MMA320 Introduction to Algebraic Geometry

Exercises for Chapter 3

- **3.1.** Let f(X) and G(X) be polynomials in A[X], A an UFD. Let $f(X) = a_0(X \alpha_1) \dots (X \alpha_m)$ and $g(X) = b_0(X \beta_1) \dots (X \beta_n)$ be the factorisation of the polynomials into linear factors (in an extension of the field of fractions Q(A)). Show that $R(f,g) = a_0^n b_0^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i \beta_j) = a_0^n \prod_{i=1}^m g(\alpha_i) = (-1)^{mn} b_0^m \prod_{j=1}^n f(\beta_j)$.
- **3.2.** Show that R(f, gh) = R(f, g)R(f, h). Use this to show that $I_P(C, E) = I_P(C, D) + I_P(C, E)$.
- **3.3**. Show that R(f, g + af) = R(f, g). Let C = (f), D = (g) and E = (g + af) be plane curves. Show that $I_P(C, E) = I_P(C, D)$ for all $P \in C \cap D$.

To compute intersection multiplicities, one can use the results of the previous two exercises together with proposition 3.15.

3.4. Let C_1 , $C_2 \subset \mathbb{P}^2(K)$, K algebraically closed of characteristic zero, be cubic curves with homogeneous equations

$$C_1$$
: $(X+Z)^3 + 3Y^3 - Z^3 = 0$,
 C_2 : $X^3 + X^2(Y+Z) + XZ^2 + Y^3 = 0$.

Compute the intersection points of C_1 and C_2 with their multiplicities.

- **3.5**. Find all points of intersection of the following pairs of curves, and the intersection numbers at these points:
 - (a) $Y^2Z X(X 2Z)(X + Z)$ and $Y^2 + X^2 2XZ$.
 - (b) $(X^2 + Y^2)Z + X^3 + Y^3$ and $X^3 + Y^3 2XYZ$.
 - (c) $Y^5 X(Y^2 XZ)^2$ and $Y^4 + Y^3Z X^2Z^2$.
 - (d) $(X^2 + Y^2)^2 + 3X^2YZ Y^3Z$ and $(X^2 + Y^2)^3 4X^2Y^2Z^2$.
- **3.6**. Suppose the intersections of the opposite sides of a hexagon lie on a straight line. Show that the vertices lie on a conic.
- **3.7**. Let C=(f) be a projective plane curve. Show that a point P is a multiple point of C if and only if $\frac{\partial f}{\partial X}=\frac{\partial f}{\partial Y}=\frac{\partial f}{\partial Z}=0$.
- **3.8**. Let P be a simple point on C=(f). Show that the tangent line to C at P has the equation $\frac{\partial f}{\partial X}(P)X+\frac{\partial f}{\partial Y}(P)Y+\frac{\partial f}{\partial Z}(P)Z=0$.
- **3.9.** Show that $m_P(\frac{\partial f}{\partial X}) \ge m_P(f) 1$ for all f and P with f(P) = 0.
- **3.10**. Show that the following curves are irreducible; find their multiple points, and the multiplicities and tangents at the multiple points.
 - (a) $XY^4 + YZ^4 + XZ^4$.
 - (b) $X^2Y^3 + X^2Z^3 + Y^2Z^3$.
 - (c) $Y^2Z X(X Z)(X \lambda Z), \ \lambda \in k$.
 - (d) $X^n + Y^n + Z^n$, n > 0.

- **3.11**. Let C=(f) be an irreducible curve. (a) Show that one of $\frac{\partial f}{\partial X}$, $\frac{\partial f}{\partial Y}$ and $\frac{\partial f}{\partial Z}$ is not the zero polynomial. (b) Show that C has only finitely many multiple points.
- **3.12**. Prove that an irreducible cubic is either nonsingular or has at most one double point.
- **3.13**. Show that every nonsingular curve

in a projective plane over an algebraically closed field is irreducible. Is this true for affine curves?

- **3.14.** A line L is tangent to a curve C at a point P if and only if $I_P(C,L) > m_P(C)$.
- **3.15**. $(\operatorname{char}(k) = 0)$ Let C be an irreducible curve of degree n in \mathbb{P}^2 . Suppose $P \in \mathbb{P}^2$, with $m_P(C) = r > 0$. Then for all but a finite number of lines L through P, L intersects C in n-r distinct points other than P.
- **3.16.** $(\operatorname{char}(k) = p > 0)$ Let $C = V(X^{p+1} Y^p Z)$, P = (0:1:0). Find $L \cap C$ for all lines L passing through P. Show that every line that is tangent to C at a simple point passes through P.
- **3.17**. If a curve C of degree n has a point P of multiplicity n, show that C consists of n lines through P (not necessarily distinct).
- **3.18**. Let f(x,y) be the affine equation of a real or complex plane curve, and p=(a,b) a point on it; suppose that $\frac{\partial f}{\partial y}(p) \neq 0$, so by the implicit function theorem $y = \varphi(x)$ in a neighbourhood of p. Prove that p is an inflection point (in the sense that $\varphi''(a) = 0$) if and only if:

$$\begin{vmatrix} f_{xx} & f_{xy} & f_x \\ f_{xy} & f_{yy} & f_y \\ f_x & f_y & 0 \end{vmatrix} = 0.$$

(Hint: differentiate $f(x, \varphi(x)) \equiv 0$ twice. Compute also the determinant.) Use Euler's formula and f(a,b) = 0 to translate this condition into the condition on the vanishing of the Hessian of the associated homogeneous polynomial F(X,Y,Z).

3.19. Let $C \subset \mathbb{P}^2(k)$, char $k \neq 2$, be a plane cubic with inflection point P. Prove that a change of coordinates can be used to bring C in the normal form $Y^2Z = X^3 +$ $aX^2Z + bXZ^2 + cZ^3$.

Hint: take coordinates such that P = (0:1:0), and its tangent is Z = 0; get rid of the linear term in Y by completing the square.

- **3.20**. A real plane cubic with one inflection point has two other inflection points. Hint: use the result of the previous exercise in affine coordinates, express y as function of x and show that y''(x) has to have a zero.
- **3.21.** Find the inflection points of the singular cubics $ZY^2 = X^2(X+Z)$ and $Y^2Z = X^3$, both in $\mathbb{P}^2(\mathbb{R})$ and in $\mathbb{P}^2(\mathbb{C})$.
- **3.22**. Let P and Q be inflection points on a cubic curve C. Show that the third intersection point of the line \overline{PQ} with C is also an inflection point.

Hint: use coordinates in which P = (0:1:0), Q = (0:0:1) and the flexes are Y = 0 and Z = 0.

3.23. Consider the cubic curve C in $\mathbb{P}^2(\mathbb{C})$ with equation:

$$X^3 + Y^3 + Z^3 - 3\lambda XYZ = 0.$$

where $\lambda^3 \neq 1$. Find its inflection points. Compute the inflection lines. What are all lines joining inflection points?

- **3.24**. Give an example (in char p) of an irreducible curve in the projective plane with identically vanishing Hessian, but where not all points are inflection points.
- **3.25.** For which points P on a nonsingular cubic C does there exist a nonsingular conic that intersects C only at P?
- **3.26**. Let C be the cubic curve in $\mathbb{P}^2(\mathbb{Q})$ with affine equation:

$$Y^2 = X^3 - 2X^2 + 1 .$$

Take (0:1:0), the inflection point at infinity, as neutral element of the group law. Compute all multiples $2p, 3p, 4p, 5p, \ldots$, of the point p = (0,1).

3.27. The irreducible cubic curve $C = (Y^2Z - X^3)$ has a cusp in Q = (0:0:1) and an inflection point in (0:1:0). Show that the set $C^{\text{reg}} = C \setminus Q$ has a group structure isomorphic to the additive group K^+ of the field K.

Hint: take the inflection point as neutral element and use a suitable parametrisation of C^{reg} .