection from a point). The map π : Pn 99K Pn−1,
(X0 : · · · : Xn) 7→ (X0 : · · · : Xn−1) is a rational map, everywhere
defined except at the point P = (0 : · · · : 0 : 1). Affinely, in the chart
(X0 = 1), this is just parallel projection An → An−1.

Let now n = 3 and consider the quadric Q = V (X0X3 − X1X2).
Then P = (0 : 0 : 0 : 1) lies on Q and the projection from P restricts
to a birational map Q 99K P2 with inverse

(X0, X1, X2) 7→ (X2
0 : X0X1 : X0X2 : X1X2) .

The inverse is defined outside the set V (X2
0 , X0X1, X0X2, X1X2) =

V (X0, X1X2), that is, outside the points (0 : 1 : 0) and (0 : 0 : 1).
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2.4. Products

Contrary to the affine case, where An × Am = An+m, the product
of projective spaces is not a projective space: Pn × Pm 6= Pn+m. We
argue in this section that it is a projective variety.

To define an abstract projective variety we cannot mimic the defini-
tion of an abstract affine variety (definition 1.93), as the homogeneous
coordinate ring is not preserved by biregular isomorphisms. E.g., the
rational normal curve of example 2.35 is isomorphic to P1, but its co-
ordinate ring is just the subring k[Sn, Sn−1T, . . . , T n] ⊂ k[S, T ].

We need a more general concept of variety. Just as a manifold is a
space obtained by glueing together pieces that look like Rn, a variety
can be obtained by glueing together affine varieties. Projective varieties
are of this type, because they have a covering by standard affine charts.
As we already have the variety as global object, we do not have to worry
about the glueing.

Returning to Pn×Pm, we can easily give a covering by affine pieces.
Recall that Ani ⊂ Pn is the set {Xi 6= 0}. Then Ani ×Amj ∼= An+m is for
every i, j a standard affine piece.

Definition 2.40. The Segre embedding sn,m : Pn×Pm → PN , N =
(n+ 1)(m+ 1)− 1, is the map given in bihomogeneous coordinates by

(X0, . . . , Xn;Y0, . . . , Ym) 7→ (X0Y0 : X0Y1 : · · · : XnYm−1 : XnYm) .

With coordinates Zij on PN it is the map Zij = XiYj.

The image Σm,n = sn,m(Pn × Pm) is the projective variety given by
the determinantal equations

Rank

Z00 . . . Z0m
...

...
Zn0 . . . Znm

 ≤ 1 .

The affine piece Ani × Amj ∼= An+m is mapped isomorphically to the
affine variety Σn,m ∩ {Zij 6= 0}.

So once the appropriate definitions are made, we can state that
the Segre embedding induces an isomorphism Pn × Pm → Σm,n and
that Pn × Pm is an abstract projective variety. As we do not have
these definitions at our disposal, we have to content us with defining
the product of Pn and Pm to be Σm,n. The product of a projective
subvarieties of Pn and Pm is a subvariety of Σm,n.

Definition 2.41. A quasi-projective variety is an open subset of a
projective variety.

This concept includes affine and projective varieties.
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2.5. Linear systems

Example 2.42. The Veronese embedding of P2 in P5 is given by

(X : Y : Z) 7→ (X2 : XY : XZ : Y 2 : Y Z : Z2) .

Its image, the Veronese surface V2, is given by the (2× 2)-minors of a
symmetric (3× 3)-matrix:

Rank

X0 X1 X2

X1 X3 X4

X2 X4 X5

 ≤ 1 .

The inverse map V2 → P2 is given by the rational map (X0 : X1 : X2 :
X3 : X4 : X5) 7→ (X0 : X1 : X2). This map is regular: at the points
where the given formula does not work we take the ratio’s of another
row of the defining matrix.

The hyperplane section X2 = X3 is the image of the plane curve
V (XZ − Y 2). The Veronese map embeds this conic as rational normal
curve of degree 4; with X2 = X3 the minors of the symmetric (3× 3)-
matrix define the same ideal as the minors of the matrix in example
2.35 in the case n = 4.

By projecting from a point outside the surface we obtain a surface
in P4, which again can be projected to a quartic surface in P3. By
imposing extra symmetry we obtain in this way a well known surface,
the Steiner Roman surface, with parametrisation

(X : Y : Z) 7→ (X2 + Y 2 + Z2 : Y Z : XZ : XY )

and equation

X2
2X

2
3 +X2

1X
2
3 +X2

1X
2
2 −X0X1X2X3 = 0 .

In R3 : X0 6= 0 this is a model of the real projective plane. The map is
not an immersion, but has pinch points.
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This example can be generalised to all dimensions and degrees;
the parametrisation of the rational normal curve of degree n is then a
special case of this construction.

Let Sd be the vector space of all homogeneous polynomials of degree
d in k[X0, . . . , Xn] (together with the zero polynomial). Two non-zero
elements f and λf , λ ∈ k∗, determine the same hypersurface in Pn
(possible with multiple components). So the space of all hypersurfaces
of degree d is P(Sd).

Let now V ⊂ Pn be a projective variety with homogeneous coordi-
nate ring k[V ]. The vector space Sd(V ) of elements of degree d in k[V ]
is the image of Sd under the quotient map k[X0, . . . , Xn] → k[V ] =
k[X0, . . . , Xn]/I(V ).

Definition 2.43. A linear system on V is P(L), where L ⊂ Sd(V )
is a linear subspace.

If we take a basis of L and represent it by homogeneous polynomials
f0, . . . , fk ⊂ k[X0, . . . , Xn], then we can write the equations of the
hypersurfaces in the linear system (also called divisors) as

λ0f0(X0, . . . , Xn) + · · ·+ λkfk(X0, . . . , Xn) = 0 .

The formula Yi = fi defines a rational map

ϕL : V 99K Pk .

The hyperplane sections of ϕL(V ) are precisely the hypersurfaces in
P(L). In particular, the coordinate hyperplanes intersect ϕL(V ) in the
hypersurfaces {fi = 0}. We can formulate this without coordinates:
the linear system gives a rational map ϕL : V 99K P(L∗), where L∗ is
the dual vector space. We have indeed the dual vector space, as the
evaluation evP : f 7→ f(P ) in a point P ∈ V is a linear function on L,
well defined up to scalar multiplication. The image of a point P ∈ V is
the intersection of all hyperplanes corresponding to the hypersurfaces
passing through P . In particular, ϕL is not regular in P if all the
hypersurfaces in the linear system pass through P (cf. definition 2.33).
Such points are called base points of the linear system.

Conversely, given a point P ∈ V , the condition that the hypersur-
face V (f) passes through P , is that f(P ) = 0, and this gives one linear
condition on the coefficients of f .

Example 2.44. Let P(L) be the linear system of conics in P2

through three points, not on a line. The three points are the base
points of the system. The whole line connecting two base points is
mapped onto the same image point: the only conics through a third
point on the line are reducible, consisting of the line itself and a line
through the third base point.

We give a description with coordinates. Take the three points to
be (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). A conic V (aX2 + bXY +
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cXZ+dY 2 +eY Z+fZ2) passes through these three points if and only
if a = d = f = 0. A basis of L is (Y Z,XZ,XY ), so ϕL is the map

(X : Y : Z) 7→ (Y Z : XZ : XY ) .

This is the standard Cremona transformation. It is an involution, as
can be seen by rewriting (Y Z : XZ : XY ) = (1/X : 1/Y : 1/Z). Using
the original formula we find

ϕL ◦ ϕL = (X2Y Z : XY 2Z : XY Z2) .

The Cremona transformation is an isomorphism on the complement
of the coordinate triangle V (XY Z). It blows down the coordinate
lines to points and blows up the points to lines. We can factor the
transformation ϕL : P2 99K P2 as P2 ←− P6 −→ P2, with P6 → P2 the
blow up of three points. In fact, P6 is a Del Pezzo surface of degree 6,
lying in P6, and the inverse P2 99K P6 is the map determined by the
linear system of cubics through the three points.

P2 − − →
ϕL P2

P6

2.6. Blowing up a point

The blow-up of point in An replaces it with the Pn−1 of all lines
through the point. Suppose that the point is the origin 0 ∈ kn ∼= An.
The quotient map kn \ {0} → Pn−1 defines a rational map π : An 99K
Pn−1, which is not defined at the origin. We eliminate the indetermi-
nacy of this map by the following construction. The graph Γ of π is an
open subset of the quasi-projective variety An × Pn−1.
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Definition 2.45. The blow up Bl0An of 0 is the closure Γ of the
graph of π. The first projection induces a regular map σ : Bl0An → An.
The inverse image of the point 0 is called the exceptional divisor .

The projection An × Pn−1 → Pn−1 on the second factor induces a
regular map π̃ : Bl0An → Pn−1, which extends π. As rational maps
π = π̃ ◦ σ−1.

exceptional
curve

y σ
x↘

x↘

ξ ↑

η ↓

y↗

y↗

We give an explicit description in coordinates in the case n = 2. Let
(X, Y ) be coordinates on A2 and (ξ : η) homogeneous coordinates on
P1. Then π(X, Y ) = (X : Y ). If we see P1 as k∪{∞}, then π is just the
rational function X/Y . Where π is defined, we have (ξ : η) = (X : Y ).
The blow up Bl0A2, which is the closure of the graph, is therefore
V (ηX − ξY ) ⊂ A2 × P1.

The variety Bl0A2 can be covered by two affine charts: for ξ = 1 we
have Y = ηX, so (X, η) are affine coordinates, while for η = 1 we have
X = ξY and (ξ, Y ) are affine coordinates. The map σ : Bl0A2 → A2

is given in these coordinates by (X, Y ) = (X, ηX) = (ξY, Y ). We
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compute the transition functions from the one chart to the other to be

η =
1

ξ
, X = ξY .

Remark 2.46. It is impossible to make a real picture, which is
correct in all aspects. One the one hand the exceptional curve is a
line, on the other hand RP1 is diffeomorphic to a circle. In fact, a
neighbourhood of the exceptional curve is a Moebius band.





CHAPTER 3

Projective plane curves

In this chapter we prove Bézout’s theorem on the number of inter-
section points between two plane curves. We also describe the group
law on a cubic curve.

Definition 3.1. A hypersurface of degree d in P(k) is the k-scheme
defined by one equation, so its ideal I is principal: I = (f) with f a
homogeneous polynomial of degree d.

Let f = fm1
1 . . . fmk

k be the factorisation of f . Let Di = V (fi) be
an irreducible component of V (f). We want V (f) to be non-empty; as
explained in section 1.7, we achieve this by considering V (f) in Pn(K)
with the Zariski k-topology, for an algebraically closed field extension
K/k. We say that Di has multiplicity mi.

Definition 3.2. A divisor on a projective variety is a linear combi-
nation of irreducible components of hypersurfaces, that is, an element
of the free Abelian group generated by irreducible components of sets
of the type V (f).

Let (f) denote the divisor of zeroes of f (counted with multiplicity).
Then (f) =

∑
miDi.

In particular, if n = 1, we consider homogeneous polynomials in
two variables (also called binary forms). The multiplicity of a point is
just the multiplicity of the corresponding root of the inhomogeneous
equation of one variable.

For n = 2 we call divisors on P2 with nonnegative coefficients for
curves. So if we write C, then it is understood that there may be
multiple components.

3.1. Bézout’s Theorem

The main result about the intersection of plane curves is Bézout’s
Theorem, which was already formulated by Newton; it occurs explicitly
in Bézout’s book of 1779.

Theorem 3.3. Let C and D be plane curves in P2(k) of degree m
and n, without common component. Then the number of intersection
points of C and D in P2(k) is at most mn. If K is an algebraically
closed field extension of k, then the number of intersection points in
P2(K) is equal to mn, counted with multiplicities.

43
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We will use the resultant to define the multiplicities in such a way,
that the theorem becomes trivial. But first we need to know that the
number of intersection points is finite. We start with an easy special
case of the theorem.

Lemma 3.4. Let L be a line and C = (f) a curve of degree d. If L
is not a component of C, then the number of intersection points of L
and C is at most d.

Proof. We parametrise L. If P = (a0 : a1 : a2) and Q = (b0 : b1 :
b2) are two points on L, then λP + µQ is a rational parametrisation of
the line. In coordinates (X0 : X1 : X2) = λ(a0 : a1 : a2)+µ(b0 : b1 : b2).
A point on the line lies also on C = (f) if and only f(λP + µQ) = 0.
The homogeneous polynomial f(λP + µQ) ∈ k[λ, µ] has at most d
linear factors. �

Lemma 3.5. Let f, g ∈ k[X, Y, Z] be polynomials without common
factor. The number of common zeroes is finite.

Proof. We consider f and g as polynomials in X, with coefficients
in A = k[Y, Z]. By proposition 1.23 the resultant R(f, g) is not iden-
tically zero, because f and g have no factor in common. Therefore
R(f, g) is a homogeneous polynomial in Y and Z, which vanishes only
for a finite number of values (Y : Z). A common zero of f and g, which
is not (1 : 0 : 0), is of the form (X0 : Y0 : Z0) with (Y0 : Z0) one of the
finitely many zeroes of R(f, g). It lies on the line though (1 : 0 : 0) and
(0 : Y0 : Z0). This line is not a component of both V (f) and V (g), so
there are only finitely many common zeroes of f and g on it. Therefore
the total number of common zeroes is also finite. �

Remark 3.6. Eliminating X from the equations F = G = 0
amounts geometrically to projecting onto the line X = 0 (which has
homogeneous coordinates (Y, Z)) from the point (1 : 0 : 0). This map
is not regular at the point (1 : 0 : 0), see example 2.39.

To count the number of common zeroes, that is, intersection points,
we want that each line as above only contains one. Therefore we want
that the projection point (1 : 0 : 0) does not lie on C = (f) andD = (g)
and lies outside all lines connecting two common zeroes of f and g; this
is possible by a coordinate transformation, which moves C and D, if k
is infinite, so surely if k is algebraically closed.

Definition 3.7. Let the coordinates be chosen as above. Let P =
(X0 : Y0 : Z0) be an intersection point of C = (f) and D = (g);
by construction it is the only one on the line V (Z0Y − Y0Z). The
intersection multiplicity IP (C,D) of C and D at the point P is the
multiplicity of (Y0 : Z0) as zero of the resultant R(f, g).

Proof of Bézout’s theorem. The first statement follows from
the second. To prove the second, we may assume that k itself is alge-
braically closed. We define the intersection multiplicity as above. The
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theorem now follows, because the resultant is a homogeneous polyno-
mial in two variables of degree mn. �

Remark 3.8. A priori our definition of intersection multiplicity
depends on the chosen coordinates. But in fact it does not.

A projective coordinate change ϕ is given by an invertible 3 × 3
matrix M = (mij). Consider all coordinate changes at once. The re-
sultant R(f, g)(Y, Z) depends now polynomially on the coefficientsmij:
it is an element of k[mij][Y, Z], homogeneous in Y and Z of degree mn.
We factorise it in irreducible factors. For each intersection point P of
C and D we known that R(f, g)(Y, Z) vanishes on the projection on
X = 0 of ϕ(P ). This locus is given by a polynomial in k[mij][Y, Z], lin-
ear in Y and Z. It is therefore a factor of R(f, g)(Y, Z). Its multiplicity
is the common value of the intersection multiplicity Iϕ(P )(ϕ(C), ϕ(D))
for an open and dense set of matrices. We denote this by IP (C,D). We
have that

∑
P IP (C,D) = mn. Therefore, if we specialise to a specific

coordinate transformation, with the property that (1 : 0 : 0) does not
lie on ϕ(C) and ϕ(D) and lies outside all lines connecting intersection
points, then the intersection multiplicity Iϕ(P )(ϕ(C), ϕ(D)) is exactly
the multiplicity of the corresponding factor of R(f, g)(Y, Z), which is
IP (C,D), independent of the chosen coordinates.

Example 3.9. We compute the intersection of a curve V (f) with a
line L not passing through (1 : 0 : 0). Let L be given by l = X−a(Y, Z)
and let f =

∑
bi(Y, Z)Xn−i. The resultant is

R(l, f) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 −a
1 −a

. . .
1 −a

1 −a
b0 b1 b2 . . . bn−2 bn−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣
,

which we compute to be
∑
bia

n−i, the result of replacing every X in
the equation of f by a(Y, Z). It is also the polynomial we obtain by
restricting f to the line L.

Definition 3.10. The multiplicity mP (C) of a curve C in a point
P ∈ C is the minimal intersection number of C with a line through P
(this is the intersection with a general line).

Lemma 3.11. The multiplicity mP (C) of a point P ∈ C = (f) is the
maximal number m such that f ∈ Mm

P , where MP is the homogeneous
maximal ideal in k[X0, X1, X2] of P .

Proof. We may assume that P = (1 : 0 : 0) and work in affine
coordinates (X0 = 1). We write the inhomogeneous equation as sum
of non-zero homogeneous components f(X1, X2) = fm(X1, X2) + · · ·+
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fd(X1, X2). Then f ∈Mm
P \Mm+1

P and m is also the multiplicity of C
at the origin. �

Definition 3.12. The homogeneous equation fm defines a set of
lines through P , which are the tangent lines to C in P . A point P is
a simple point, if the multiplicity mP (C) = 1.

Definition 3.13. Two curves C and D intersect transversally at
P if P is a simple point both on C and D, and if the tangent lines to
C and D at P are distinct.

Proposition 3.14. Two curves C and D intersect transversally at
P if and only if IP (C,D) = 1.

More generally we have

Proposition 3.15. The intersection multiplicity satisfies

IP (C,D) ≥ mP (C) ·mP (D) ,

with equality if and only if C and D have no tangent lines in common
at P .

We do not prove this here, as it is more easily seen from other
definitions of the intersection multiplicity. A proof using the resultant
can be found in [Brieskorn–Knörrer, 6.1 Proposition 3].

In fact, our definition of intersection multiplicity gives a quick proof
of Bezout’s theorem, but is not very well suited for actual computations.
There are several other approaches to the definition, which are easier
to use in practice.

What should the intersection multiplicity be? A very classical idea
(which can be made rigorous, but not easily) is to move one of the
curves until they intersect transversally.

Two curves intersecting only in
one point

The shifted curves intersect
transversally in four points

The number of points, coming out of the non transverse intersection, is
the intersection multiplicity. This agrees with the definition using the
resultant: if we compute for the moving curves, we see that a multiple
root of the resultant splits in simple roots. In fact, any definition
which gives always the same total intersection multiplicity mn and
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local multiplicity one for transverse intersection, should give the same
result.

To motivate the most common definition, which can be found for
example in [Fulton], we remark that for transverse intersection the total
intersection multiplicity is just the number of points; we can formulate
this in a more complicated way as the k-dimension of the ring of rational
functions R(V ) on the intersection V = C ∩D. To describe it, we use
affine coordinates. So we suppose that no intersection point lies on
the line at infinity. Then R(V ) is nothing but the coordinate ring
k[X, Y ]/(f, g) of C ∩D = V (f, g). So mn = dimk k[X, Y ]/(f, g). One
can show that also for non transverse intersection dimk k[X, Y ]/(f, g) =
mn, as long as f and g have no factor in common. The ideal I = (f, g)
has primary decomposition I = I1∩· · ·∩Ik. Each component Ii defines
a fat point, lying at Pi = V (Ii), with coordinate ring k[X, Y ]/Ii. By the
Chinese remainder theorem k[X, Y ]/I = k[X, Y ]/I1×· · ·×k[X, Y ]/Ik.
So Bézout’s theorem holds if the intersection multiplicity at Pi is equal
to the multiplicity dimk k[X, Y ]/Ii of the fat point (definition 1.41).

Definition 3.16. Let P be an intersection point of the affine curves
C = (f) and D = (g). The intersection multiplicity at P is

I(P,C ∩D) = dimkOA2,P/(f, g) .

Remark 3.17. As it should be, this number is the same as our
IP (C,D) defined above. In fact, one can show that the construction
with the resultant computes the dimension of the vector space in ques-
tion, both globally that of k[X, Y ]/(f, g) and locally OA2,P/(f, g), see
[Eisenbud–Harris, The Geometry of Schemes]. However, this requires
more tools from commutative algebra than we now have at our disposal.

Lemma 3.18. The intersection multiplicity I(P,C ∩D) is the mul-
tiplicity of the fat point at P , which is a component of C ∩D.

Proof. Let IP be the primary component of (f, g) with V (IP ) =
{P}. We prove that dimkOA2,P/(f, g) = dimk k[X, Y ]/IP in two steps.

Step 1: The ideal in OA2,P generated by (f, g) is the same as the
ideal generated by IP . There exists a polynomial h with h(P ) 6= 0 and
h(Q) = 0 for all other intersection points. Then hN ∈

⋂
Q IQ for some

N , so we may assume that already h ∈
⋂
Q IQ. Then IP = ((f, g) : h),

by Lemma 1.51. As h−1 ∈ OA2,P , we have IpOA2,P ⊂ (f, g)OA2,P .
Step 2: OA2,P/IP = k[X, Y ]/IP . The natural map k[X, Y ]/IP →

OA2,P/IP is surjective: let g/(1− h) ∈ OA2,P/IP with h(P ) = 0. Then
hN ∈ IP for some N . It follows that g/(1 − h) = g(1 + · · · + hN−1) +
ghN/(1−h) ≡ g(1+ · · ·+hN−1) mod IP . A similar computation shows
that it is injective. If for k ∈ k[X, Y ] we have k = g/(1 − h) with
g ∈ IP , then k ∈ I, because k(1− hN) = g(1 + · · ·+ hN−1) ∈ I. �

We formulate some consequences of Bézout’s theorem.
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Corollary 3.19. If C and D meet in mn distinct points, m =
degC, n = degD, then C and D intersect transversally in all these
points.

Corollary 3.20. If two curves of degrees m and n have more than
mn points in common, then they have a common component.

Proposition 3.21 (Pascal’s theorem). If a hexagon is inscribed in
an irreducible conic, then the opposite sides meet in collinear points.

P1

P2

P3

P4

P5

P6

Proof. Let the points P1, . . . , P6 lie on a conic and let V (li,i+1) be
the line joining the points Pi and Pi+1 (consider the indices modulo 6).
The two reducible cubics V (l1,2l3,4l5,6) and V (l4,5l6,1l2,3) intersect in the
6 points Pi and in the intersection points of opposite sides. Consider
the pencil of cubics C(λ:µ) : V (λl1,2l3,4l5,6 + µl2,3l4,5l6,1). Choose a point
Q on the conic, distinct from the Pi. There exists a cubic C(λ:µ) passing
through P . As it intersects the conic in seven points, the conic is a
component. The other component is a line, which contains the three
intersection points. �

3.2. Inflection points

Definition 3.22. Let f(X0, X1, X2) be the equation of a plane
curve C, and P = (a0 : a1 : a2) a point on it. The tangent line TP at
P is given by the equation

(*)
∂f

∂X0

(P )X0 +
∂f

∂X1

(P )X1 +
∂f

∂X2

(P )X2 = 0 .

If
(
∂f
∂X0

(P ), ∂f
∂X1

(P ), ∂f
∂X2

(P )
)

= 0, then P is a singular point and the
tangent line is not defined.

Remark 3.23. Differentiation of a polynomial can be defined purely
algebraically (product rule!), and involves no analysis. The formula (*)
is in fact just the familiar one for the tangent space. There are several
ways to understand it.
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• We can view f as equation on A3, and describe the tangent plane in
any point on the line, which projects onto P ∈ (k3 \ {0})/k∗ = P2.
As this plane passes through the origin, it is given by (*).
• In affine coordinates (x1, x2), write F (x1, x2) = f(1, X1, X2); the
tangent line is ∂F

∂x1
(p)(x1 − a1) + ∂F

∂x2
(p)(x2 − a2) = 0. By Euler’s

formula: ∑
Xi

∂f

∂Xi

= mf,

where m is the degree of f , and the fact that f(a0, a1, a2) = 0, we
obtain in homogeneous coordinates the expression (*).
• Finally, the tangent line is the line which intersects f in P with
multiplicity at least two. Let Q = (b0, b1, b2), and consider the line
P + tQ. By Taylor’s formula:

f(P + tQ) = f(P ) + t
∑ ∂f

∂Xi

(P ) · bi + higher order terms.

The condition that t = 0 is at least a double root, gives that Q
satisfies (*).

Definition 3.24. A tangent line L, tangent to C = (f) in the point
P , is an inflectional tangent, or flex for short, and P is an inflection
point , if the intersection multiplicity of L and C at p is at least 3. The
flex is called ordinary if IP (L,C) = 3, a higher flex otherwise.

Definition 3.25. The Hessian Hf of f is the determinant of the
second partial derivatives of f :

det
( ∂2f

∂Xi∂Xj

)
= 0 .

If Hf is not identically zero, the curve (Hf ) is the Hessian curve of the
curve C, also denoted by HC .

Remark 3.26. Euler’s formula (m − 1) ∂f
∂Xj

=
∑
Xi

∂2f
∂Xi∂Xj

shows
that the columns of the matrix are dependent if (m− 1) ∂f

∂Xj
= 0 for all

j. So if p = char k divides m− 1, the Hessian Hf vanishes identically.
Furthermore, if Hf does not vanish identically, then the Hessian curve
passes through the singular points of f .

Theorem 3.27. Let C = (f) be a projective curve of degree m
without lines as components. Suppose that Hessian Hf does not vanish
identically; in particular p = char k - (m − 1), and p 6= 2. A simple
point P ∈ C is an inflection point if and only if P lies on the Hessian
HC. More precisely, Ip(C, TP ) = IP (C,HC) + 2, if p > m.

Proof. Choose coordinates such that P = (0 : 0 : 1) and the
tangent line TP is the line X = 0. Now we can write the equa-
tion of the curve in the form f = Xu(X, Y, Z) + Y r+2g(Y, Z) with
u(0, 0, 1) 6= 0 and g(0, 1) 6= 0. For the Hessian we do the same thing,
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collecting all terms containing X in a first summand. The result is
Hf = Xv(X, Y, Z) + Y rh(Y, Z), where the second summand is com-
puted by putting X = 0 in the determinant, defining Hf :∣∣∣∣∣∣

2uX uY uZ
uY (r+2)(r+1)Y rg+2(r+2)Y r+1gY +Y r+2gY Y (r+2)Y r+1gZ+Y r+2gY Z

uZ (r+2)Y r+1gZ+Y r+2gY Z Y r+2gZZ

∣∣∣∣∣∣ .
We multiply the first row with Y r, and divide the second and third
columns by Y r. The new determinant is equal to h(Y, Z). We compute
h(0, 1) by putting Y = 0. Note that r = 0 is allowed. We find

h(0, 1) =

∣∣∣∣∣∣
2uXY

r uY uZ
uY (r + 2)(r + 1)g 0
uZ 0 0

∣∣∣∣∣∣ ,
so h(0, 1) = −(r + 2)(r + 1)u2

Z(0, 0, 1)g(0, 1). As (m − 1)U = XuX +
Y uY + ZuZ , one has u(0, 0, 1) 6= 0 if and only if uZ(0, 0, 1) 6= 0, as
p - (m− 1). Therefore, if r = 0, then h(0, 1) 6= 0 and Hf (P ) 6= 0.

To compute the intersection multiplicity of F and Hf at p, we
choose suitable coordinates such that p is the only intersection point of
f and Hf on Y = 0. The last column of the determinant defining the
resultant has only two nonzero entries, which are Y r+2g and Y rh. By
expanding the determinant along this column we compute the resultant
to be of the form Y r+2gq1 + Y rhq2 with q2(0, 1) up to sign itself the
resultant of u(X, 0, Z) and Xv(X, 0, Z), which is non-zero, as P is the
only intersection on Y = 0. �

Corollary 3.28. A nonsingular cubic curve over an algebraically
closed field k with char k > 3 has exactly nine distinct inflection points.

3.3. The group law on cubic curves

Consider an irreducible cubic curve C = (f) ⊂ P2, which is also
irreducible over the algebraic closure of k. Let K be an extension of
k, not necessarily algebraically closed; an important case is K = k.
We shall construct a group law on the set of simple points Creg ⊂ C,
defined over K. Therefore we assume that this set is nonempty. If no
confusion arises, we suppress the field from the notation.

We fix a point E ∈ C, which will be the neutral element. We
will consider collections of simple points, which we think of as being
variable. Then it may be that some points coincide. We can give a
precise meaning to this, using fat points, see Definition 1.41. A fat point
Z of multiplicity m on a curve C with Zred = P a simple point of the
curve has an particularly simple structure. In affine coordinates (X, Y )
with P the origin, and the X-axis as tangent, its ideal is of the form
(Y + f2 + . . . fd, Y

m, Y m−1X, . . . , Xm). We can solve Y ≡ g(X) mod
(Xm), so other generators for the ideal are (Y − g(X), Xm). Therefore
the coordinate ring of the fat point is isomorphic to k[X]/(Xm). We
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say that m points coincide at P . A line through two coinciding points
P1 = P2 = P , that is, through a fat point of multiplicity two, is a line,
which intersects the curve with multiplicity at least two in P , that is,
a tangent line, and a line through three coinciding points P1 = P2 =
P3 = P is an inflectional tangent.

Let P and Q be simple points on the irreducible cubic C, defined
overK. The line L through P and Q is not a component, and intersects
C in three points: the restriction of the equation f to the line L ∼= P1

is a homogeneous polynomial of degree three in two variables, which is
divisible by linear forms defining P and Q, so it factorises over K in
three linear factors. The point defined by the third linear factor will be
called the third intersection point of L and C, and denoted by P ∗Q;
it may coincide with P or Q. It is again a simple point: if it is distinct
from the simple points P and Q, then L intersects C in the point with
multiplicity 1.

Lemma 3.29. The map ϕ : Creg ×Creg → Creg, ϕ(P,Q) = P ∗Q, is
a regular map.

Definition 3.30. The addition P ⊕Q on Creg is given by

P ⊕Q = (P ∗Q) ∗ E ,

so P ⊕Q is the third intersection point on the line through P ∗Q and
E.

Theorem 3.31. This operation makes (Creg,⊕) into an abelian
group with neutral element E.

Proof. Apart from associativity this is easy. Commutativity is
obvious. Let us construct P ⊕ E. Let P ∗ E be the third intersection
point on the line L through P and E. Then P is the third intersection
point on the line through P ∗E and E (which is the line L), so P⊕E =
P .

For the inverse, let E ∗ E be the third intersection point on the
tangent line to C at the point E, then the third point (E ∗ E) ∗ P on
the line through P and E ∗ E satisfies P ⊕ ((E ∗ E) ∗ P ) = E, so −P
is the point (E ∗ E) ∗ P .

For associativity
(
(P ⊕Q)⊕R = P ⊕ (Q⊕R)

)
it suffices to show

that points (P ⊕ Q) ∗ R and P ∗ (Q ⊕ R) in the penultimate step of
the construction coincide. There are 8 more points involved, which we
write in the following 3× 3 square.

P Q⊕R ?
P ∗Q E P ⊕Q
Q Q ∗R R

The points in each row and each column are collinear. The question
mark stands in the first row for the point P ∗(Q⊕R), while it represents
in the last column the point (P ⊕Q) ∗R, so the points which we want



52 3. PROJECTIVE PLANE CURVES

PQ

P ∗QR

Q ∗R

?

Q⊕R

E

P ⊕Q

to prove to be equal. All the eight named points in the square lie not
only on C, but also on two other cubics, being the product of the lines
determined by the rows, respectively the columns, of the square; note
that multiple factors may occur. Let l1 = 0 be an equation for the line
through P , Q⊕ R and P ∗ (Q⊕ R), l2 = 0 for the line through P ∗Q
and E, and l3 = 0 for the line through Q and R. Consider the pencil
of cubics Cλ = (f + λl1l2l3). Each curve (f + λl1l2l3) passes through
the nine points of the square, with ? being P ∗ (Q ⊕ R). Choose a
fourth point S on the line through P and Q, not on the curve C. Then
there is a unique λS such that f(S)+λSl1(S)l2(S)l3(S) = 0. As the line
through P andQ has four points in common (counted with multiplicity)
with the curve Cλ(S), it is a component and the remaining six points of
the square lie on a conic. Note that this argument also works if some
points coincide. The conic intersects the cubic in six points (counted
with multiplicity), which together with the intersection of the cubic
with the line through P and Q make up the nine points of the square.
As the three points Q⊕R, E and Q ∗R lie on a straight line, this line
is a component of the conic and the three remaining points R, P ⊕Q
and P ∗ (Q ⊕ R) are collinear. As they also lie on the curve C, the
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point P ∗ (Q⊕R) is the third point on the line through R and P ⊕Q,
so it is equal to (P ⊕Q) ∗R. �

The group law can be simplified by taking an inflection point, if the
cubic has one, as neutral element. Then the third point, in which the
tangent at E intersects the curve, is E itself. So the inverse −P is the
third point on the line EP . Therefore we obtain

P ⊕Q⊕R = E ⇔ P , Q and R collinear .
We can take coordinates with the flex being the line at infinity and
the inflection point (0 : 1 : 0). By completing the square (char k 6= 2)
we get an equation of the form Y 2 = X3 + pX2 + qX + r, which if
char k 6= 3 can be simplified further to

Y 2 = X3 + aX + b .

If P = (X, Y ), then −P = (X,−Y ).

Remark 3.32. Over the complex numbers a non-singular cubic
curve is a Riemann surface of genus 1, so topologically a torus. Let τ be
a point in the upper half plane. Then the Riemann surface is C/(Z⊕
Zτ). The group structure comes from addition on C. Meromorphic
functions on the Riemann surface are doubly periodic functions in the
complex plane. In particular, one has the Weierstraß ℘ function given
by

℘(z) =
1

z2
+

∑
(m,n)6=(0,0)

(
1

(z −m− nτ)2
− 1

(m+ nτ)2

)
.

It satisfies the equation

(℘′(z))
2

= 4 (℘(z))3 − g2℘(z)− g3 .





CHAPTER 4

Dimension

In this chapter we define the dimension of affine and projective
varieties. This is done using a general definition for the dimension of
commutative rings. It will take some time to prove that the dimension
of Pn (as projective variety) is n.

4.1. Krull dimension

Definition 4.1. Let X be a topological space. If X = ∅, then its
dimension is −1. Otherwise, the Krull dimension dimX of X is the
supremum of the lengths n of chains

X0  X1  · · ·  Xn

of non-empty irreducible subsets Xi of X.
If Y ⊂ X is a non-empty closed irreducible subspace, then the

codimension codimX Y of Y in X is the supremum of lengths of chains
starting with X0 = Y . The codimension of the empty set is ∞.

Lemma 4.2.
(1) If {Xλ}λ∈Λ is the family of irreducible components of X, then

dimX = supλ∈Λ dimXλ.
(2) If Y 6= ∅, then dimY + codimX Y ≤ dimX.
(3) If Y ⊂ X and X is irreducible with dimX <∞, then dimY <

dimX if and only if Y 6= X.

The definition applies to affine and projective varieties. If V̄ is the
projective closure of an affine variety V , then dimV ≤ dim V̄ ; this
follows immediately from proposition 2.24. We shall later see that in
fact equality holds.

It is not so clear how to compute this dimension, or even to see that
it is finite. We translate the problem into one about rings.

Let R be a ring, as always commutative with unit. Similar to the
definition above we define the dimension of the ring.

Definition 4.3. The Krull dimension dimR of a ring R is the
supremum of the lengths n of chains

p0  p1  · · ·  pn

of prime ideals of R.
The height of a prime ideal p of R is the supremum of lengths of

chains ending with pn = p.
55



56 4. DIMENSION

If I is an ideal, then dim I is the dimension of the ring R/I.

For an affine variety V ⊂ An(K) we have dimV = dim k[V ].

Example 4.4. dim k[X1, . . . , Xn] ≥ n.
Consider the chain (0) ⊂ (X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, . . . , Xn).

Example 4.5. dimZ = 1.

4.2. Integral ring extensions

If R ⊂ S is a subring of a ring S, we also say that S is a ring
extension of R.

Definition 4.6. A ring S is finite over R, if S is a finitely generated
R-module. This means that there is an epimorphism Rm → S of a free
R-module onto S.

A ring S is of finite type over R, if S is a finitely generated as R-
algebra. This means that there is an epimorphism R[y1, . . . , ym]→ S.

Definition 4.7. Let R ⊂ S be a ring extension. An element x ∈ S
is integral over R, if x satisfies a monic equation

xn + r1x
n−1 + · · ·+ rn = 0 ,

where the ri lie in R.
If I is an ideal in R, and all ri ∈ I, then x is integral over I.
If every x ∈ S is integral over R, then S is called integral over R, or
an integral extension of R.

Lemma 4.8. The following are equivalent:
(1) x ∈ S is integral over R (over I).
(2) R[x] is finite over R (and x ∈ rad IR[x]).
(3) R[x] is contained in a subring S ′ ⊂ S, which is finite over R

(and x ∈ rad IS ′).

Proof.
(1)⇒ (2) Let f ∈ R[X] be a monic polynomial Xn + r1X

n−1 + · · ·+ rn
such that f(x) = 0 is the integral equation for x ∈ S. Division with
remainder in R[X] (possible because f is monic) yields that every
g ∈ R[X] can be written as g = qf + r with deg r < n = deg f .
Therefore 1, . . . , Xn−1 generate R[X]/(f) as R-module, and 1, . . . , xn−1

generate R[x]. If all the coefficients of f are in I, then the monic equa-
tion implies that xn ∈ IR[x], so x ∈ rad IR[x].
(2)⇒ (3) Just take S ′ = R[x].
(3)⇒ (1) Let m1, . . . ,mk be generators of S ′ as R-module. Multiplica-
tion by x is an endomorphism of S ′. We have xmi =

∑
aijmj, aij ∈ R,

which we can write in matrix form as

(xI − A)m = 0 ,
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where A is the square matrix with entries aij and m is the column
vector of the mi. Multiplying with the matrix of cofactors we obtain
det(xI − A)mi = 0 for all i. As 1 ∈ S ′ can be written as R-linear
combination of the mi, we get det(xI − A) = 0. This is the desired
relation.
If x ∈ rad IS ′, then xl ∈ IS ′ for some l, and consider multiplication
by xl. We can write xlmi =

∑
aijmj with aij ∈ I. As before, the

characteristic polynomial gives the desired relation. �

Corollary 4.9. If S is a finite R-module, then S is integral over
R, and x ∈ S is integral over I if and only if x ∈ rad IS.

Corollary 4.10. If x1,. . . , xm ∈ S are integral over R, then
R[x1, . . . , xm] is finite over R. If the xi are integral over I, then
xi ∈ rad IR[x1, . . . , xm].

Proof. By induction. The case m = 1 is already proved. Write
R[x1, . . . , xm] = R[x1, . . . , xm−1][xm], then R[x1, . . . , xm] is, by the case
m = 1, a finite R[x1, . . . , xm−1]-module as xm is also integral over
R[x1, . . . , xm−1]. Hence R[x1, . . . , xm] is finite over R. �

Corollary 4.11. The set of elements of S which are integral over
R is a subring of S containing R.

Proof. If x, y ∈ S are integral over R, then S ′ = R[x, y] is finite
over R, so x±y and xy are integral over R by part (3) of the proposition.

�

Definition 4.12. The set of the above corollary is called the in-
tegral closure of R in S. If R is its own integral closure, then R is
integrally closed in S. A ring is integrally closed (without qualifica-
tion), if it is integrally closed in its total ring of fractions.

An element r of a ring R is nilpotent if rn = 0 for some positive
integer n.

Definition 4.13. A ring R is reduced if it has no nonzero nilpotent
elements.

An affine coordinate ring k[V ] = k[X1, . . . , Xn]/I(V ) is reduced if
and only of the ideal I(V ) is radical.

Definition 4.14. The integral closure R̃ of a reduced ring R in its
total ring of fractions is called the normalisation of R. The ring R is
normal if R̃ = R.

Example 4.15. Every unique factorisation domain is normal, e.g.,
Z and k[X1, . . . , Xn]. Let Q(R) be the quotient field of R and x = r

s

integral over R. The equation xn + r1x
n−1 + · · · + rn = 0 implies

rn + r1r
n−1s + · · · + rns

n = 0. Every prime element dividing s also
divides r, so after cancelling factors s is a unit, and x ∈ R.
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Corollary 4.16 (transitivity of integral extensions). If R ⊂ S ⊂
T are ring extensions and if S is integral over R, and T integral over
S, then T is integral over R.

Proof. Let x ∈ T satisfy xn + s1x
n−1 + · · · + sn = 0. Then

S ′ = R[s1, . . . , sn−1] is finite over R, and S ′[x] is finite over S ′, as x is
integral over S ′. As S ′[x] ⊂ T is finite over R, x is integral over R. �

For an integral extension R ⊂ S there is a close connection between
chains of prime ideals in R and in S. We need a lemma on the existence
of prime ideals.

Lemma 4.17 (Krull’s prime existence lemma). Let I be an ideal in
a ring R and let Σ be a multiplicative system in R with I∩Σ = ∅. Then
there exists a prime ideal p of R containing I, and such that p∩Σ = ∅.

Proof. The set of ideals J with I ⊂ J and J ∩ Σ = ∅ is partially
ordered by inclusion and nonempty since it contains I. If {Jλ}λ∈Λ is
a totally ordered subset, then also

⋃
λ∈Λ Jλ is an ideal in the set. By

Zorn’s lemma, there is a maximal element p. We show that p is a prime
ideal. First of all, p is a proper ideal as 1 ∈ Σ is not contained in R.
Let r1, r2 ∈ R\p and suppose r1r2 ∈ p. As p is a maximal element, the
ideal p+ (ri), i = 1, 2, satisfies p+ (ri)∩Σ 6= ∅. We can find pi ∈ p and
ai ∈ R such that pi+airi ∈ Σ. Then (p1 +a1r1)(p2 +a2r2) ∈ Σ ⊂ R\p,
contradicting that r1r2 ∈ p. Therefore p is prime. �

Theorem 4.18. Let S be an integral extension of a ring R. Let p
be a prime ideal in R.

(1) There exists a prime ideal q of S with q ∩R = p.
(2) Let q1 ⊂ q2 be prime ideals in S. If q1 ∩R = q2 ∩R = p, then

q1 = q2.
(3) A prime ideal q with p = q ∩R of S is maximal if and only if

p is maximal.

Definition 4.19. Let S be an integral extension of a ring R and
p a prime ideal in R. We say that a prime ideal q of S lies over p if
q ∩R = p.

Proof of the theorem.
(1) We will show that the ideal pS ⊂ S and the multiplicative system
Σ = R \ p ⊂ S satisfy pS ∩Σ = ∅. Krull’s prime existence lemma gives
an ideal q ⊂ S with pS ⊂ q and q ∩ R \ p = ∅. Hence, q is a prime
ideal of S lying over p.

If x ∈ pS, then x is integral over p, so there is an equation xn +
r1x

n−1 + · · ·+ rn = 0 with the ri ∈ p. If x ∈ pS ∩Σ ⊂ R, then xn ∈ p,
so x ∈ p, contradicting x ∈ Σ = R \ p. Hence pS ∩ Σ = ∅.
(2) Note that S/q1 is integral over R/p: just reduce an integral equation
for x ∈ S modulo the ideal q1. Both rings S/q1 and R/p are integral
domains. The ideal q2/q1 satisfies (q2/q1) ∩ (R/p) = (0). Suppose
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x̄ 6= 0 ∈ q2/q1. Let x̄n + r̄1x̄
n−1 + · · ·+ r̄n = 0 be an integral equation

of lowest possible degree. As r̄n ∈ (q2/q1) ∩ (R/p) = (0), we have
r̄n = 0. Because S/q1 does not contain zero divisors, we can divide by
x and obtain an equation of lower degree. This contradiction shows
that q1 = q2.
(3) If p is maximal, then q is maximal as well by part (2). For the
converse, consider the integral extension R/p ⊂ S/q. If S/q is a field,
its only prime ideal is (0). Then, by the first part, (0) is the only prime
ideal of R/p, so R/p is a field. �

Corollary 4.20. If S is Noetherian, only finitely many prime
ideals of S lie over p.

Example 4.21. The ring extension R = Z ⊂ S = Z[
√
−5] is inte-

gral, and the ideal (2) ⊂ Z is maximal. But the ideal generated by 2
in Z[

√
−5] is not prime: (1 +

√
−5)(1 −

√
−5) = 3 · 2. A prime ideal

q with q ∩ Z = (2) is the ideal (2, 1 +
√
−5). This is in fact the only

maximal ideal lying over (2).

Theorem 4.22 (Going up theorem). Let S be an integral extension
of a ring R. Let p1 ⊂ p2 ⊂ · · · ⊂ pn be a chain of prime ideals of R,
and q1 ⊂ · · · ⊂ qm (m < n) a chain of prime ideals of S, such that
qi ∩ R = pi. Then the chain q1 ⊂ · · · ⊂ qm can be extended to a chain
q1 ⊂ · · · ⊂ qn lying over p1 ⊂ · · · ⊂ pn.

Proof. It suffices (induction!) to consider the case m = 1, n = 2.
As S = S/q1 is integral over R = R/p1, there exists a prime ideal q2

of S lying over p2/p1. The preimage q2 of q2 in S has the required
properties. �

Corollary 4.23. dimS = dimR.

Definition 4.24. A polynomial map f : V → W of affine algebraic
sets with dense image is finite if f ∗ : k[W ] → k[V ] is an integral (and
hence finite) ring extension.

Note that f has dense image if and only if f ∗ is injective. Then we
can consider k[W ] as subring of k[V ].

Corollary 4.25. Let f : V → W be a finite morphism of affine
algebraic sets. The image of every algebraic subset of V is an algebraic
subset of W . That is, f is a closed map.

Let W1 ⊃ W2 ⊃ · · · ⊃ Wn be a chain of subvarieties of W , and V1 ⊃
· · · ⊃ Vm (m < n) a chain of subvarieties of V , such that f(V ) = W .
Then the chain V1 ⊃ · · · ⊃ Vm can be extended to a chain V1 ⊃ · · · ⊃ Vn
over W1 ⊃ · · · ⊃ Wn.

Proof. Let I(W1) ⊂ · · · ⊂ I(Wm) be the chain of ideals of the Wi.
By going up there is a chain of prime ideals q1 ⊂ · · · ⊂ qn lying over
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it. Then Vi = V (qi) is a subvariety of V with f(Vi) ⊂ Wi. Equality
follows from the first statement, which we now show.

We may assume that V1 = V (q1) is an irreducible subset of V .
Then f(V1) ⊂ W1 = V (p1), where p1 = q1 ∩ k[W ]. Let Q ∈ W1 be a
point. Then, by what we just said, there is a subvariety P ∈ V1 with
f(P ) = Q (in fact a point, as it is defined by a maximal ideal). �

Example 4.26. Let V = V (Y 2 − x) ⊂ A2 and W = A1. The
projection f : V → W , (X, Y ) 7→ X is finite. Indeed, f ∗ : k[X] →
k[X, Y ]/(Y 2−X) is injective and k[X, Y ]/(Y 2−X), which is as k[X]-
module generated by 1 and the class of Y , is as ring generated by the
one element Y , which satisfies the monic equation Y 2 −X = 0.

Example 4.27. The algebraic set V (Y 2X − Y ) is the union of a
hyperbola and the X-axis. Projection on the X-axis is a surjective
polynomial map with finite fibres. But is is not a finite map.

There is also a ‘going down’ theorem. This needs the stronger
hypothesis that R is a normal domain. We first prepare a lemma.

Lemma 4.28. Let R be a normal domain with quotient field K =
Q(R), and p a prime ideal of R. Let L/K be a field extension. If x ∈ L
is integral over p, then x is algebraic over K, and all coefficients of the
minimal polynomial m = Xn + · · ·+ an of x over K lie in p.

Proof. Clearly x is algebraic over K. Let x = x1, . . . , xn be the
roots ofm in the algebraic closureK ofK. There is an automorphism of
K fixing K, which maps x to xi. So if f(x) = 0 is an integral equation
for x with coefficients in p, then also f(xi) = 0 for each i, that is
the xi are integral over p. Since the coefficients of m are symmetric
functions in the xi, they lie in rad pR̃ by Corollary 4.9, where R̃ is the
normalisation of R. Since R = R̃ and p is prime, they actually lie in
p. �

Theorem 4.29 (Going down theorem). Let R ⊂ S be an integral
extension of integral domains. Assume that R is normal. Let p1 ⊃
p2 ⊃ · · · ⊃ pn be a chain of prime ideals of R, and q1 ⊃ · · · ⊃ qm
(m < n) a chain of prime ideals of S, such that qi ∩R = pi. Then the
chain q1 ⊃ · · · ⊃ qm can be extended to a chain q1 ⊃ · · · ⊃ qn lying
over p1 ⊃ · · · ⊃ pn.

Proof. We may assume m = 1, n = 2. We consider three multi-
plicative systems in S: Σ1 := S \ q1, Σ2 := R \ p2 and Σ := Σ1 · Σ2 =
{s1s2 | s1 ∈ Σ1, s2 ∈ Σ2}. Then Σi ⊂ Σ. If p2S ∩ Σ = ∅, then Krull’s
prime existence lemma 4.17 gives a prime ideal q2 in S with p2S ⊂ q2

and q2 ∩Σ = ∅. As q2 ∩Σ1 = ∅, q2 ⊂ q1; from q2 ∩Σ2 = ∅ follows that
q2 lies over p2.

Suppose therefore that x ∈ p2S ∩ Σ. Then x is is integral over p2,
so by the lemma above the minimal polynomial m = Xn + · · ·+ an of
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x ∈ L = Q(S) over K = Q(R) has coefficients in p2. As x ∈ Σ, we
may write x = s1s2 with s1 ∈ Σ1 and s2 ∈ Σ2. Then Xn + · · ·+ an/s

n
2

is the minimal polynomial of s1 over K (the degree cannot be lower,
because any relation of this type implies one of the same degree for x).
Its coefficients ai/si2 are contained in R, as s1 is integral over R, by
the same lemma. Put ai = bis

i
2. As s2 /∈ p2 and ai ∈ p2, we have that

bi ∈ p2 and s1 is integral over p2, and therefore s1 ∈ rad p2S ⊂ q1. This
contradicts s1 ∈ Σ1. So p2S ∩ Σ = ∅. �

Corollary 4.30. For every prime ideal q of S the height h(q) is
equal to h(q ∩R).

4.3. Noether normalisation

We return to the proof of weak Nullstellensatz 1.29. In it we pro-
jected the zero set of an ideal J to a space of one dimension lower. In
general the image of an algebraic set is not closed, but using a suitable
coordinate transformation (lemma 1.28) we ensured that it is so. This
procedure can be repeated until the ideal J ∩ k[X1, . . . , Xd] is the zero
ideal. Then we have found a finite projection onto Ad. So V (J) has
the same dimension as Ad. Algebraically this means that we are in the
situation of the following definition.

Definition 4.31. A Noether normalisation of an affine algebra
A = k[X1, . . . , Xn]/J is a finite ring extension k[Y1, . . . , Yd] ⊂ A such
that the Yi ∈ A are algebraically independent over k.

Remark 4.32. Noether normalisation should not be confused with
the normalisation of definition 4.14.

To show that Ad has dimension d, we need a refinement of Noether
normalisation.

Theorem 4.33 (Noether normalisation). Let A be an affine algebra
over an infinite field k and p1 ⊂ · · · ⊂ pr a chain of proper ideals of
A. Then there exist algebraically independent elements Y1, . . . , Yd ∈ A
such that

(1) k[Y1, . . . , Yd] ⊂ A is a finite extension,
(2) for i = 1, . . . , r there is an h(i) such that pi ∩ k[Y1, . . . , Yd] =

(Y1, . . . , Yh(i)).

The geometric interpretation of the theorem is as follows. If V ⊂ An
is an algebraic set and a chain W1 ⊃ · · · ⊃ Wr of subsets, then there is
a surjective map V → Ad with finite fibres, mapping W1 ⊃ · · · ⊃ Wr

onto a chain of linear subspaces of Ad.

Proof.
Step 1. We have A = k[X1, . . . , Xn]/q0 for some ideal q0. Let ϕ : B =
k[X1, . . . , Xn] → A be the projection. Set qi = ϕ−1(pi). Suppose that
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the theorem holds for B and the chain q0 ⊂ q1 ⊂ · · · ⊂ qr: there exist
Y ′1 , . . . , Y

′
e ∈ B such that k[Y ′1 , . . . , Y

′
e ] ⊂ B is a finite extension and

there exist h′(i) with qi ∩ B = (Y ′1 , . . . , Y
′
h′(i)). Now (1) and (2) hold

for A with Yi = ϕ(Y ′i+h′(0)) and h(i) = h′(i)−h′(0). So we may assume
that A = k[X1, . . . , Xn] is a polynomial ring. The proof will be by
induction on r and shows that d = n in this case.
Step 2. Let r = 1 and suppose that p1 = (f) 6= (0) is a principal ideal
in A = k[X1, . . . , Xn]. Then deg f ≥ 1, as (f) is a proper ideal. We
take coordinates Yi as in the proof of Lemma 1.28, except that we con-
sider X1 as special variable. By dividing by a constant we achieve that
f ∈ k[Y2, . . . , Yn][X1] is monic in X1: f = Xm

1 + · · · + f0(Y2, . . . , Yn).
We put Y1 = f . Then A = k[Y1, . . . , Yn][X1] and X1 is integral over
k[Y1, . . . , Yn], as f − Y1 = Xm

1 + · · · + f0 − Y1 = 0. So A is finite
over k[Y1, . . . , Yn] by Lemma 4.8. The elements Y1, . . . , Yn are alge-
braically independent, for otherwise K(Y1, . . . , Yn) and therefore also
K(X1, . . . , Xn) would have transcendence degree less than n over k.

To show that p1 ∩ k[Y1, . . . , Yn] = (Y1) we write an element g of the
intersection as g = GY1 with G ∈ A∩ k(Y − 1, . . . , Yn). As the polyno-
mial ring k[Y1, . . . , Yn] is normal (Example 4.15), A ∩ k(Y1, . . . , Yn) =
k[Y1, . . . , Yn], so G ∈ k[Y1, . . . , Yn] and p1 ∩ k[Y1, . . . , Yn] = (Y1) .
Step 3. The case r = 1 and p1 6= (0) an arbitrary ideal will be proved
by induction on n. If n = 1, every ideal is principal, and we are done
by Step 2.

For the induction step, let f ∈ p1 be a non-zero element and
construct k[T1, . . . , Tn] with T1 = f as in Step 2. The induction
hypothesis is that there exist algebraically independent Y2, . . . , Yn ∈
k[T2, . . . , Tn] such that k[T2, . . . , Tn] is finite over k[Y2, . . . , Yn] and p1∩
k[Y2, . . . , Yn] = (Y2, . . . , Yh(1)) for some h(1) ≤ n. Set Y1 = T1. As
k[Y1, T2 . . . , Tn] is finite over P = k[Y1, Y2, . . . , Yn], the same holds for
A by Corollary 4.16, and (1) holds. Then Y1, . . . , Yn are algebraically in-
dependent over k. Furthermore, as p1∩k[Y2, . . . , Yh(1)] = (Y2, . . . , Yh(1))
and Y1 = f ∈ p1, we find p1 ∩ P ⊃ (Y1, . . . , Yh(1)). Conversely, if
g =

∑
gi(Y2, . . . , Yn)Y i

1 ∈ p1 ∩ P , then g0 ∈ p1, as Y1 ∈ p1. Hence
g0 ∈ p1 ∩ k[Y2, . . . , Yn] = (Y2, . . . , Yh(1)) and g ∈ (Y1, . . . , Yh(1)). There-
fore (2) holds.
Step 4. Suppose now that the theorem holds for r − 1. Let T1, . . . , Tn
algebraically independent elements satisfying (1) and (2) for the chain
p1 ⊂ · · · ⊂ pr−1. Put h = h(r − 1). Applying Step 3 to the ideal
pr ∩ k[Th+1, . . . , Tn] ⊂ k[Th+1, . . . , Tn] gives Yh+1, . . . , Yn and

pr ∩ k[Yh+1, . . . , Yn] = (Yh+1, . . . , Yh(r))

for some h(r) ≤ n. Put Yi = Ti for i ≤ i ≤ h. By assumption A is a
finite extension of k[T1, . . . , Tn], and k[T1, . . . , Tn] is by construction a
finite extension of P = k[Y1, . . . , Yn], so by Corollary 4.16 A is a finite
extension of P .



4.4. DIMENSION OF AFFINE AND PROJECTIVE VARIETIES 63

Consider a fixed i with 1 ≤ i ≤ r. Then (Y1, . . . , Yh(i)) ⊂ pi. Write
an element g ∈ pi ∩P as polynomial in Y1, . . . , Yh(i) with coefficients in
k[Yh(i)+1, . . . , Yn]. The constant term g0 of g lies in pi∩k[Yh(i)+1, . . . , Yn].
If i < r, then pi ∩ k[Yh(i)+1, . . . , Yn] ⊂ pi ∩ k[Th(i)+1, . . . , Tn] = (0).
For i = r by construction pr ∩ k[Yh+1, . . . , Yn] = (Yh+1, . . . , Yh(r)) so
also in this case pr ∩ k[Yh(r)+1, . . . , Yn] = (0). Therefore g0 = 0 and
g ∈ (Y1, . . . , Yh(i)). Thus pi ∩ P = (Y1, . . . , Yh(i)), and (2) holds. �

4.4. Dimension of affine and projective varieties

Finally we can prove that the polynomial ring k[X1, . . . , Xn] has
Krull dimension n.

Theorem 4.34. Let k[Y1, . . . , Yd] ⊂ A be a Noether normalisation
of an affine algebra A. Then dimA = d.

Proof. We have already seen that dimA = dim k[Y1, . . . , Yd] ≥ d
(Corollary 4.23 and Example 4.4). Let p0  · · ·  pr be a chain of prime
ideals in k[Y1, . . . , Yd]. We have to show that r ≤ d. By Theorem 4.33
there exists a Noether normalisation k[T1, . . . , Td] ⊂ k[Y1, . . . , Yd] with
pi∩k[T1, . . . , Td] = (T1, . . . , Th(i)) for 1 ≤ i ≤ r. Then r ≤ h(r) ≤ d. �

Definition 4.35. A chain p0  p1  · · ·  pn of prime ideals
in a ring R is maximal if it cannot be extended to a longer chain by
inserting a prime ideal.

Theorem 4.36. Let A be an affine affine algebra, which is an in-
tegral domain. Then all maximal chains of prime ideals have the same
length d = dimA.

Proof. Let q0  · · ·  qr be a maximal chain of prime ideals.
Then, as A is a domain, q0 = (0) and qm is a maximal ideal. By
Theorem 4.33 there is a Noether normalisation P = k[Y1, . . . , Yd],
pi = qi ∩ k[Y1, . . . , Yd] = (Y1, . . . , Yh(i)). Then h(0) = 0 and as pr
is a maximal ideal by Theorem 4.18, h(r) = d. Suppose that there is
an i such that h(i)+1 < h(i+1). Then one could insert the prime ideal
(Y1, . . . , Yh(i)+1) between pi and pi+1. Now P/pi = k[Yh(i)+1, . . . , Yd] is a
polynomial ring and therefore normal, and the extension P/pi ⊂ R/qi
is integral because P ⊂ R is integral. By ‘going down’ (Theorem
4.29) one can then insert a prime ideal between (0) and qi+1/qi, so be-
tween qi and qi+1, contradicting the maximality of the chain. Therefore
h(i+ 1) = h(i) + 1 and the chain has length d. �

Theorem 4.37. Let V ⊂ An be an algebraic set and V̄ ⊂ Pn its
projective closure. Then dimV = dim V̄ .

Proof. It suffices to consider the case that V is irreducible. Con-
sider a chain

∅ 6= V0  · · ·  Vd = V  · · ·  Vn = An
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of varieties, where d = dimV . By taking the projective closure we get
a chain

∅ 6= V̄0  · · ·  V̄d = V̄  · · ·  V̄n = Pn ,
which corresponds to a chain of homogeneous prime ideals

p0 ! · · · ! pd = I(V̄ ) ! · · · ! pn = (0)

in the polynomial ring k[X0, . . . , Xn]. Here p0 6= (X0, . . . , Xn), as V̄0

is not empty. Because a chain of prime ideals in k[X0, . . . , Xn] has
length at most n + 1, the chain p0 ! · · · ! pd = I(V̄ ) is a maximal
one, starting with I(V̄ ) and ending with an ideal properly contained
in (X0, . . . , Xn). Therefore dim V̄ = d. �

Remark 4.38. If V is an affine variety with Noether normalisation
k[Y1, . . . , Yd] ⊂ k[V ], then dimV = d is also the transcendence degree
of the function field k(V ) over k. This is the classical definition of the
dimension of affine and projective varieties.



CHAPTER 5

Tangent space and nonsingularity

In this chapter we define what it means that a variety is smooth.
In the case k = C one gets, as it should be, that V ⊂ AN is smooth
at P if and only if V is a complex submanifold of AN in an Euclidean
neighborhood of P .

There are two notions of tangent space. Firstly, we can consider
the tangent space as linear subspace of the ambient affine or projective
space; the projective one will be the projective closure of the affine tan-
gent space, defined on a affine open set of projective space. The other
notion is intrinsic, defined without explicit reference to an embedding.
It is no restriction to treat this only in the affine case. After all, the
tangent space should be the best local approximation.

5.1. Embedded tangent space

We start with the hypersurface case, where we generalise the defi-
nition used for curves in 3.22.

Definition 5.1. Let V = (f) ⊂ Pn be a projective hypersurface.
The tangent space TPV is to V at P is the linear subvariety

V

(
∂f

∂X0

(P )X0 +
∂f

∂X1

(P )X1 + · · ·+ ∂f

∂Xn

(P )Xn

)
.

The point P is a nonsingular point if TPV is a hypersurface, that is, if
df(p) = ( ∂f

∂X0
(P ), . . . , ∂f

∂Xn
(P )) 6= 0.

The tangent space to an affine hypersurface V = (f) ⊂ An in the
point P = (a1, . . . , an) is the linear subvariety

V
( ∂f
∂x1

(p)(X1 − a1) + · · ·+ ∂f

∂xn
(p)(Xn − an)

)
.

Proposition 5.2. Let f ∈ k[X1, . . . , Xn], k algebraically closed, a
polynomial without multiple factors. The set of nonsingular points of
V = (f) is an open dense subset of V .

Proof. We have to show that the set of singular points is a proper
closed subset of each irreducible component. The singular set Σ is
V (f, ∂f

∂xi
), so closed. Suppose that an irreducible component V (fj) of

V is contained in Σ. This means that all partial derivatives ∂f
∂xi

vanish
on V (fj). By the product rule this is the case if and only if all ∂fj

∂xi
vanish on V (fj). So we may as well assume that f is irreducible.

65
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We then have that ∂f
∂xi
⊂ (f), and therefore ∂f

∂xi
= 0, as its degree is

lower than that of f . If char k = 0, this implies that f is constant,
contradicting our assumption that V is a hypersurface. If char k = p >
0, we conclude that f is a polynomial in Xp

1 , . . . , Xp
n. Then f = gp,

where the coefficients of g are pth roots of those of f . This contradicts
the fact that (f) is a radical ideal. �

Example 5.3. Let f = g2 for an irreducible polynomial g. Then
every point in V (f) = V (g) is singular.

We now look at arbitrary algebraic sets.

Definition 5.4. Let V be an affine or projective algebraic set. The
tangent space TpV to V in the point P ∈ V is the linear subvariety

TPV =
⋂

f∈I(V )

TpV (f) .

To describe the tangent space it suffices to use generators of the
ideal. In the projective case, if (f1, . . . , fk) generate the homogeneous
ideal of V , then TPV = V (

∑
j
∂f1
∂Xj

(P )Xj, . . . ,
∑

j
∂fk
∂Xj

(P )Xj), and anal-
ogously in the affine case.

This last formulation works for any ideal. E.g., for the fat point
with coordinate ring k[X, Y ]/(X, Y 2) the tangent space at the origin is
V (X), whereas for the fat point with ring k[X, Y ]/(X2, XY, Y 2) it is
A2.

Lemma 5.5. Let (f1, . . . , fk) generate the ideal of V . Then

dimTPV = n− Rank

(
∂fi
∂Xj

)
(P ) ,

where ( ∂fi
∂Xj

) is the Jacobian matrix.
The function V → N, P 7→ dimTPV , is upper semicontinous in the

Zariski topology on V . That is, for any integer r the subset {P ∈ An |
dimTPV ≥ r} is Zariski closed.

Proof. This is just linear algebra. The Jacobian matrix has rank
at most n − r if and only if all the (n − r + 1) × (n − r + 1) minors
vanish. �

Example 5.6. Let V = V (XZ, Y Z) ⊂ A3. Its zero set consists of
a line L (the Z-axis) and a plane Π (the X, Y -plane) through the origin
O. Then dimTPV = 1 for P ∈ L \ {O}, dimTPV = 2 for P ∈ Π \ {O}
and dimTOV = 3.

Definition 5.7. Let P ∈ V ⊂ An be point of an algebraic set.
The local dimension of V at P , written dimP V , is dimOV,P .

The dimension dimP V is the maximum dimension of an irreducible
component of V containing P .
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Remark 5.8. We always have dimTPV ≥ dimP V . In contrast to
the hypersurface case, however, the result for arbitrary algebraic sets
does not follow directly from the definitions.

We sketch several approaches to it.
The first one reduces it to the case of hypersurfaces. One needs the

intrinsic description of the tangent space below, and shows that the
minimal dimension is a birational invariant. Every variety is birational
to a hypersurface. This follows from Noether normalisation together
with the Theorem of the Primitive Element: let K ⊂ L be a finite
separable field extension of an infinite field, then there exists an x ∈ L
such that L = K(x).

In the complex case the fact that the Jacobian matrix has rank
n−d, say that the first (n−d)× (n−d) minor does not vanish, implies
that in an Euclidean neighbourhood of P the zero set of f1, . . . , fn−d is
a submanifold of dimension d. But the implicit function theorem does
not hold with Zariski open sets, because they are much too large. It
does hold using formal power series. One has to show that dimOV,P =
dim k[[X1 − a1, . . . , Xn − an]]/I(V ).

The best proof requires more commutative algebra. One needs
again the intrinsic characterisation of the tangent space, as (m/m2)∗,
where m is the maximal ideal of the local ring OV,P . Then it is a general
fact about local Noetherian rings, that dimR/mm/m2 ≥ dimR. We will
prove it below for the local rings of affine algebraic sets.

Definition 5.9. An algebraic set V in An or Pn is smooth (or
nonsingular) at P ∈ V if dimTPV = dimP V . Then P is a smooth (or
nonsingular) point of V . Otherwise, V is singular at P , and P is a
singular point or a singularity of V .

The set ΣV of singular points of V is called the singular locus of V .
If ΣV is empty, that is, if V is smooth at each of its points, then V is
called smooth.

5.2. Zariski tangent space

Usually elements of the affine tangent space are called tangent vec-
tors; indeed, TPV is not only an affine linear subspace, but it has a
distinguished point, P , which can serve as origin of a vector space.
A point Q ∈ TPV is then the endpoint of the vector

−→
PQ. There are

therefore two coordinates involved, those of P = (a1, . . . , an) ∈ An and
Q = (a1 + b1, . . . , an + bn) ∈ An (so that the bi are the coordinates of
Q when P is the orgin). A convenient way to write the coordinates of
a tangent vector is as (a1 + b1ε, . . . , an + bnε), where ε is as in analysis
a very small number, algebraically expressed by ε2 = 0. Recall that
the inclusion {P} → V corresponds to a k-algebra homomorphism
evp : k[V ] → k, given by evP (f) = f(a1, . . . , an). This can be seen as
a map from an abstract point P to V , where by changing the map (by
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changing the ai) we vary the point P ∈ V . Now consider the fat point
T with coordinate ring k[ε] = k[t]/(t2), sometimes called the ring of
dual numbers. Then in the same sense a tangent vector is a map from
T to V , given by evaluation ev−−→

PQ
. By Taylors formula and ε2 = 0 we

have
ev−−→

PQ
(f) = f(a1 + b1ε, . . . , an + bnε)

= f(a1, . . . , an) + ε
∑

bi
∂f
∂Xi

(a1, . . . , an) .

Example 5.10. Let Gl(n, k) be the affine algebraic variety of in-
vertible n × n matrices. We determine the tangent space at I, the
identity matrix. Let A ∈ M(n, n; k) be any n × n matrix. Then we
have det(I + εA) = 1 + εTrA, which is a unit in k[ε]. So TIGl(n, k) =
M(n, n; k). For Sl(n, k), the matrices with determinant one, we find
that TISl(n, k) = {A ∈M(n, n; k) | TrA = 0}.

Another way to distinguish the coordinates bi is to write a tangent
vector as differential operator. A tangent vector is then X =

∑
bi

∂
∂Xi

.
The condition that X ∈ TPV is that X(f)(P ) = 0 for all f ∈ I(V ).
We can use this description to give an intrinsic characterisation of the
tangent space.

Theorem 5.11. Let P ∈ V be a point on an affine algebraic set,
with maximal ideal MP ⊂ k[V ]; let mp be the maximal ideal in OV,P .
The k[V ]-module MP/M

2
P is naturally a k-vector space, as is the OV,P -

module mP/m
2
P . There are natural isomorphisms of vector spaces

TPV ∼= (MP/M
2
P )∗ ∼= (mP/m

2
P )∗ ,

where the ∗ denotes the dual vector space.

Proof. We first note that mP/m
2
P is a module over OV,P/mP = k,

so a k-vector space.
A tangent vector X =

∑
bi

∂
∂Xi

gives a linear function onMP , which
is well-defined modulo I(V ), as X(f) = 0 for all f ∈ I(V ). Conversely,
if a linear function l is given, we define bi = l(Xi).

The inclusion MP ⊂ mP induces an injection MP/M
2
P → mP/m

2
P .

We show that it is surjective. Let f/g be a representative of a function
germ in mP . Let c = g(P ). Then f/c − f/g = f(1/c − 1/g) ∈ m2

P , so
the classs of f/g in mP/m

2
P is the image of the class of f/c ∈MP/M

2
P .

Note that a tangent vector X =
∑
bi

∂
∂Xi

acts on mP by the quotient
rule. �

Definition 5.12. We call (mP/m
2
P )∗ the Zariski tangent space to

V at P .

Definition 5.13. Let f : V → W be a regular map between affine
algebraic sets, and let f ∗ : k[W ] → k[V ] be the corresponding map of
coordinate rings. Suppose f(P ) = Q. Then the dual of the induced
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map f ∗ : mQ/m
2
Q → mP/m

2
P is the differential dPf : TPV → TQW of f

at P .

5.3. The dimension of the tangent space

Proposition 5.14. Let V be an affine or projective variety of di-
mension d, and H a hypersurface. If V ∩H 6= ∅ and V 6⊂ H, then all
irreducible components of V ∩H have dimension d− 1.

Proof. It suffices to prove the affine case. The hypersurface H
corresponds to a principal ideal (f) in the ring k[X1, . . . , Xn]. Let I be
the ideal of V . We choose a Noether normalisation k[Y1, . . . , Yn] ⊂
k[X1, . . . , Xn] with I ∩ k[Y1, . . . , Yn] = (Yd+1, . . . , Yn). Then (f) ∩
k[Y1, . . . , Yn] is again a principal ideal, given by a polynomial g. It
follows that the dimension of I ∩ (f)∩ k[Y1, . . . , Yn] is d− 1, and there-
fore the dimension of V ∩H is d− 1.

To extend the statement to every irreducible component, we decom-
pose V ∩H = W1 ∪ · · · ∪Wk. Let g ∈ k[X1, . . . , Xn] a polynomial that
vanishes on W2, . . . ,Wk, but not on W1 and consider Vg = V ∩ D(g).
This is an affine variety, and Vg∩H has only one component, of dimen-
sion d− 1. Its closure in V has also dimension d− 1, as V 6⊂ H. �

Corollary 5.15. Let V be an affine (or projective) variety. Let
f1, . . . , fm ∈ k[V ] be (homogeneous) elements of the (homogeneous)
coordinate ring of V , with non empty zero set on W = V (f1, . . . , fm) ⊂
V . Then dimZ ≥ dimV −m for every irreducible component Z of W .

To prove the statement about the dimension of the Zariski tangent
space we need an important argument, valid for local rings.

Theorem 5.16 (Nakayama’s Lemma). Let R be a local ring with
maximal ideal m, let M be a finitely generated R-module, and let N ⊂
M be a submodule. Then N + mM = M if and only if N = M .

Proof. Replacing M by M/N , we may assume N = 0. We have
to show that mM = M implies M = 0. Let m1, . . . ,mr be generators
of M . If mM = M we may write mi =

∑
aijmj for each i with the

aij ∈ m, or in matrix notation,

(I − A)m = 0 ,

where A is the square matrix with entries aij andm is the column vector
of the mi. Therefore det(I − A)mi = 0. As det(I − A) ≡ 1 mod m, it
is a unit and mi = 0 for all i. Thus M = 0. �

Corollary 5.17. Elements m1, . . . ,mr generateM as R-module if
and only their residue classes mi+mM generateM/mM as R/m-vector
space. In particular, any minimal set of generators for M corresponds
to an R/m-basis for M/mM , and any two such sets have the same
number of elements.
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Proof. Take N = (m1, . . . ,mr) ⊂M . �

Theorem 5.18. Let P ∈ V be a point of an affine algebraic set.
Then dimTPV ≥ dimP V .

Proof. Let MP be the maximal ideal of P in k[V ], and mP the
maximal ideal in OV,P . Then dimTPV = dimkmP/m

2
P . Say that this

dimension ism. Choose elements f1, . . . , fm ∈ k[V ], which project onto
a basis of MP/M

2
P
∼= mP/m

2
P . By Nakayama’s lemma (f1, . . . , fm) =

mP . Therefore {P} is an irreducible component of V (f1, . . . , fm) ⊂ V ,
of dimension 0. Let V1 be an irreducible component of V passing
through P , with dimV1 = dimP V . Then {P} is also an irreducible
component of V (f1, . . . , fm) ⊂ V1, of dimension 0 ≥ dimVi−m. There-
fore m ≥ dimP V . �

Theorem 5.19. Let f : V → W be a regular surjective map of
irreducible algebraic sets, n = dimV , m = dimW . Then dimF ≥
n−m for any point Q ∈ W and every irreducible component F of the
fibre f−1(Q).

Proof. Let P ∈ f−1(Q). By taking affine neighbourhoods of P
and Q we may suppose that V and W are affine. Let π : W → Am
be a finite map (Noether normalisation!). Then the fibre of π ◦ f
over π(Q) (with reduced structure) is the disjoint union of the fibres
of f over the points of π−1(π(Q)). It suffices to prove the statement
for π ◦ f : V → Am, that is, we may assume that W = Am. Then
I(Q) = (Yi − bi), and the fibre is given by the m equations fi = bi.
Therefore each irreducible component has dimension at least n−m. �

5.4. The main theorem of elimination theory

Theorem 5.20. The image of a projective algebraic set V under a
regular map f : V → W is a closed subset of W in the Zariski topology.

Definition 5.21. A map f : V → W is closed if for every closed
subset Z ⊂ V its image f(Z) is a closed subset of W .

Proof of the theorem.
Step 1: reduction to a projection. We factor the map f via its graph:
we write f : V

Γ−→ V ×W π−→ W , where Γ(P ) = (P, f(P )) and π is the
projection on the second factor. To show that the graph Γ(V ) is a closed
subset of V ×W we observe that it is the inverse image of the diagonal
∆(W ) ⊂ W ×W under the map (f, idW ), which is a closed subvariety,
as it is cut out by the equations xi = yi, if the xi are coordinates on
the first factor of W ×W , and yi the corresponding coordinates on the
second factor. It remains to show that π : V × W → W is a closed
map.
Step 2: reduction to the case V = Pn, W = Am. If Z is a closed subset
of V ×W and V ⊂ Pn, then Z is also closed in Pn ×W , and π(Z) is
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also the image under the projection Pn ×W → W , so we may assume
that V = Pn.

As the condition that a subset is closed can be checked in affine
open sets, we may assume that W is affine. Being closed in W then
follows from being closed in Am, so we may assume that W = Am.
Step 3: the projection Pn × Am → Am is closed. We have defined the
product Pn × Pm as variety as the image under the Segre embedding
2.40. A closed subset of Pn × Pm is given by homogeneous polynomi-
als in the Zij, but by substituting Zij = XiYj we can also work with
polynomials bihomogeneous in the Xi and Yj. For Pn × Am we make
the Yj coordinates inhomogeneous, but the polynomials are still ho-
mogeneous in the Xi. So let Z be given by polynomials f1, . . . , fk ∈
k[X0, . . . , Xn, Y1, . . . , Ym], of degree di in the Xi.

Consider a fixed point Q = (b1, . . . , bm) ∈ Am. Then Q ∈ π(Z) if
and only if the ideal IQ, generated by the polynomials

fi,Q = fi(X0, . . . , Xn, b1, . . . , bm) ,

has a zero in Pn. By Proposition 2.15 V (IQ) = ∅ if and only if
(X0, . . . , Xn)s ⊂ IQ for some s. This condition means that every homo-
geneous polynomial of degree s can be written as

∑
gifi,Q. SoQ ∈ π(Z)

if (X0, . . . , Xn)s 6⊂ IQ for all s.
Consider the set

Ws = {Q ∈ Am | (X0, . . . , Xn)s 6⊂ IQ} .
Then the image π(Z) is the intersection of all the sets Ws. It suffices
therefore to show that Ws is closed for any s. For the purpose of this
proof let Sd ⊂ k[Y1, . . . , Ym][X0, . . . , Xn] be the k[Y1, . . . , Ym]-module
of all polynomials, homogeneous of degree d in the Xi. A generat-
ing set are the monomials of degree d in the Xi. Now consider the
homomorphism of k[Y1, . . . , Ym]-modules

Ss−d1 ⊕ · · · ⊕ Ss−dk → Ss, (g1, . . . , gk) 7→
∑

gifi .

It is given by a matrix with entries in k[Y1, . . . , Ym]. Then Ws is the
set of points where this map has rank less than

(
n+s
s

)
and it is defined

by the minors of size
(
n+s
s

)
of the matrix. Therefore Ws is closed. �





CHAPTER 6

Lines on hypersurfaces

In this chapter k is an algebraically closed field of characteristic not
equal to 2, unless otherwise stated.

6.1. A dimension count

We consider the following problem. Let V be a hypersurface of
degree d in Pn. When does V contain a linear subspace of dimension
k, and if so, how many? In particular, does V contain lines (k = 1)?

Given a line L ⊂ Pn, say

(X0 : X1 : X2 : · · · : Xn) = (S : T : 0 : · · · : 0) ,

it is easy to write down a hypersurface of degree d containing L: just
take f = X2g2 + · · · + Xngn with gi ∈ k[X0, . . . , Xn] of degree d − 1.
We can choose (f) to be non-singular. The condition that (f) is non-
singular at the line L is that V ( ∂f

∂Xi
)∩V (X2, . . . , Xn) = ∅. We compute

the ∂f
∂Xi

and put in X2 = · · · = Xn = 0 and find ( ∂f
∂X0

, . . . , ∂f
∂Xn

) =

(0, 0, g2, . . . , gn) so the gi should not have a common zero on the line.
The general hypersurface of degree d will not contain lines. Then

the question becomes for which degree does the general hypersurface
of that degree contain lines, and how many.

Let V = (f) with f ∈ k[X0, . . . , Xn] of degree d. We write down
the condition that a given line lies on V . Let P and Q be two points
of L. Then L can be given in parametric form as

λP + µQ = (λp0 + µq0 : · · · : λpn + µqn) ,

and L lies on V if and only if the polynomial f(λP + µQ) in (λ : µ) is
the zero polynomial. We develop

f(λP + µQ) =

λdf0(P,Q) + λd−1µf1(P,Q) + · · ·+ λµd−1fd−1(P,Q) + µdfd(P,Q),

where f0(P,Q) = f(P ) and fd(P,Q) = f(Q). Basically by Taylor’s
theorem we can write f1(P,Q) =

∑
qi

∂f
∂Xi

(P ). Denote by ∆Q the
differential operator ∆Q =

∑
qi

∂
∂Xi

. With this notation f1(P,Q) =

∆Qf(P ) and we find that f2(P,Q) = 1
2
∆2
Qf(P ), if char k 6= 2.

So we get, for a fixed f , d+1 equations in the pi, qi. We will discuss
below how we can make the pi, qi into coordinates on the space of all

73
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lines in Pn. It turns out that this is a projective variety of dimension
2(n− 1). So we expect lines as long as d+ 1 ≤ 2(n− 1).

Let us look at n = 3.
d = 1: A plane contains a two-dimensional family of lines.
d = 2: Any nondegenerate quadric has two rulings, that is, two 1-

dimensional families of lines.
d = 3: We will show that a smooth cubic surface contains exactly 27

lines.
d ≥ 4: In general no lines.
In the case n = 4 we expect a finite number of lines on a quintic

threefold. Indeed, the general quintic contains 2875 lines, but there also
exist smooth quintic threefolds containing 1-parameter families of lines.
On a general quintic the number of rational curves of given degree d is
finite. A formula for this number was first conjectured by the physicists
Candela, de la Ossa, Green and Parker. This was starting point for an
enormous activity, which goes under the name of mirror symmetry.

6.2. Grassmann variety

The construction in this section works for any field, notably k =
R. We show that the space of r − 1-dimensional subspaces of Pn−1 is
a smooth projective variety, the Grassmannian Gn

r . The indexing is
explained by the fact that it is also the space of r-dimensional linear
subspaces of the n-dimensional vector space kn.

An r-dimensional linear subspace L is determined by r linearly in-
dependent vectors v0, . . . , vr−1. We write these vectors as row vectors,
and put them in an r × n matrix ML. If we take a different basis,
we get a matrix of the form M ′

L = AML, where A is the r × r base
change matrix. All the minors are therefore multiplied by the same
factor detA, and the ratios of the minors give a well-defined point in
PN , where N =

(
n
r

)
− 1.

Definition 6.1. The Plücker coordinates of L are the r×r minors
of the matrix ML formed by the vectors in a basis of L.

Proposition 6.2. The Grassmann variety Gn
r of all r-dimensional

linear subspaces of kn is a smooth projective variety of dimension r(n−
r).

Proof. We describe an affine open set. Let ML be a matrix rep-
resenting the linear subspace L. Suppose pi0,...,ir−1 6= 0, where pi0,...,ir−1

is the minor formed with columns i0, . . . , ir−1. For ease of notation we
suppose that these columns are the first r columns. Let then A be the
r× r matrix, formed by the first r columns. The condition p0,...,r−1 6= 0
means that A is invertible, so A−1ML is another matrix representing
the same subspace. We conclude that every L ∈ Gn

r can be represented
by a matrix of the form (I N), where I is the r× r identity matrix and
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N is an r × (n − r) matrix. Moreover, this representation is unique.
So the open set p0,...,r−1 6= 0 is the space of r× (n− r) matrices, which
is isomorphic to Ar(n−r). The Grassmann variety is the projective clo-
sure of this affine open set. The explicit description shows that it is
smooth. �

Remark 6.3. We can also describe the above in a coordinate free
way. Let V be a finite dimensional k-vector space, and L ⊂ V a linear
subspace of dimension r. There is an induced map ΛrL → ΛrV of
exterior powers. As dim ΛrL = 1, we obtain the Grassmann variety
Gr(V ) as variety in P(ΛrV ).

Let L be a fixed subspace. Then almost all other subspaces can
be described as graph of a linear map L → V/L (with as matrix the
matrix N from above).

Remark 6.4. To describe the ideal defining Gn
r we can start from

the affine chart p1,...,r 6= 0. Note that each entry nij of the matrix N is
up to sign a Plücker coordinate: take the minor formed from columns
0, . . . , i − i, i + 1, . . . , r − 1, r − 1 + j. All Plücker coordinates are
given by the minors of N of arbitrary size, and they can be expressed
in terms of the entries nij. We can give quadratic equations: just
compute a minor by (generalised) Laplace expansion. Then make these
equations homogeneous with the coordinate p0,...,r−1. Now consider the
ideal generated by all equations of this form, where now p0,...,r−1 has
no longer a preferred role.

Example 6.5. Look at G4
2. Then there is only one relation. It

can be found as explained in the previous remark, by writing p2,3 =
n02n13−n12n03. There is also a direct derivation, using the description
of the previous section. So let L be the line through two points P =
(p0 : p1 : p2 : p3) and Q = (q0 : q1 : q2 : q3), write the matrix ML. The
determinant of two copies of this matrix is obviously zero; it can be
computed by Laplace expansion. We find∣∣∣∣∣∣∣∣

p0 p1 p2 p3

q0 q1 q2 q3

p0 p1 p2 p3

q0 q1 q2 q3

∣∣∣∣∣∣∣∣ = 2(p0,1p2,3 − p0,2p1,3 + p0,3p1,2) = 0 .

6.3. Incidence correspondence

Now consider hypersurfaces of degree d in Pn; they are parametrised
by P(Sd) in the notation of p. 38. We define a space parametrising pairs
consisting of a linear subspace of Pn and a hypersurface containing the
subspace.

Definition 6.6. The incidence correspondence I(r, d;n) of linear
subspaces of dimension r and hypersurfaces of degree d in Pn is

I(r, d;n) = {(L, f) ∈ Gn+1
r+1 × P(Sd) | f |L = 0} .
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Proposition 6.7. The incidence correspondence is a smooth closed
irreducible subset of Gn+1

r+1 × P(Sd) of codimension
(
r+d
d

)
.

Proof. It is difficult to find which linear subspaces lie on a given
hypersurface, but it is easy to find the hypersurfaces through a given
linear subspace. Suppose L = V (Xr+1, . . . , Xn), then f(P ) = 0 for
all P ∈ L if and only if f ∈ (Xr+1, . . . , Xn) if and only if f contains
no monomials involving only X0, . . . , Xr. This gives as many linearly
independent conditions as there are monomials of degree d in these
variables, namely

(
r+d
d

)
.

Now consider an affine chart of Gn+1
r+1 . The condition that f vanishes

on the subspace Xi =
∑r

j=0 nijXj, i = r + 1, . . . , n, is that upon sub-
stituting Xi =

∑r
j=0 nijXj the resulting polynomial in the X0, . . . , Xr

is the zero polynomial. This gives equations, which are linear in the
coefficients of f and polynomial in the nij. By the Jacobian criterion
they define a smooth subset of the stated codimension. �

Corollary 6.8. If (n − r)(r + 1) <
(
r+d
d

)
, then the general hy-

persurface of degree d in Pn does not contain an r-dimensional linear
subspace.

Proof. Observe that the hypersurfaces containing a linear sub-
space are exactly those, which lie in the image of the projection of the
incidence correspondence I(r, d;n) on P(Sd). If

(
r+d
d

)
> (n− r)(r+ 1),

then the dimension of I(r, d;n) is less than the dimension of P(Sd). �

The argument in the above proof is a precise version of our ear-
lier dimension count. One might expect that each hypersurface con-
tains a linear subspace if (n − r)(r + 1) ≥

(
r+d
d

)
. This is not true: if

d = r = 2, n = 4, both numbers are 6 but a three-dimensional non-
degenerate quadric does not contain two-dimensional subspaces. On
the other hand, the projective cone over a quadric surface contains
one-dimensional families of two-dimensional subspaces. The space S2

of quadrics in P4 has dimension
(

6
2

)
− 1 = 14, just as the incidence

corespondence I(2, 2; 4), and the subspace Σ of singular quadrics is a
hypersurface of dimension 13. The fibres of the map I(2, 2; 4) → Σ
have dimension at least 1, in accordance with Theorem 5.19.

Lemma 6.9. If (n − r)(r + 1) =
(
r+d
d

)
then the image I(r, d;n) in

P(Sd) is either the whole of P(Sd), or it is a proper subvariety and every
fibre of the projection map has dimension at least one.

Proof. The image of I(r, d;n) is closed by the main theorem of
elimination theory 5.20. If it is not the whole of P(Sd), then the di-
mension of the image is less than the dimension of I(r, d;n) and every
fibre has dimension at least one by the theorem 5.19 on the dimension
of fibres. �

Theorem 6.10. Every cubic surface in P3 contains a line.
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Proof. We are in the case d = 3, n = 3 and r = 1, so (n− r)(r +
1) =

(
r+d
d

)
= 4 and dim I(1, 3; 3) = dimP(S3) =

(
3+3

3

)
− 1 = 19.

We claim that the Fermat surface V (X3 + Y 3 + Z3 + T 3) contains
only finitely many lines, in fact exactly 27 lines. Therefore the fibre
above the point {F} ∈ P(S3) has dimension zero. Therefore the first
alternative of the previous lemma occurs, that the image of I(1, 3; 3)
is the whole of P(S3). This means that every cubic surface contains a
line.

To prove the claim we first observe that the Fermat surface contains
the lines X+εkY = Z+εmT = 0 with ε a primitive third root of unity;
by taking different values for the integers k and m we find 9 lines and
by permutation of the coordinates in total 3×9 = 27 lines. Other lines
do not exist: without loss of generality we may assume that a line is
given by

Z + aX + bY = 0,

T + cX + dY = 0.

We insert these values in the equation f and find

(1−a3−c3)X3−3(a2b+c2d)X2Y −3(ab2+cd2)XY 2+(1−b3−d3)Y 3 ≡ 0

as the condition that the line lies on the surface. This gives the equa-
tions 1− a3 − c3 = a2b+ c2d = ab2 + cd2 = 1− b3 − d3 = 0. From the
middle two expression we derive that (bc− ad)cd = 0. If bc = ad, then
0 = d(ab2 + cd2) = (b3 + d3)c = c and similarly d = 0. Then ab = 0,
but also a3 = b3 = 1. Therefore bc 6= ad and either c = 0 or d = 0. If
for example c = 0, then a3 = 1 and b = 0, so d3 = 1 and the line is
one of the 27 lines we know. Therefore the surface contains exactly 27
lines. �

6.4. The 27 lines on a cubic surface

Let S be an irreducible cubic surface. By theorem 6.10 it contains at
least one line. Our first goal is to find more lines. This can be done by
studying the 1-dimensional linear system (also called pencil) of planes
through the line l. Each plane Π through l intersects the surface S
in a reducible cubic plane curve, consisting of l and a residual conic.
In general this conic will be irreducible, but for some planes it will be
reducible, consisting of two lines.

Definition 6.11. A tritangent plane of a cubic surface is a plane
intersecting the surface in three lines (counted with multiplicity).

Note that on a smooth surface three lines through a point always
lie in a plane, namely the tangent plane through that point.

Lemma 6.12. For a non-singular cubic surface S the three lines in
a tritangent plane are distinct.
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Proof. We choose coordinates (X : Y : Z : T ) such that the
tritangent plane is (T = 0). Suppose it contains a multiple line. Then
the equation of S can be written as Tg + l21l2 with l1 and l2 linear
forms. By the product rule all partial derivatives vanish in V (T, g, l1),
contradicting the fact that S is smooth. �

We search for tritangent planes in the pencil of planes through l
by determining the condition that the residual conic degenerates. A
conic is given by a quadratic form. It is degenerate if and only if its
discriminant, that is, the determinant of the matrix of the associated
bilinear form vanishes.

Given l, choose coordinates such l = V (Z, T ). We expand the
equation f of S as

f = AX2 + 2BXY + CY 2 + 2DX + 2EY + F ,

where A, . . . , F are homogeneous polynomials in Z and T of degree
1, 1, 1, 2, 2, 3 respectively. In matrix fom

f =
(
X Y 1

)A B D
B C E
D E F

XY
1

 .

Let ∆(Z, T ) be the determinant

∆(Z, T ) =

∣∣∣∣∣∣
A B D
B C E
D E F

∣∣∣∣∣∣ .
This is a polynomial of degree 5 in Z and T (if it is not the zero
polynomial).

Lemma 6.13. The plane Π = V (µZ − λT ) is a tritangent plane if
and only if ∆(λ, µ) = 0.

Proof. We fix λ and ν and take homogeneous coordinates (X :
Y : W ) on Π. We put (X : Y : Z : T ) = (X : Y : λW : µW ). Then
∆(λ, µ) is the discriminant of the residual conic. �

Proposition 6.14. Let S be a smooth cubic surface. Through each
line five distinct tritangent planes pass.

Proof. We show that ∆(Z, T ) has only simple zeroes. Suppose
∆(1 : 0) = 0. As S is smooth, the lines in the tritangent plane (Z = 0)
are distinct. We may suppose that one of them is (X = 0). We
write f = Zg + TXl, with l = aX + 2bY + 2dT a linear form. We
expand g in the same way as we did before for f , and write g =
A1X

2+2B1XY+C1Y
2+2D1X+2E1Y+F1, where the degrees ofA1,. . . ,

F1 are 0, 0, 0, 1, 1, 2 respectively. Then ∆(Z, T ) is the determinant of
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the matrix

Z

A1 B1 D1

B1 C1 E1

D1 E1 F1

+ T

 a b dT
b 0 0
dT 0 0

 .

We compute (with Sarrus’ rule) that ∆(Z, T ) is, modulo terms with
Z2, given by

(2bdE1,T − b2F1,T 2 − d2C1)T 4Z ,

where E1,T is the coefficient of T in E1 and F1,T 2 that of T 2 in F1. The
coefficient 2bdE1,T − b2F1,T 2 − d2C1 is also the value −g(0, d, 0,−b).
The point (0 : d : 0 : −b) is the point Q = V (Z,X, l). We compute
the partial derivatives in this point . By nonsingularity not all vanish.
All partial derivatives of TXl vanish in Q, and the only nonvanishing
derivative is ∂f

∂Z
(Q) = g(Q). Therefore d2C1 − 2bdE1,T + b2F1,T 2 =

g(0, d, 0,−b) 6= 0 and Z is a factor of multiplicity 1 of ∆(Z, T ). �

Theorem 6.15. A nonsingular cubic surface contains exactly 27
lines.

Proof. The smooth surface has a tritangent plane Π, containing
three lines l1, l2 and l3. Let l be a line on the surface, not in Π. Then
l intersects Π in a point of one of the lines li, say l1, this cannot be an
intersection point with another line, say l2, as the three lines l, l1 and
l2 do not lie in a plane. So l lies in one of the tritangent planes through
l1.

There are four tritangent planes, besides Π, through each of the li,
each containing two lines besides li, so there are 24 lines on the cubic
besides the three lines in Π; that is to say, twenty seven in all. �

We investigate the configuration formed by the 27 lines. It may
be the case that the three lines in a tritangent plane go through one
point. Such a point of the surface is called Eckhardt point . But the
abstract configuration (meaning that one only considers the lines and
the pairwise intersections) is independent of the surface. So if one
makes a graph, whose vertices correspond to the lines, and where two
vertices are joined by an edge if and only if the lines intersect, then the
graph of three distinct lines in the plane is always the same (a triangle),
whether the lines pass through one point or not.

Let l andm be two disjoint lines on S (also called skew lines). They
exist, take lines in different tritangent planes through a given line. Let
Πi, i = 1, . . . , 5, be the tritangent planes through l, containing the
lines l, li and l′i. Then m intersects Πi in a point of li or l′i. Choose
the labeling such that m intersects li. Then the plane through m and
li contains a third line l′′i , intersecting li and therefore not intersecting
l and li. The line l′′i lies in a different tritangent plane through m as lj
for j 6= i. As l′′i intersects one of the lines l, li and l′i, it intersects l′j for
j 6= i.
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We say that a line n is a transversal of another line in P3, if n
intersects this line.

Lemma 6.16. If l1, . . . , l4 are four disjoint lines in P3, then either
all four lie on a smooth quadric surface Q, and there are infinitely many
common transversals, or they do not lie on any quadric, and they have
one or two common transversals. The first possibility cannot occur if
the four lines lie on a smooth cubic surface.

Proof. If a quadric contains three disjoint lines, it has to be
smooth: it cannot have a plane as component and neither can it be
a cone. Now through three lines always passes a quadric: the linear
system of quadrics through nine points, three on each line, is not empty.
A smooth quadric is isomorphic to the Segre embedding of P1×P1 and
therefore contains two rulings, systems of lines.

Take a (smooth) quadric Q through l1, l2 and l3. They lie in one
ruling. Any transversal in P3 of the lines lies on Q, as it intersects Q
in three points, and lies therefore in the other ruling. Now l4 can lie
on Q, as a line in the same ruling as l1, l2 and l3, or it does not lie
on Q. Then it intersects Q in two points, unless it is a tangent line.
The common transversals are the lines in the other ruling through the
intersection point(s).

If the four lines lie on a cubic surface S, all transversals lie on S,
as they intersect the surface in at least four points. So if l4 ⊂ Q, then
Q is a component of S. �

Proposition 6.17. A line n on S, not one of the 17 lines l, li, l′i,
l′′i or m, meets exactly three of the five lines l1, . . . , l5. Conversely, for
each three element subset {i, j, k} ⊂ {1, 2, 3, 4, 5} there is a unique line
lijk (distinct from l) intersecting li, lj and lk.

Proof. The line n cannot meet four of the li, as these four lines
have l and m as common transversals. If it meets at most two, it meets
at least three of the l′i, say it meets l′3, l′4 and l′5. It also meets two of
the four lines l1, l′1, l2, l′2. Say it meets l1 or l′2. This is a contradiction,
as l and l′′1 are common transversals of l1, l′2, l′3, l′4 and l′5.

There can only be one such line lijk. Every possibility has to occur
as there are 27 lines in total. We can also find in this way the number
27, by looking, say, at the lines lij5: all six possibilities have to occur,
as l5 intersects 10 lines, of which only l, l′5, l′′5 and m belong to the 17
lines. �
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We summarise the incidence relations.
l meets li, l

′
i

m meets li, l
′′
i

li meets l,m, l′i, l
′′
i , lijk

l′i meets l, li, l
′′
j , ljkn

l′′i meets m, li, l
′
j, ljkn

lijk meets li, linp, l
′
n, l
′′
n

Here the indices run through all possibilities, where i, j, k, n, p stand
for distinct elements of {1, 2, 3, 4, 5}.

The 27 lines on a cubic surface are the intersection of the cubic with
a hypersurface of degree 9. This surface was found by Clebsch in 1861,
by eliminating Q from the equations f1, f2, f3 and the condition that
Q lies in a plane (the notation is that of the begin of this chapter). He
used the so-called symbolic method. A modern treatment seems not to
be available. We describe his result. Let S = (f), let H be the Hessian
of f , which is the determinant of the Hesse matrix MH =

(
∂2f

∂Xi∂Xj

)
.

Let A be the adjugate (or classical adjoint) matrix of MH , that is the
matrix of cofactors; asMH is symmetric, there is no need to transpose.
Define

Θ =
3∑

i,j=0

∂H
∂Xi

Aij
∂H
∂Xj

and

T =
3∑

i,j=0

Aij
∂2H

∂Xi∂Xj
.

Then the hypersurface of degree 9 is given by

F = Θ− 4HT = 0 .

6.5. Cubic surfaces are rational

Theorem 6.18. An irreducible cubic surface is either a cone over
a plane cubic curve or is rational.

Proof. If S is singular with a point of multiplicity 3, then S is
a cone. If there is a point of multiplicity 2, then projection from this
point shows that the surface is rational.

Suppose now that S is smooth. Then S contains two skew lines
l and m. We define a rational map from l × m ∼= P1 × P1 to S, by
σ(P,Q) = R, where R is the third point of intersection of the line PQ
through P ∈ l and Q ∈ m. It is possible that R coincides with P
or Q. The map is not defined when the line PQ lies entirely on S.
This happens for five lines. The inverse of this map is the regular map
defined in the following way. IfR ∈ S, then there is a unique transversal
n to l and m, passing through R. We define π(R) = (l ∩ n,m ∩ n).
One can find n if R does not lie on l or m, by taking say the plane Π
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through R and l, and intersecting it with m. Then n is the line through
R and Π ∩m. This construction does not involve S, but breaks down
if R ∈ l or R ∈ m. Note that Π intersects S in l and a residual conic,
on which R lies. This description makes also sense if R ∈ l: require
that R lies on the residual conic in Π. This implies that n intersects S
in the point R with multiplicity 2, so it is a tangent line, and Π is the
tangent plane to S at the point R. The maps π and σ are obviously
inverse to each other. �

Remark 6.19. The map π constructed in the above proof, maps
to an abstract, non-embedded copy of P1×P1. We can map to a plane
Π′ in P3 by sending R to the intersection point of n with Π′. This is
called skew projection. This map is not defined if the line lies in the
plane. This happens for the line connecting Π′ ∩ l and Π′ ∩ m, that
is, for one point of the surface S. The hyperplane sections of S are
mapped to plane curves of degree 4 with two double points. We can
get an everywhere defined map by choosing the plane Π′ through one
of the five transversals of l and m on S. Then the map π contracts
exactly 6 lines to points. The inverse is the map of the linear system
of cubics through these six points.

Remark 6.20. A plane cubic curve is rational if and only if it is
singular. In higher dimension, it was proved by Clemens and Griffiths
in 1971 that a smooth cubic threefold is not rational. Some cubic
fourfolds are rational, but it is conjectured that the general one is
not. There is weaker notion: an algebraic variety V is unirational if
its function field k(V ) is isomorphic to a subfield of k(X1, . . . , Xn) for
some n. Every smooth cubic hypersurface is unirational.
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Further reading

The question of good texts was discussed at http://mathoverflow.
net/questions/2446.

Algebraic geometry books at introductory level are

• William Fulton, ALGEBRAIC CURVES, An Introduction to Alge-
braic Geometry, available from the Author’s homepage
www.math.lsa.umich.edu/~wfulton/
This is a classic text, still useful.
• Miles Reid, Undergraduate Algebraic Geometry, Cambridge Univ.
Press, 1988
Written in typical Miles Reid style. Nice choice of topics.
• Klaus Hulek, Elementary Algebraic Geometry. American Mathe-
matical Society, 2003.
An adaptation of Miles’ book for use in Germany.
• Andreas Gathmann, Algebraic Geometry, Notes for a class taught
at the University of Kaiserslautern in 2003 and 2014
There are currently two versions of the notes. A nice text. The
older text covers two terms, and also treats more advanced subjects.
Recently updated.
• Brieskorn–Knörrer, Ebene algebraische Kurven Birkhäuser, 1981
An english translation exists. It treats the singularities of plane
curves, both from an algebro-geometric and a topological point of
view. On the way much elementary algebraic geometry is covered.
• J.S. Milne, Algebraic Geometry
online notes
• David A. Cox, John B. Little and Don O’Shea, Ideals, Varieties,
and Algorithms Springer, 3rd Ed. 2007
From the book’s webpage:
This book is an introduction to computational algebraic geometry
and commutative algebra at the undergraduate level. It discusses
systems of polynomial equations ("ideals"), their solutions ("vari-
eties"), and how these objects can be manipulated ("algorithms").

The basics of algebraic geometry needs a lot of commutative algebra.
One of the earliest textbooks, Zariski-Samuel, started out as prepara-
tion for algebraic geometry, and grew to two volumes.

Books on elementary level:
85

http://mathoverflow.net/questions/2446
http://mathoverflow.net/questions/2446
www.math.lsa.umich.edu/~wfulton/
http://www.mathematik.uni-kl.de/agag/mitglieder/professoren/gathmann/notes/alggeom/
http://www.mathematik.uni-kl.de/agag/mitglieder/professoren/gathmann/notes/alggeom/
http://www.jmilne.org/math/CourseNotes/ag.html
http://www.cs.amherst.edu/~dac/iva.html
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• Miles Reid, Undergraduate Commutative Algebra. LMS Student
Texts 29, Cambridge Univ. Press 1995
• Ernst Kunz, Eine Einführung in die kommutative Algebra und al-
gebraische Geometrie. Vieweg 1978.
An english translation exists. Although it has algebraic geometry
in the title, the book contains mainly commutative algebra.
• Atiyah–MacDonald, Introduction to commutative algebra, Addison-
Wesley 1969
Another classic. Still used as textbook.
• Allen Altman and Steven Kleiman, A Term of Commutative Alge-
bra, available from its course syllabus at MIT.
Based on years of teaching Atiyah-MacDonald.
• Greuel–Pfister, A Singular Introduction to Commutative Algebra,
2nd ed. 2008, 690 p.

Books on algebraic geometry for further study:

• Robin Hartshorne, Algebraic geometry, Springer 1977
This is the standard reference on algebraic geometry.
• Griffiths–Harris, Principles of Algebraic Geometry, Wiley 1978
Studies mainly varieties over the complex numbers. The standard
reference for transcendental methods.
• Eisenbud and Harris, The Geometry of Schemes, Springer 2000
• Ravi Vakil, Math 216, Foundations Of Algebraic Geometry
see http://math216.wordpress.com
Very readable notes from a course at Stanford.
• Semple and Roth, Introduction to Algebraic Geometry, Oxford 1949
An old-fashioned textbook, but with a wealth of examples.
• David Eisenbud, Commutative Algebra, with a View Toward Alge-
braic Geometry, Springer 1995

http://web.mit.edu/18.705/www/syl13f.html
http://math216.wordpress.com
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