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Preface

The present book originated as lecture notes for my courses Ordinary Differ-
ential Equations and Dynamical Systems and Chaos held at the University
of Vienna in Summer 2000 and Winter 2000/01, respectively. Since then it
has been rewritten and improved several times according to the feedback I
got from students over the years when I redid the course.

It gives a self contained introduction to the field of ordinary differential
equations with emphasis on the dynamical systems point of view. How-
ever, it also covers some classical topics such as differential equations in the
complex plane and boundary value (Strum-Liouville) problems.

It only requires some basic knowledge from calculus, complex functions,
and linear algebra which should be covered in the usual courses. In addition,
I have tried to show how a computer system, Mathematica, can help with
the investigation of differential equations. However, any similar program
can be used as well.

Updates

The manuscript is updated whenever I find some errors. Hence you
might want to make sure that you have the most recent version, which is
available from

http://www.mat.univie.ac.at/~gerald/ftp/book-ode/

X1


http://www.mat.univie.ac.at/~gerald/ftp/book-ode/

xii Preface

There you can also find an accompanying Mathematica notebook with the
code from the text plus some additional material. Please do not redis-
tribute this file or put a copy on your personal webpage but link
to the page above.
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Chapter 1

Introduction

1.1. Newton’s equations

Let us begin with an example from physics. In classical mechanics a particle
is described by a point in space whose location is given by a function

z: R—R3 (1.1)

The derivative of this function with respect to time is the velocity of the
particle

v=2: R—R3 (1.2)
and the derivative of the velocity is the acceleration

a=19: R =R (1.3)
In such a model the particle is usually moving in an external force field

F: R =R? (1.4)

which exerts a force F(x) on the particle at . Then Newton’s second law
states that, at each point x in space, the force acting on the particle must
be equal to the acceleration times the mass m (a positive constant) of the

3



4 1. Introduction

particle, that is,
mi(t) = F(z(t)), for all t € R. (1.5)

Such a relation between a function z(t) and its derivatives is called a dif-
ferential equation. Equation (1.5) is of second order since the highest
derivative is of second degree. More precisely, we have a system of differen-
tial equations since there is one for each coordinate direction.

In our case z is called the dependent and t is called the independent
variable. It is also possible to increase the number of dependent variables
by adding v to the dependent variables and considering (z,v) € RS. The
advantage is, that we now have a first-order system

B(t) = ot

o) = %F(x(t)). (1.6)

This form is often better suited for theoretical investigations.

For given force F' one wants to find solutions, that is functions z(t) that
satisfy (1.5) (respectively (1.6)). To be more specific, let us look at the
motion of a stone falling towards the earth. In the vicinity of the surface
of the earth, the gravitational force acting on the stone is approximately
constant and given by

0
Fz)=—-mg|(0]. (1.7)
1

Here g is a positive constant and the x3 direction is assumed to be normal
to the surface. Hence our system of differential equations reads

m.iél = 0,
m.fg = 0,
mis = —mg. (1.8)

The first equation can be integrated with respect to ¢ twice, resulting in
x1(t) = C1 + Cat, where Cy, Co are the integration constants. Computing
the values of 1, #1 at ¢ = 0 shows C; = z1(0), Cy = v1(0), respectively.
Proceeding analogously with the remaining two equations we end up with

0
g;(t):x(())ﬂ(())t—g 0| (1.9)
1

Hence the entire fate (past and future) of our particle is uniquely determined
by specifying the initial location x(0) together with the initial velocity v(0).



1.1. Newton’s equations )

From this example you might get the impression, that solutions of differ-
ential equations can always be found by straightforward integration. How-
ever, this is not the case in general. The reason why it worked here is that
the force is independent of xz. If we refine our model and take the real
gravitational force

Flz) = —fymM%, v, M >0, (1.10)
our differential equation reads
e ym M x,
L @l a
mis = — ym M xo
(23 + 23 + 23)3/2’
miy = —— 1M (1.11)

(23 + 23 + 23)3/2

and it is no longer clear how to solve it. Moreover, it is even unclear whether
solutions exist at alll (We will return to this problem in Section 8.5.)

Problem 1.1.| Consider the case of a stone dropped from the height h.

Denote by r the distance of the stone from the surface. The initial condition
reads r(0) = h, 7(0) = 0. The equation of motion reads

M
(R+1)?

F=— (exact model)

respectively
i=—g (approzimate model),

where g = YM/R? and R, M are the radius, mass of the earth, respectively.

(i) Transform both equations into a first-order system.

(ii) Compute the solution to the approximate system corresponding to
the given initial condition. Compute the time it takes for the stone
to hit the surface (r =0).

(iii) Assume that the exact equation also has a unique solution corre-
sponding to the given initial condition. What can you say about
the time it takes for the stone to hit the surface in comparison
to the approximate model? Will it be longer or shorter? Estimate
the difference between the solutions in the exact and in the approx-
imate case. (Hints: You should not compute the solution to the
exact equation! Look at the minimum, mazimum of the force.)

(iv) Grab your physics book from high school and give numerical values
for the case h = 10m.
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6 1. Introduction

Problem 1.2, Consider again the exact model from the previous problem

and write
L yMe? 1
7= RESE e= 5
It can be shown that the solution r(t) = r(t,c) to the above initial conditions
is C*° (with respect to both t and €). Show that
h t? 1 M

r(t):h—g(l—QE)g—i—O(ﬁ), 9= T

(Hint: Insert r(t,e) = ro(t) + ri(t)e + ra(t)e? + r3(t)e + O(e?) into the
differential equation and collect powers of €. Then solve the corresponding
differential equations for ro(t), r1(t), ... and note that the initial conditions
follow from r(0,¢) = h respectively i(0,¢) = 0.)

1.2. Classification of differential equations

Let U C R™ V C R" and k € Ng. Then C*¥(U,V) denotes the set of
functions U — V having continuous derivatives up to order k. In addition,
we will abbreviate C'(U, V) = C°(U, V) and C*(U) = C*(U,R).
A classical ordinary differential equation (ODE) is a relation of the

form

F(t,z, M, ... 2®)y=0 (1.12)
for the unknown function € C*(J), J C R. Here F € C(U) with U an
open subset of R¥t2 and

d*x(t)

k —

W (t) = o keNo, (1.13)
are the ordinary derivatives of x. One frequently calls ¢ the independent
and x the dependent variable. The highest derivative appearing in F' is
called the order of the differential equation. A solution of the ODE (1.12)
is a function ¢ € C¥(I), where I C .J is an interval, such that

F(t,o(t), sV (1),...,0" (1) =0, for all ¢ € I. (1.14)

This implicitly implies (¢, ¢(t), o) (t),...,¢" (t)) € U for all t € I.
Unfortunately there is not too much one can say about general differen-
tial equations in the above form (1.12). Hence we will assume that one can

solve F for the highest derivative, resulting in a differential equation of the
form

e ®) = f(t, @, 2D, D), (1.15)
By the implicit function theorem this can be done at least locally near some
point (¢,y) € U if the partial derivative with respect to the highest derivative
does not vanish at that point, 2£(¢,4) # 0. This is the type of differential

> Oyi
equations we will consider from now on.
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1.2. Classification of differential equations 7

We have seen in the previous section that the case of real-valued func-
tions is not enough and we should admit the case x : R — R™. This leads
us to systems of ordinary differential equations

:cgk) = fl(t,a:,x(l),...,a:(kfl)),

a® = fot M, ), (1.16)

n

Such a system is said to be linear, if it is of the form

n k—1

2V =g+ 3 fiu)zy. (1.17)

I=1 j=0
It is called homogeneous, if g;(t) = 0.

Moreover, any system can always be reduced to a first-order system by
changing to the new set of dependent variables y = (z,z("), ..., (=),
This yields the new first-order system

no= Y2,
yk—l = Yk,
umw = f(ty). (1.18)

We can even add t to the dependent variables z = (t,y), making the right-
hand side independent of ¢

4 o= 1,
22 = 23,
2 = Zk+1,

Zev1 = f(2) (1.19)

Such a system, where f does not depend on ¢, is called autonomous. In
particular, it suffices to consider the case of autonomous first-order systems
which we will frequently do.

Of course, we could also look at the case t € R™ implying that we have
to deal with partial derivatives. We then enter the realm of partial dif-
ferential equations (PDE). However, this case is much more complicated
and is not part of this book.

Finally, note that we could admit complex values for the dependent

variables. It will make no difference in the sequel whether we use real or
complex dependent variables. However, we will state most results only for
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the real case and leave the obvious changes to the reader. On the other
hand, the case where the independent variable ¢ is complex requires more
than obvious modifications and will be considered in Chapter 4.

Problem 1.3 >Classify the following differential equations. Is the equation

linear, autonomous? What is its order?

(i) ¥'(z) +y(z) = 0.

(i) Lou(t) = sin(u(t)).

i) y(t)? + 2y(t) = 0.

(iv) Zru(z,y) + Lzu(z,y) = 0.

(V) &=—y, y=uz.

Problem 1.4. Which of the following differential equations for y(zx) are
linear?

(iii

(i) v = sin(z)y + cos(y).
(i) v = sin(y)x + cos(x).
(iii) ¢ = sin(x)y + cos(z).

z'nd the most general form of a second-order linear equation.

Problem 1.6. )Transform the following differential equations into first-order
systems.

(i) &+t sin(z) = =.

(il) 2 =—y, §j ==.
The last system is linear. Is the corresponding first-order system also linear?
Is this always the case?

Problem 1.7. Transform the following differential equations into autonomous
first-order systems.

(i) &+t sin(2) = x.
(ii) & = — cos(t)z.

The last equation is linear. Is the corresponding autonomous system also
linear?

Problem 1.8 Let z%) = f(a;,:v(l), .. .,x(k_l)) be an autonomous equation
(or system). Show that if ¢(t) is a solution, then so is ¢(t — o).

1.3. First order autonomous equations

Let us look at the simplest (nontrivial) case of a first-order autonomous
equation and let us try to find the solution starting at a certain point zy at
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1.3. First order autonomous equations 9

time ¢ = O:

t = f(x), z(0)= =z, f e C(R). (1.20)
We could of course also ask for the solution starting at zg at time tg. How-
ever, once we have a solution ¢(t) with ¢(0) = z¢, the solution ¥ (t) with
P (to) = o is given by a simple shift ¢ (t) = ¢(t — to) (this holds in fact for
any autonomous equation — compare Problem 1.8).

This equation can be solved using a small ruse. If f(xzg) # 0, we can
divide both sides by f(x) and integrate both sides with respect to t:

bi(s)ds
/0 F(2(s) =1. (1.21)

Abbreviating F(z) = [T % we see that every solution z(t) of (1.20) must

zo f(y)
satisfy F(z(t)) = t. Since F(x) is strictly monotone near zg, it can be

inverted and we obtain a unique solution
¢(t) = F~'(t),  ¢(0) = F1(0) = xo, (1.22)

of our initial value problem. Here F~1(t) is the inverse map of F(t).

Now let us look at the maximal interval where ¢ is defined by this
procedure. If f(zg) > 0 (the case f(zo) < 0 follows analogously), then f
remains positive in some interval (z1,z2) around xg by continuity. Define

T, = liTm F(z) € (0,00], respectively T_ = liim F(z) € [-00,0). (1.23)
TTT2 TIT1

Then ¢ € CH((T-,Ty)) and

li t) = tivel li t) =x1. 1.24
Jim ¢(t) = w2, respectively Jim o(t) = 71 (1.24)
In particular, ¢ is defined for all ¢ > 0 if and only if
T2 dy
T, = 2 - e, 1.25
A (1.25)

that is, if 1/f(z) is not integrable near xy. Similarly, ¢ is defined for all
t < 0 if and only if 1/f(x) is not integrable near x;.

If T < oo there are two possible cases: Either xo = oo or xo < oo. In
the first case the solution ¢ diverges to +o00 and there is no way to extend
it beyond 7% in a continuous way. In the second case the solution ¢ reaches
the point x5 at the finite time 7y and we could extend it as follows: If
f(z2) > 0 then xo was not chosen maximal and we can increase it which
provides the required extension. Otherwise, if f(z2) = 0, we can extend ¢
by setting ¢(t) = zo for t > T'y. However, in the latter case this might not
be the only possible extension as we will see in the examples below. Clearly,
similar arguments apply for ¢ < 0.

Now let us look at some examples.
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Example. If f(z) =z, zg > 0, we have (z1,2z2) = (0,00) and
T

F(x) =1In(—). (1.26)
T
Hence Ty = +o00 and
B(t) = zoe'. (1.27)
Thus the solution is globally defined for all ¢ € R. Note that this is in fact
a solution for all xy € R. o

Example. let f(z) = 2%, 19 > 0. We have (z1,22) = (0,00) and

F(z) = 1 l (1.28)

Tog T

Hence Ty = 1/z, T = —o0 and

(1.29)

———

In particular, the solution is no longer defined for all ¢ € R. Moreover, since
limyy1 /g ¢(t) = oo, there is no way we can possibly extend this solution for
t>1T,. ©

Now what is so special about the zeros of f(x)? Clearly, if f(z9) = 0,
there is a trivial solution

6(t) = o (1.30)
to the initial condition x(0) = z. But is this the only one? If we have
/mw dy‘ < 00, (1.31)
w fW)
then there is another solution
T dy

o) = F'(t),  Fla) (1.32)

with ¢(0) = xo which is different from ¢(¢)!
Example. Consider f(z) = y/|z|. Then (z1,z2) = (0, 00),

F(z) = 2/ — /o). (1.33)

" oy S
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1.3. First order autonomous equations 11

and
t
o(t) = (vxo + 5)2, —2y/xo < t < 00. (1.34)
So for zg = 0 there are several solutions which can be obtained by patching
the trivial solution ¢(t) = 0 with the above solution as follows

12
_% t < to

9

o(t) = 0, to<t<t . (1.35)
(tféil)2 tl S t

Y

The solution qg for tp = 0 and ¢; = 1 is depicted below:

o
As a conclusion of the previous examples we have:
e Solutions might only exist locally, even for perfectly nice f.
e Solutions might not be unique. Note however, that f(z) = /|z| is

not differentiable at the point zg = 0 which causes the problems.

Note that the same ruse can be used to solve so-called separable equa-
tions
&= f(x)g(t) (1.36)
(see Problem 1.11).
Problem 1.9. Solve the following differential equations:
(i) & = a3.
(ii)) = z(1 — x).
(iii) 2 =2(1 —z) —c.
Problem 1.10. Show that the solution of (1.20) is unique if f € C1(R).
Problem 1.11 (Separable equations). Show that the equation (f,g € C')

&= f(z)g(t), (o) = o,
locally has a unique solution if f(xo) # 0. Give an implicit formula for the
solution.

Problem 1.12. Solve the following differential equations:
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(i) & = sin(t)z.
(i) & = g(t) tan(z).

(iii) & = sin(t)e”.

Sketch the solutions. For which initial conditions (if any) are the solutions
bounded?

Problem 1.13. Investigate uniqueness of the differential equation

P |z|, = >0,
L t/x], x<0.

Show that the initial value problem x(0) = z¢ has a unique global solution
for every xqg € R. However, show that the global solutions still intersect!
(Hint: Note that if x(t) is a solution so is —x(t) and x(—t), so it suffices to
consider xy > 0 and t > 0.)

Problem 1.14 (Linear homogeneous equation). Show that the solution of
& = a(t)z, where a € C(R), is given by

6(1) = o exp < /tt a(s)ds> .

Problem 1.15. Charging a capacitor is described by the differential equation

RO) + 5Q(0) = Va,

where Q(t) is the charge at the capacitor, C is its capacitance, Vy is the
voltage of the battery, and R is the resistance of the wire.

Compute Q(t) assuming the capacitor is uncharged at t = 0. What
charge do you get ast — o0 ?

Problem 1.16 (Growth of bacteria). A certain species of bacteria grows
according to

N(t)=kN(t),  N(0)= Ny,
where N (t) is the amount of bacteria at time t, k > 0 is the growth rate,
and Ny is the initial amount. If there is only space for Nmax bacteria, this
has to be modified according to

N(t) = r(1 — )N(t),  N(0) = Np.

Nmax

Solve both equations, assuming 0 < Ny < Npyax and discuss the solutions.
What is the behavior of N(t) ast — oo?



1.4. Finding explicit solutions 13

Problem 1.17 (Optimal harvest). Take the same setting as in the previous
problem. Now suppose that you harvest bacteria at a certain rate H > 0.
Then the situation is modeled by

W) = n1 - DN~ H, N = No
Rescale b
’ N(t)
x(7) = N T =kt

and show that the equation transforms into
H
K'Nmax .

(1) = (1 —x(r))x(r) — h, h =

Visualize the region where f(x,h) = (1 —z)x — h, (z,h) € U = (0,1) x
(0,00), is positive respectively negative. For given (xo,h) € U, what is the
behavior of the solution ast — oco? How is it connected to the regions plotted
above? What is the maximal harvest rate you would suggest?

Problem 1.18 (Parachutist). Consider the free fall with air resistance mod-
eled by
r=-nT—g, n > 0.

Solve this equation (Hint: Introduce the velocity v = & as new independent
variable). Is there a limit to the speed the object can attain? If yes, find it.
Consider the case of a parachutist. Suppose the chute is opened at a certain
time tg > 0. Model this situation by assuming n = ny for 0 < t < ty and
n =2 > n fort >ty and match the solutions at ty. What does the solution
look like?

1.4. Finding explicit solutions

We have seen in the previous section, that some differential equations can
be solved explicitly. Unfortunately, there is no general recipe for solving a
given differential equation. Moreover, finding explicit solutions is in general
impossible unless the equation is of a particular form. In this section I will
show you some classes of first-order equations which are explicitly solvable.

The general idea is to find a suitable change of variables which transforms
the given equation into a solvable form. Hence we want to review this
concept first. Given the point with coordinates (t,z), we may change to
new coordinates (s,y) given by

s=o(t,x), y =n(t,x). (1.37)

Since we do not want to lose information, we require this transformation to
be invertible.
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A given function ¢(t) will be transformed into a function ¢ (s) which has
to be obtained by eliminating ¢ from

s=o(t, o), ¢ =n(t o)) (1.38)

Unfortunately this will not always be possible (e.g., if we rotate the graph
of a function in R?, the result might not be the graph of a function). To
avoid this problem we restrict our attention to the special case of fiber
preserving transformations

s=o(t), y=n(ta) (1.39)
(which map the fibers t = const to the fibers s = const). Denoting the
inverse transform by

t= 7-(5)3 T = g(syy)v (140)
a straightforward application of the chain rule shows that ¢(t) satisfies
i = f(t,x) (1.41)
if and only if ¢(s) = n(7(s), p(7(s))) satisfies
.. (0n on
i= (GHn 0+ 5UnO £.0)) (142)

where 7 = 7(s) and £ = £(s,y). Similarly, we could work out formulas for
higher order equations. However, these formulas are usually of little help for
practical computations and it is better to use the simpler (but ambiguous)
notation

dy  dy(o(s),a(t(s) Dy dt | Oydedt
ds ds Ot ds + Oz dt ds’ (1.43)

But now let us see how transformations can be used to solve differential
equations.

Homogeneous equation:

A (nonlinear) differential equation is called homogeneous if it is of the

form
T

T = f(;) (1.44)
This special form suggests the change of variables y = ¥ (¢ # 0), which (by

(1.43)) transforms our equation into

Oy Oy, oz 1. fly) -y
el AR Ty . 1.45
Yo Tat T e t (1.45)
This equation is separable.
More generally, consider the differential equation
) axr + bt +c
T = f( ). (1.46)

ax + Bt +
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Two cases can occur. If a8 — ab = 0, our differential equation is of the form

= f(ax + bt), (1.47)
which transforms into B
y=af(y)+0b (1.48)
ifweset y=ax+0bt. If af —ab#0, wecan use y =z —xg and s =t — tg
which transforms (1.46) to the homogeneous equation
. ~ ay + bs
= f(—=— 1.49
y=1f (ay n BS) (1.49)
if (zg,%p) is the unique solution of the linear system ax + bt + ¢ = 0, ax +
Bt+~v=0.

Bernoulli equation:

A differential equation is of Bernoulli type if it is of the form
= f(t)x + g(t)z", n# 1. (1.50)
The transformation
y=a'"" (1.51)

gives the linear equation

y=0=n)f(t)y+ (1 —n)g(t). (1.52)

We will show how to solve this equation in Section 3.4 (or see Problem 1.22).

Riccati equation:

A differential equation is of Riccati type if it is of the form
i = f(t)r + g(t)z* + h(t). (1.53)

Solving this equation is only possible if a particular solution z,(t) is known.

Then the transformation )

@ (1.54)

y =
yields the linear equation
y=—(f() +22,(t)g()y — 9(). (1.55)

These are only a few of the most important equations which can be ex-
plicitly solved using some clever transformation. In fact, there are reference
books like the one by Kamke [18], where you can look up a given equation
and find out if it is known to be solvable explicitly. As a rule of thumb one
has that for a first-order equation there is a realistic chance that it is ex-
plicitly solvable. But already for second-order equations, explicitly solvable
ones are rare.
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Alternatively, we can also ask a symbolic computer program like Math-
ematica to solve differential equations for us. For example, to solve

& = sin(t)x (1.56)

you would use the command
In[1]:= DSolve[x'[t] == x[t]Sin[t], x[t], t]
out[1]= {{x[t] — e c°=ltlc[1]}}

Here the constant C[1] introduced by Mathematica can be chosen arbitrarily
(e.g. to satisfy an initial condition). We can also solve the corresponding
initial value problem using

In[2] := DSolve[{x'[t] == Sin[t]x[t], x[0] == 1},x[t], t]
out[2]= {{x[t] — el 7CosltI}}
and plot it using

In[3]:= Plot[x[t] /. %, {t,0,27}]

Out [3]=

pNuAmmﬂ
//
/
/

In some situations it is also useful to visualize the corresponding direc-
tional field. That is, to every point (¢, ) we attach the vector (1, f(t,x)).
Then the solution curves will be tangent to this vector field in every point:

In[4]:= VectorPlot[{1,Sin[t] x},{t, 0,27}, {x,0,6}]

6L - 4
-/

-~

4=
4=

4 -

—aa
—aa

sk

s
4

P e
b b kb b ad—

NN N N wow

Out[4]= ‘[ ~

i e b ke b 4 a e
v e e ke a add—d e —
v ek h add—d e —
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So it almost looks like Mathematica can do everything for us and all we
have to do is type in the equation, press enter, and wait for the solution.
However, as always, life is not that easy. Since, as mentioned earlier, only
very few differential equations can be solved explicitly, the DSolve command
can only help us in very few cases. The other cases, that is those which
cannot be explicitly solved, will be the subject of the remainder of this
book!

Let me close this section with a warning. Solving one of our previous
examples using Mathematica produces

In[5]:= DSolve[{x'[t] = x[t],x[0] == 0}, x[t], t]

outlsl= {{x[t] — tz}}

However, our investigations of the previous section show that this is not the
only solution to the posed problem! Mathematica expects you to know that
there are other solutions and how to get them.

Moreover, if you try to solve the general initial value problem it gets
even worse:

1n[6]:= DSolve[{x'[t] == y/x[t],x[0] == x0},x[t],t] // Simplify
ouetol= {{xlt] = 5 (6~ 2v%0)}, {xlt] = 5 (64 2v5%)*H)

The first ”solution” is no solution of our initial value problem at all! It
satisfies & = — /.

Problem 1.19. Try to find solutions of the following differential equations:

(i) i = 31’ 2t

()x_zﬂft?l"'a
(i) o =9* — %L — 5.
(iv) ¥ = £ —tan(¥).

Problem 1.20 (Euler equation). Transform the differential equation
2
3 + 3ti + @ = -

to the new coordinates y = x, s = In(t). (Hint: You are not asked to solve
it.)

Problem 1.21. Pick some differential equations from the previous prob-
lems and solve them using your favorite computer algebra system. Plot the
solutions.
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Problem 1.22 (Linear inhomogeneous equation). Verify that the solution
of & = a(t)x + g(t), where a,g € C(R), is given by

6(t) = w0 exp ( /t:a(s)ds> + /tt exp < / ta(r)dr) o(s) ds.

Problem 1.23 (Exact equations). Consider the equation
F(z,y) =0,
where F € C?(R% R). Suppose y(x) solves this equation. Show that y(z)
satisfies
p(z,y)y +a(z,y) =0,

where

OF (z,vy)

OF (x,
p(fﬁay) = Ty and CI(ZU,Z/) = M

ox

Show that we have

Op(x,y) _ 9q(x,y)
or Oy
Conversely, a first-order differential equation as above (with arbitrary co-
efficients p(x,y) and q(x,y)) satisfying this last condition is called exact.
Show that if the equation is exact, then there is a corresponding function F
as above. Find an explicit formula for F in terms of p and q. Is F uniquely
determined by p and q?

Show that
(4bxy + 3z +5)y' + 322 + 8ax +2by> +3y =0
is exact. Find F' and find the solution.

Problem 1.24 (Integrating factor). Consider

p(z,y)y + q(z,y) = 0.
A function p(z,y) is called integrating factor if

w(z, y)p(z, y)y' + plz,y)q(z,y) =0

18 exact.

Finding an integrating factor is in general as hard as solving the original
equation. However, in some cases making an ansatz for the form of u works.

Consider
xy +3x—2y=0

and look for an integrating factor u(x) depending only on x. Solve the equa-
tion.
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Problem 1.25 (Focusing of waves). Suppose you have an incoming electro-
magnetic wave along the y-axis which should be focused on a receiver sitting
at the origin (0,0). What is the optimal shape for the mirror?

(Hint: An incoming ray, hitting the mirror at (x,y) is given by

Rin(t) = (‘Zj) - (?) t, te(—o0,0].

At (x,y) it is reflected and moves along

Rea(t) = (;”) (1—1), telo,1].

The laws of physics require that the angle between the tangent of the mirror
and the incoming respectively reflected ray must be equal. Considering the
scalar products of the vectors with the tangent vector this yields

e () ()= 0 () =

which is the differential equation for y = y(z) you have to solve.)

SHESS

i

Problem 1.26 (Catenary). Solve the differential equation describing the
shape y(x) of a hanging chain suspended at two points:

v =av/1+ ()2, a > 0.

Problem 1.27 (Nonlinear boundary value problem). Show that the nonlin-
ear boundary value problem

y'(@) +y(@)? =0,  y(0)=y(1) =0,

has a unique montrivial solution. Assume that the initial value problem
y(zo) = o, y/(lﬁo) =11 has a unique solution.

e Show that a nontrivial solution of the boundary value problem must
satisfy y'(0) = pg > 0.

o If a solution satisfies y'(xg) = 0, then the solution is symmetric
with respect to this point: y(z) = y(xg — x). (Hint: Uniqueness.)

e Solve the initial value problem y(0) = 0, y'(0) = po > 0 as follows:
Set y' = p(y) and derive a first-order equation for p(y). Solve this
equation for p(y) and then solve the equation y' = p(y). (Note that
this works for any equation of the type y" = f(y).)

e Does the solution found in the previous item attain y'(x9) = 0
at some xo? What value should xo have for y(x) to solve our
boundary value problem?

e Can you find a value for pg in terms of special functions?
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1.5. Qualitative analysis of first-order equations

As already noted in the previous section, only very few ordinary differential
equations are explicitly solvable. Fortunately, in many situations a solution
is not needed and only some qualitative aspects of the solutions are of in-
terest. For example, does it stay within a certain region, what does it look
like for large t, etc.

Moreover, even in situations where an exact solution can be obtained,
a qualitative analysis can give a better overview of the behavior than the
formula for the solution. For example, consider the logistic growth model
(Problem 1.17)

#(t) = (1 — z(t)z(t) — h, (1.57)

which can be solved by separation of variables. To get an overview we plot
the corresponding right-hand side f(z) = (1 — z)z — h:

f(z)

Since the sign of f(x) tells us in what direction the solution will move, all
we have to do is to discuss the sign of f(z)! For 0 < h < % there are two
zeros x12 = 3(1 & /1 —4h). If we start at one of these zeros, the solution
will stay there for all ¢. If we start below x; the solution will decrease and
converge to —oo. If we start above x1 the solution will increase and converge
to xo. If we start above xo the solution will decrease and again converge to
xZ9.

Z'Q(h)

I (h)

At h = i a bifurcation occurs: The two zeros coincide x1 = x9 but otherwise
the analysis from above still applies. For h > i there are no zeros and all
solutions decrease and converge to —oo.

So we get a complete picture just by discussing the sign of f(x)! More
generally we have the following result for the first-order autonomous initial
value problem (Problem 1.29)

T = f(x), x(0) = mo, (1.58)
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where f is such that solutions are unique (e.g. f € C1).
(i) If f(xzp) =0, then x(t) = ¢ for all ¢.

(i) If f(zo) # 0, then z(t) converges to the first zero left (f(zo) < 0)
respectively right (f(zo) > 0) of zo. If there is no such zero the
solution converges to —oo, respectively oc.

If our differential equation is not autonomous, the situation becomes a
bit more involved. As a prototypical example let us investigate the differen-
tial equation

i =ax? -t (1.59)
It is of Riccati type and according to the previous section, it cannot be solved
unless a particular solution can be found. But there does not seem to be a
solution which can be easily guessed. (We will show later, in Problem 4.13,
that it is explicitly solvable in terms of special functions.)

So let us try to analyze this equation without knowing the solution.
Well, first of all we should make sure that solutions exist at all! Since we
will attack this in full generality in the next chapter, let me just state that
if f(t,z) € C*(R?,R), then for every (tg,z0) € R? there exists a unique
solution of the initial value problem

z = f(t,x), z(to) = xo (1.60)

defined in a neighborhood of ¢ty (Theorem 2.2). As we already know from
Section 1.3, solutions might not exist for all ¢ even though the differential
equation is defined for all (t,z) € R%. However, we will show that a solution
must converge to +oo if it does not exist for all ¢ (Corollary 2.15).

In order to get some feeling of what we should expect, a good starting
point is a numerical investigation. Using the command

In[7]:= NDSolve[{x'[t] == x[t]® — t2,x[0] == 1}, x[t], {t, —2,2}]

NDSolve::ndsz: At t == 1.0374678967709798¢, step size is
effectively zero; singularity suspected.

out[7]= {{x[t] — InterpolatingFunction[{{—2.,1.03747}}, <>][t]}}

we can compute a numerical solution on the interval (—2,2). Numerically
solving an ordinary differential equation means computing a sequence of
points (t;, ;) which are hopefully close to the graph of the real solution (we
will briefly discuss numerical methods in Section 2.6). Instead of this list of
points, Mathematica returns an interpolation function which — as you might
have already guessed from the name — interpolates between these points and
hence can be used as any other function.

Note, that in our particular example, Mathematica complained about
the step size (i.e., the difference t; —t;_1) getting too small and stopped at
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t =1.037.... Hence the result is only defined on the interval (—2,1.03747)
even though we have requested the solution on (—2,2). This indicates that
the solution only exists for finite time.

Combining the solutions for different initial conditions into one plot we
get the following picture:

X

A

First of all we note the symmetry with respect to the transformation
(t,z) = (—t,—x). Hence it suffices to consider ¢ > 0. Moreover, observe
that different solutions never cross, which is a consequence of uniqueness.

According to our picture, there seem to be two cases. Either the solu-
tion escapes to +o0o in finite time or it converges to the line x = —t. But
is this really the correct behavior? There could be some numerical errors
accumulating. Maybe there are also solutions which converge to the line
x =t (we could have missed the corresponding initial conditions in our pic-
ture)? Moreover, we could have missed some important things by restricting
ourselves to the interval ¢t € (—2,2)! So let us try to prove that our picture
is indeed correct and that we have not missed anything.

We begin by splitting the plane into regions according to the sign of
f(t,z) = 22 — t2. Since it suffices to consider ¢ > 0 there are only three
regions: I: x > t, II: —t < x < t, and III: x < —¢. In region I and III the
solution is increasing, in region II it is decreasing.

X4 r=1t
I.2>0
II. £ <0
[
III: £ > 0
r=—t

Furthermore, on the line z = ¢ each solution has a horizontal tangent and
hence solutions can only get from region I to II but not the other way round.
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Similarly, solutions can only get from III to II but not from II to III.

This already has important consequences for the solutions:

e For solutions starting in region I there are two cases; either the
solution stays in I for all time and hence must converge to +oo
(maybe in finite time) or it enters region II.

e A solution starting in region II (or entering region II) will stay
there for all time and hence must converge to —oo (why can’t it
remain bounded?). Since it must stay above x = —t this cannot
happen in finite time.

e A solution starting in IIT will eventually hit x = —t and enter
region II.

Hence there are two remaining questions: Do the solutions in region I which
converge to +0o reach 400 in finite time, or are there also solutions which
converge to 400, e.g., along the line x = t?7 Do the other solutions all
converge to the line x = —t as our numerical solutions indicate?

To answer these questions we need to generalize the idea from above
that a solution can only cross the line x = ¢ from above and the line z = —t
from below.

A differentiable function x4 (t) satisfying
o) > fh oy (t),  te (. T), (1.61)

is called a super solution of our equation. Similarly, a differentiable func-
tion x_(t) satisfying

i_(t) < ft,z_(t),  te[to,T), (1.62)

is called a sub solution.

For example, x4 (t) = t is a super solution and x_(t) = —t is a sub
solution of our equation for ¢ > 0.

Lemma 1.1. Let x4 (t), x_(t) be super, sub solutions of the differential
equation & = f(t,x) on [to,T), respectively. Then for every solution x(t) we
have

z(t) < x4 (t), te (to,T), whenever x(ty) < xzy(to), (1.63)
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respectively

z_(t) <z(t), te(to,T), whenever z(tg) > x_(to). (1.64)

Proof. In fact, consider A(t) = x4 (t) — x(t). Then we have A(tp) > 0 and
A(t) > 0 whenever A(t) = 0. Hence A(t) can cross 0 only from below.
Since we start with A(tg) > 0, we have A(t) > 0 for ¢ > ¢y sufficiently
close to to. In fact, if A(tg) > 0 this follows from continuity and otherwise,
if A(tg) = 0, this follows from A(tg) > 0. Now let t; > ty be the first
value with A(t;) = 0. Then A(t) > 0 for t € (to,¢1), which contradicts
A(t1) > 0. O

Similar results hold for ¢ < ty. The details are left to the reader (Prob-
lem 1.30).

Now we are able to answer our remaining questions. Since we were
already successful by considering the curves given by f(¢,x) = 0, let us look
at the isoclines f(t,x) = const.

Considering 22 — t? = —2 the corresponding curve is
y ()= —Vt2 -2,  t>2, (1.65)
which is easily seen to be a super solution
. t
(1) = — = > —2 = J{tus(0) (L.66)
for t > 24/2/3. Thus, as soon as a solution z(t) enters the region between
y+(t) and x_(t) it must stay there and hence converge to the line z = —t¢

since y4(t) does.

But will every solution in region II eventually end up between y, (t)
and x_(t)? The answer is yes: Since z(t) is decreasing in region II, every
solution will eventually be below —y, (t). Furthermore, every solution x(t)
starting at a point (tg, o) below —y, (¢) and above y (¢) satisfies ©(t) < —2
as long as it remains between —y (t) and y4 (). Hence, by integrating this
inequality, z(t) — o < —2(t — tp), we see that z(t) stays below the line
xo — 2(t — tp) as long as it remains between —y4 () and y4(¢). Hence every
solution which is in region II at some time will converge to the line x = —t.

Finally note that there is nothing special about —2, any value smaller
than —1 would have worked as well.

Now let us turn to the other question. This time we take an isocline
22 — t? = 2 to obtain a corresponding sub solution

y—(t) = V2 + 2, t>0. (1.67)

At first sight this does not seem to help much because the sub solution y_ (t)
lies above the super solution x4 (t). Hence solutions are able to leave the
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region between y_(t) and x4 (¢) but cannot come back. However, let us look
at the solutions which stay inside at least for some finite time ¢ € [0,T]. By
following the solutions with initial conditions (T, 24 (7)) and (T,y—(T)) we
see that they hit the line ¢ = 0 at some points a(7") and b(T"), respectively.
See the picture below which shows two solutions entering the shaded region
between x4 (t) and y_(t) at T'= 0.5:

T-0.5 1

Since different solutions can never cross, the solutions which stay inside for
(at least) ¢ € [0,7T] are precisely those starting at ¢ = 0 in the interval
[a(T),b(T)]! Moreover, this also implies that a(7T') is strictly increasing and
b(T) is strictly decreasing. Taking T — oo we see that all solutions starting
in the interval [a(oc0),b(oc0)] (which might be just one point) at ¢t = 0, stay
inside for all ¢ > 0. Furthermore, since z — f(t,z) = 22 — 2 is increasing
in region I, we see that the distance between two solutions

x1(t) — x0(t) = x1(to) — zo(to) —i—/ (f(s,a:l(s)) — f(s,mo(s))>ds (1.68)

to

must increase as well. If there were two such solutions, their distance would
consequently increase. But this is impossible, since the distance of x4 (t)
and y_(t) tends to zero. Thus there can be at most one solution x(t)
which stays between x4 (¢) and y_(¢) for all ¢ > 0 (i.e., a(co) = b(00)). All
solutions below xz((t) will eventually enter region II and converge to —oo
along x = —t. All solutions above z((t) will eventually be above y_(t) and
converge to +00. It remains to show that this happens in finite time.

This is not surprising, since the 2(¢)? term should dominate over the —¢2
term and we already know that the solutions of #(¢) diverge. So let us try
to make this precise: First of all

i(t) = x(t)? —t* > 2 (1.69)

for every solution above y_(t) implies x(t) > xo + 2(t — tp). Thus there is
an € > 0 such that

(1.70)
This implies
i) =z(t)? =12 > z(t)? — (1 — e)x(t)? = ex(t)? (1.71)
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and every solution z(t) is a super solution to a corresponding solution of
i(t) = ex(t)?. (1.72)

But we already know that the solutions of the last equation escape to +oo
in finite time and so the same must be true for our equation.

In summary, we have shown the following

e There is a unique solution x((t) which converges to the line x = t¢.

e All solutions above x(t) will eventually converge to o0 in finite
time.

e All solutions below xy(t) converge to the line x = —t.

It is clear that similar considerations can be applied to any first-order

equation & = f(¢,x) and one usually can obtain a quite complete picture of
the solutions. However, it is important to point out that the reason for our
success was the fact that our equation lives in two dimensions (¢, z) € R
If we consider higher order equations or systems of equations, we need more
dimensions. At first sight this seems only to imply that we can no longer plot
everything, but there is another more severe difference: In R? a curve splits
our space into two regions: one above and one below the curve. The only way
to get from one region to the other is by crossing the curve. In more than two
dimensions this is no longer true and this allows for much more complicated
behavior of solutions. In fact, equations in three (or more) dimensions will
often exhibit chaotic behavior which makes a simple description of solutions
impossible!
Problem 1.28. Let x be a solution of (1.58) which satisfies limy_,o0 x(t) =
x1. Show that imy_,oo &(t) = 0 and f(x1) = 0. (Hint: If you prove
limy_, oo £(t) = 0 without using (1.58) your proof is wrong! Can you give
a counter example?)

Problem 1.29. Prove the statements made about the initial value problem

(1.58).
Problem 1.30. Generalize the concept of sub and super solutions to the
interval (T, tg), where T < tg.

2 t?

Problem 1.31. Discuss the equation © = x° — el

o Make a numerical analysis.

e Show that there is a unique solution which asymptotically approaches

the line ¢ = 1.
e Show that all solutions below this solution approach the line x =
—1.

e Show that all solutions above go to co in finite time.
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Problem 1.32. Discuss the equation & = x> — t.

1.6. Qualitative analysis of first-order periodic equations

Some of the most interesting examples are periodic ones, where f(t+1,z) =
f(t,xz) (without loss we have assumed the period to be one). So let us
consider the logistic growth model with a time dependent harvesting term

#(t) = (1 — z(t))z(t) — h- (1 — sin(2nt)), (1.73)

where h > 0 is some positive constant. In fact, we could replace 1 —sin(2t)
by any nonnegative periodic function g(t) and the analysis below will still
hold.

The solutions corresponding to some initial conditions for h = 0.2 are
depicted below.

It looks like all solutions starting above some value x; converge to a pe-
riodic solution starting at some other value x9 > x1, while solutions starting
below x; diverge to —oo.

The key idea is to look at the fate of an arbitrary initial value x after
precisely one period. More precisely, let us denote the solution which starts
at the point x at time ¢ = 0 by ¢(¢, ). Then we can introduce the Poincaré
map via

P(z) = ¢(1,2). (1.74)
By construction, an initial condition xy will correspond to a periodic solution
if and only if xp is a fixed point of the Poincaré map, P(xg) = xo. In
fact, this follows from uniqueness of solutions of the initial value problem,
since ¢(t + 1,x) again satisfies © = f(¢t,x) if f(t + 1,z) = f(t,z). So
o(t+ 1,20) = ¢(t, o) if and only if equality holds at the initial time t = 0,
that is, ¢(1,z9) = ¢(0,x0) = xo.

We begin by trying to compute the derivative of P(z) as follows. Set

0
0t x) = - 6(t,) (1.75)
and differentiate the differential equation
bt @) = (1 - 6(t,2)o(t,a) — h- (1 —sin(2nt),  (1.76)

with respect to x (we will justify this step in Theorem 2.10). Then we obtain

O(t,z) = (1 — 20(t,2))0(t, z) (1.77)



28 1. Introduction

and assuming ¢(t, ) is known we can use Problem 1.14 to write down the
solution

0t z) = exp </Ot(1 - 2q§(s,x))ds) | (1.78)

Setting t = 1 we obtain

P'(z) = exp <1 - 2/01 gb(s,x)ds) . (1.79)

While it might look as if this formula is of little help since we do not know
¢(t,x), it at least tells us that that P'(x) > 0, that is, P(z) is strictly
increasing. Note that this latter fact also follows since different solutions
cannot cross in the (¢, x) plane by uniqueness (show this!).

Moreover, differentiating this last expression once more we obtain

P'(z) = -2 (/01 G(S,x)ds) P'(z) <. (1.80)

Thus P(z) is concave and there are at most two intersections with the line
x (why?). In other words, there are at most two periodic orbits. Note that
so far we did not need any information on the harvesting term.

To see that all cases can occur, we will now consider the dependence
with respect to the parameter h. A numerically computed picture of the
Poincaré map for different values of h is shown below.

h=0.1 h=0.249 h=0.5

1 1 1
1 1 1
2 2 2

1

N~
=

N

NI
=

It seems to indicate that P(x) is decreasing as a function of h. To prove
this we proceed as before. Set
0
t,x) = —o¢(t 1.81
Ut,2) = 5-6(t,2) (1.81)
and differentiate the differential equation with respect to h (again this step
will be justified by Theorem 2.10) to obtain

d(t,x) = (1 — 26(t, 2))(t, z) + (1 — sin(2nt)). (1.82)

Hence, since (0, x) = %(b(O,x) = %x = 0, Problem 1.22 implies

Y(t,x) = — /Ot exp </St(1 —2¢(r, a:))dr) (1 —sin(27s))ds <0  (1.83)

and setting ¢t = 1 we infer

0
oy Frl) <0, (1.84)
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where we have added h as a subscript to emphasize the dependence on the
parameter h. Moreover, for h = 0 we have
ex

Pyx)= ———

b(@) =17 (e — 1)z

and there are two fixed points 1 = 0 and zo = 1. As h increases these

points will approach each other and collide at some critical value h.. Above

this value there are no periodic orbits and all orbits converge to —oo since
P(z) < x for all z € R (show this).

To complete our analysis suppose h < h. and denote by z1 < x2 the
two fixed points of P(z). Define the iterates of P(z) by P%(z) = z and
P"(z) = P(P" !(z)). We claim

(1.85)

X2, xr > T,
lim P"(z) =< z1, x=um, (1.86)
n—oo
—00, ¥ < Tj.
For example, let x € (x1,x2). Then, since P(z) is strictly increasing we have
x1 = P(z1) < P(z) < P(x2) = x2. Moreover, since P(x) is concave we have
x < P(x), which shows that P"(z) is a strictly increasing sequence. Let zg €
(x, 2] be its limit. Then P(zg) = P(lim, oo P™(x)) = lim, . P"T!(2) =
xo shows that x( is a fixed point, that is, zg = z3. The other cases can be
shown similar (Problem 1.33).

So for & < x1 the solution diverges to —oo and for z > x1 we have
lim |¢(n,x) —x2| =0, (1.87)
n—oo
which implies (show this)
lim |¢(t, z) — ¢(t, z2)| = 0. (1.88)
t—o00
Similar considerations can be made for the case h = h. and h > h,.

Problem 1.33. Suppose P(x) is a continuous, monotone, and concave func-
tion with two fixed points x1 < xy. Show the remaining cases in (1.86).

Problem 1.34. Find lim,_, P"(x) in the case h = h, and h > he.

Problem 1.35. Suppose f € C?*(R) and g € C(R) is a nonnegative periodic
function g(t+1) = g(t). Find conditions on f such that the above discussion
still holds for the equation

&= f(z)+h-g(t).






Chapter 2

Initial value problems

Our main task in this section will be to prove the basic existence and unique-
ness result for ordinary differential equations. The key ingredient will be the
contraction principle (Banach fixed point theorem), which we will derive
first.

2.1. Fixed point theorems

Let X be a real vector space. A norm on X is a map ||.| : X — [0, 00)
satisfying the following requirements:

(i) |o] =0, |||l > 0 for z € X\{0}.
(ii) ||ax| = |af||z| for « € R and z € X.
(iii) ||z 4+ y|| < |||l + ||y|| for z,y € X (triangle inequality).

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 2.1)

WA= llglll < [1f = gl (2.1)

The pair (X, ||.||) is called a normed vector space. Given a normed vector
space X, we say that a sequence of vectors f,, converges to a vector f if
lim_ o || fr — f]| = 0. We will write f,, — f or lim, o fn = f, as usual,
in this case. Moreover, a mapping F' : X — Y between two normed spaces
is called continuous if f, — f implies F(f,) — F(f). In fact, it is not
hard to see that the norm, vector addition, and multiplication by scalars are
continuous (Problem 2.2).

In addition to the concept of convergence we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed

31
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space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. Clearly R" (or C") is a Banach space with the usual Euclidean
norm

We will be mainly interested in the following example: Let I be a com-
pact interval and consider the continuous functions C(I) on this interval.
They form a vector space if all operations are defined pointwise. Moreover,
C(I) becomes a normed space if we define

[|#]| = sup |z(t)]. (2.3)
tel
I leave it as an exercise to check the three requirements from above. Now
what about convergence in this space? A sequence of functions x,(t) con-
verges to z if and only if
lim ||z, — z|| = lim sup |z, (t) —z(t)| = 0. (2.4)
That is, in the language of real analysis, x, converges uniformly to x. Now
let us look at the case where x,, is only a Cauchy sequence. Then x,(t) is
clearly a Cauchy sequence of real numbers for any fixed ¢ € I. In particular,
by completeness of R, there is a limit z(¢) for each ¢t. Thus we get a limiting
function z(t). Moreover, letting m — oo in

|z (t) — 2m(t)| < e Vn,m > N., t el (2.5)

we see
zn(t) —2(t)| <e  Yn>N. tel, (2.6)

that is, x,(t) converges uniformly to x(¢). However, up to this point we do
not know whether it is in our vector space C'(I) or not, that is, whether
it is continuous or not. Fortunately, there is a well-known result from real
analysis which tells us that the uniform limit of continuous functions is again
continuous: Fix ¢t € I and € > 0. To show that x is continuous we need
to find a d such that |t — s| < 0 implies |z(t) — z(s)| < e. Pick n so that
|zy, —z|| < e/3 and 0 so that |t —s| < § implies |z, (t) —zn(s)| < /3. Then
|t — s| < 0 implies

|2(t) —a(s)| < |2(t) —2n(t)| +[2n(t) —2n(s)[+]zn(s) —2(s)| < S+5+5 =€

as required. Hence z(t) € C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words, C'(I) is a Banach space.
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You will certainly ask how all these considerations should help us with
our investigation of differential equations? Well, you will see in the next
section that it will allow us to give an easy and transparent proof of our
basic existence and uniqueness theorem based on the following result.

A fixed point of a mapping K : C C X — C is an element = € C such
that K (z) = x. Moreover, K is called a contraction if there is a contraction
constant 6 € [0,1) such that

[K(x) - K@) <Ollz—yll, xyeC. (2.7)
We also recall the notation K" (z) = K(K" (z)), K°(z) = .

Theorem 2.1 (Contraction principle). Let C be a (nonempty) closed subset
of a Banach space X and let K : C' — C be a contraction, then K has a
unique fixed point T € C such that
971
1-0

1K™ (2) — || < K (z) —xl, zeC (2.8)

Proof. If = K(z) and £ = K(&), then ||[z—Z| = | K(2)—-K(Z)|| < 0||lz—Z||
shows that there can be at most one fixed point.

Concerning existence, fix g € C and consider the sequence =, = K" (zg).
We have

st — 2all < Oy — wua]] < - < 67| — ol

and hence by the triangle inequality (for n > m)

n n—m—1 .
o = zml < D g =zl <™ Y ]|z — a0
j=m+1 =0
m
< 7glle1 — ol (2.9)

Thus x,, is Cauchy and tends to a limit Z. Moreover,
K () = 2|l = lim [lzn41 —zn| =0
n—oo
shows that T is a fixed point and the estimate (2.8) follows after taking the
limit n — oo in (2.9). O
Question: Why is closedness of C important?
Problem 2.1. Show that ||| f|| — llglll < IIf — gll-

Problem 2.2. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if f, — f,
gn — g, and o, — «, then ||an — ||f||; ot gn — [+ g, and angn — ag.
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Problem 2.3. Show that the space C(I,R"™) together with the sup norm
(2.3) is a Banach space if I is a compact interval. Show that the same is
true for I =[0,00) and I =R.

Problem 2.4. Derive Newton’s method for finding the zeros of a function

f(z),
Tntl = Tp — f(l’n)
f(@n)’
from the contraction principle by showing that if T is a zero with f'(T) #
0, then there is a corresponding closed interval C' around T such that the
assumptions of Theorem 2.1 are satisfied.

What is the advantage/disadvantage of using

f(@n)’

0 >0,

Tptl = Ty — 0
instead?

2.2. The basic existence and uniqueness result

Now we want to use the preparations of the previous section to show exis-
tence and uniqueness of solutions for the following initial value problem
(IVP)

= f(t,x), x(ty) = xo. (2.10)
We suppose f € C(U,R"), where U is an open subset of R**! and (tg, x¢) €
U.

First of all note that integrating both sides with respect to ¢ shows that
(2.10) is equivalent to the following integral equation

t
x(t) =z + t f(s,z(s)) ds. (2.11)

At first sight this does not seem to help much. However, note that xo(t) = xo
is an approximating solution at least for small ¢. Plugging x((t) into our
integral equation we get another approximating solution

x1(t) = xo + t f(s,z0(s)) ds. (2.12)

to

Iterating this procedure we get a sequence of approximating solutions
t
Tm(t) = K™ (x0)(1), K(z)(t)=xzo+ | f(s,z(s))ds. (2.13)
to

Now this observation begs us to apply the contraction principle from the
previous section to the fixed point equation x = K(x), which is precisely
our integral equation (2.11).
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We will set tg = 0 for notational simplicity and consider only the case t >
0 to avoid excessive numbers of absolute values in the following estimates.

First of all we will need a Banach space. The obvious choice is X =
C([0,T],R™)for some suitable 7' > 0. Furthermore, we need a closed subset
C C X such that K : C — C. We will try a closed ball of radius § around
g, where § > 0 has to be determined.

Choose V = [0,T] x Bs(xg) C U, where Bs(zg) = {z € R"| |x —x¢| < 6},
and abbreviate

M= t 2.14
(g?gvlf( ;)| (2.14)

where the maximum exists by continuity of f and compactness of V. Then

[ K () (t) — ol S/O |f (s, 2(s))|ds <t M (2.15)

whenever the graph of z(t) lies within V', that is, {(t,z(¢))|t € [0,T]} C V.
Hence, for t < Ty, where
)
To = min(7T, —
0 mln( ’M),
we have To M < § and the graph of K(z) restricted to [0,7p] is again in
V. Moreover, note that since [0, 7p] C [0,7] the same constant M will also
bound f on V = [0,Tp] x Bs(zg) C V.
So if we choose X = C([0,Tp],R™) as our Banach space, with norm
|lz|| = maxo<i<t, |2(t)|, and C = {z € X ||z — zo| < ¢} as our closed
subset, then K : C' — C' and it remains to show that K is a contraction.

(2.16)

To show this, we need to estimate

[ K (2)(t) — K(y) ()] < /0 £ (s,2(s)) = f(s,y(s))|ds. (2.17)

Clearly, since f is continuous, we know that |f(s,z(s)) — f(s,y(s))| is small
if |x(s) — y(s)| is. However, this is not good enough to estimate the inte-
gral above. For this we need the following stronger condition: Suppose f
is locally Lipschitz continuous in the second argument, uniformly with
respect to the first argument, that is, for every compact set Vo C U the
following number

I = sup |f(t,a:)—f(t,y)\
(t,2)£(ty) Vo |z —y|

(which depends on Vp) is finite. Then,

/0 (s, 2(5)) — F(s,y(s))|ds

(2.18)

L / j2(s) — y(s)|ds

Ltoiligt z(s) —y(s)|  (2.19)

IN

IN
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provided the graphs of both z(t) and y(t) lie in Vj. In other words,
I1K(z) = K(y)l| < LTollx —yl, w,yeC. (2.20)

Moreover, choosing Ty < L~! we see that K is a contraction and existence
of a unique solution follows from the contraction principle:

Theorem 2.2 (Picard-Lindelof). Suppose f € C(U,R™), where U is an
open subset of R" ™1 and (to,x0) € U. If f is locally Lipschitz continuous
in the second argument, uniformly with respect to the first, then there exists
a unique local solution T(t) € CY(I) of the IVP (2.10), where I is some
interval around tg.

The procedure to find the solution is called Picard iteration. Unfor-
tunately, it is not suitable for actually finding the solution since computing
the integrals in each iteration step will not be possible in general. Even for
numerical computations evaluating the integrals is often too time consum-
ing. However, if f(¢,x) is analytic, the n’th Picard iterate x,(t) matches
the Taylor expansion of the solution Z(t) around ¢y up to order n and this
can be used for numerical computations (cf. Problem 4.4). In any event,
the important fact for us is that there exists a unique solution to the initial
value problem.

In many cases, f will be even differentiable. In particular, recall that f €
CY(U,R™) implies that f is locally Lipschitz continuous (see the problems
below).

Lemma 2.3. Suppose f € C’k(U, R™), k > 1, where U is an open subset of
R and (tg,z0) € U. Then the local solution T of the IVP (2.10) is C*+1.

Proof. Let £ = 1. Then Z(t) € C! by the above theorem. Moreover,
using Z(t) = f(t,z(t)) € C' we infer Z(t) € C?. The rest follows from
induction. O

Problem 2.5. Show that f € C'(R) is locally Lipschitz continuous. In fact,
show that

|f(y) — f(x)| < sup |f'(z+e(y — )|z —yl.
€€[0,1]

Generalize this result to f € C1(R™,R").

Problem 2.6. Are the following functions Lipschitz continuous near 07 If
yes, find a Lipschitz constant for some interval containing 0.

(i) f(2) = -
(i) f(z) = |=['/2.
(ili) f(z)=2?sin(L).
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Problem 2.7. Apply the Picard iteration to the first-order linear equation
T =z, z(0) = 1.
Problem 2.8. Apply the Picard iteration to the first-order equation

& = 2t — 2/max(0, z), z(0) = 0.

Does it converge?

2.3. Some extensions

In this section we want to derive some further extensions of the Picard—
Lindel6f theorem. They are of a more technical nature and can be skipped
on first reading.

As a preparation we need a slight generalization of the contraction prin-
ciple. In fact, looking at its proof, observe that we can replace 6" by any
other summable sequence 6,, (Problem 2.10).

Theorem 2.4 (Weissinger). Let C' be a (nonempty) closed subset of a Ba-
nach space X. Suppose K : C — C satisfies

[K"(z) = K"(y)l| < bnllz —yll,  z,yeC, (2.21)
with Y72 | O < 00. Then K has a unique fized point T such that

I @)~z < (36 | 1K@ —al,  aec. @2

Our first objective is to give some concrete values for the existence time
Ty. Using Weissinger’s theorem instead of the contraction principle, we can
avoid the restriction Ty < L~

Theorem 2.5 (improved Picard-Lindeldf). Suppose f € C(U,R™), where U
is an open subset of R"1, and f is locally Lipschitz continuous in the second
argument. Choose (to, zg) € U and § > 0, T > ty such that [to, T| x Bs(zo) C
U. Set

t
M) = [ sup [7(s,a)lds (2.23)
to x€Bjs(xo)
Y€ Bs (o) [z =yl

Note that M (t) is nondecreasing and define Ty via

To = sup{T > to| M(T) < d}. (2.25)
Suppose
To
/ L(t)dt < oo. (2.26)
to
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Then the unique local solution T(t) of the IVP (2.10) is given by
T = lim K™ (x0) € C'([to, To], Bs(0)), (2.27)

m—

where K™(xg) is defined in (2.13), and satisfies the estimate

ToL ds)™ 1, To
wp [3(t) — K™ (a))] < o K" s [ 156w0lds.
to<t<To m: to

(2.28)

An analogous result holds for t < tg.

Proof. Again we choose ty = 0 for notational simplicity. Our aim is to
verify the assumptions of Theorem 2.4 choosing X = C([0,7p]) and C =
Bs (370) C X.

First of all, if z(t) € C for t € [0,Tp] we have

K (2)(t) — o] < / (s, 2(s))lds < M(#) <6,

that is, K (z)(t) € C for t € [0,Tp] as well. In particular, this explains our
choice for Tj.

Next we claim

DO suplets) —y(o),  (229)

(K™ (2)(1) = K™ (y)(1)] <
where L;(t) = fg L(s)ds. This follows by induction:
[K™HH(@)(t) = K™ (y)(1)] < /0 [f (s, K™ () (5)) — f(s, K™ (y)(s))|ds

S/O L(s)[K™(2)(s) = K™(y)(s)|ds

< | L(s)Llfjfm sup 2(r) — y(r)]ds

r<s

< sup |z(r) ]/ Li(s
r<t

m+1
- fﬂfll), sup lo(r) (1)

d

Hence K satisfies the assumptions of Theorem 2.4 which finally yields

sup [7(t) - |<Z(L1 o) ) /0 " s, 20)\ds.

0<t<Ty
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If f(t,z) is defined for all z € R™ and we can find a global Lipschitz
constant, then we can say more about the interval where the solution exists:

Corollary 2.6. Suppose [to,T] x R® C U and

/TL(t)dt<oo, L) = sup LD =IEYI (2.30)

to r#£yeR” ‘l’ - y‘

then T is defined for all t € [to,T].

In particular, if U = R*! and fTT L(t)dt < oo for all T > 0, then T is
defined for all t € R.

Proof. In this case we can simply choose our closed set C' to be the entire
Banach space X = C([0,7]) (i.e., § = 00) and proceed as in the proof of the
previous theorem with Ty =T O

Note that this corollary applies for example if the differential equation
is linear, that is, f(¢t,z) = A(t)z + b(t), where A(t) is a matrix and b(t) is a
vector which both have continuous entries.

Finally, let me remark that the requirement that f is continuous in
Theorem 2.2 is already more than we actually needed in its proof. In fact,
all one needs to require is that f is measurable such that M(¢) is finite and
L(t) is locally integrable (i.e., [; L(t)dt < co for any compact interval I).

However, then the solution of the integral equation is only absolutely
continuous and might fail to be continuously differentiable. In particular,
when going back from the integral to the differential equation, the differen-
tiation has to be understood in a generalized sense. I do not want to go into
further details here, but rather give you an example. Consider

= sgn(t)z, z(0) = 1. (2.31)

Then z(t) = exp(|t|) might be considered a solution even though it is not
differentiable at ¢t = 0.

Problem 2.9. Consider the initial value problem & = x2, 2(0) = zg >
0. What is the maximal value for Ty (as a function of zg) according to
Theorem 2.2 respectively Theorem 2.5¢ What maximal value do you get
from the explicit solution? (Hint: Compute Ty as a function of 6 and find
the optimal §.)

Problem 2.10. Prove Theorem 2.4. Moreover, suppose K : C — C and
that K™ is a contraction. Show that the fized point of K™ is also one of K
(Hint: Use uniqueness). Hence Theorem 2.4 (except for the estimate) can
also be considered as a special case of Theorem 2.1 since the assumption
implies that K™ is a contraction for n sufficiently large.
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2.4. Dependence on the initial condition

Usually, in applications several data are only known approximately. If the
problem is well-posed, one expects that small changes in the data will result
in small changes of the solution. This will be shown in our next theorem.
As a preparation we need Gronwall’s inequality.

Lemma 2.7 (Generalized Gronwall’s inequality). Suppose 1(t) satisfies

+/ B(s)(s)ds, t €0, (2.32)
0
with a(t) € R and B(t) > 0. Then

W(t) < at) + / " a(5)8(5) exp ( / t B(r)dr) ds,  te[0,T]. (2.33)

Moreover, if in addition a(s) < «a(t) for s <t, then
() < aft) exp (/ B(s ) t e 0,77. (2.34)

Proof. Abbreviate ¢(t) = exp ( fo ) Then one computes

200 [ ssyu(eias = 5ot (wt) - 5<s>w<s>ds) < a(HBM()

by our assumption (2.32). Integrating this inequality with respect to ¢ and
dividing the resulting equation by ¢(t) shows

/ﬁ ds</ta(s)ﬁ(s)z((j))ds.

Adding «(t) on both sides and using again (2.32) finishes the proof of the
first claim. The second claim is left as an exercise (Problem 2.11). O

We will also use the following simple consequence (Problem 2.12): If

t
vi) <a+ [(Bu)+ds,  te 1) (2.35)
0
for given constants a € R, > 0, and v € R, then

B(t) < a exp(Bt) + %(exp(ﬂt) ~1),  telo,T). (2.36)

Now we can show that our IVP is well-posed.

Theorem 2.8. Suppose f,g € C(U,R™) and let f be Lipschitz continuous
in the second argument. If x(t) and y(t) are respective solutions of the IVPs

i = f(t,x) y=g(ty)
(to) = 20 and y(to) = 1o (2.37)
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then
|z (t) — y(t)] < |zo — yol X0l + %(eL‘HO‘ —1), (2.38)

where
L= sup  HED IOy ) - gl (2.39)

(t,2) £ (1) EV |z =y (t,2)EV

with V-C U some set containing the graphs of x(t) and y(t).

Proof. Without restriction we set ty) = 0. Then we have

¢
o) = 0(0)] < fao = ol + [ 1F(s.25)) = g(s.p(s) s
Estimating the integrand shows

F(s.2(s)) — g(s,y(s))]
< |F(s,2(5)) — F(s,9(8)| + [ (s, 9(s)) — g5, y(s))]
< Lla(s) — y(s)| + M.

Hence the claim follows from (2.36). O

In particular, denote the solution of the IVP (2.10) by
¢(t7 to, :L‘O) (240)

to emphasize the dependence on the initial condition. Then our theorem, in
the special case f = g,

‘¢(t7 th .’L'()) - ¢(t7 tO; .’L‘l)’ < |.%'(] - xl‘ eL‘t_t0‘7 (241)

shows that ¢ depends continuously on the initial value. Of course this bound
blows up exponentially as ¢ increases, but the linear equation £ = x in one
dimension shows that we cannot do better in general.

Moreover, we even have

Theorem 2.9. Suppose f € C(U,R™) is locally Lipschitz continuous in the
second arqument. Around each point (to,xo9) € U we can find a compact set
I x B C U such that ¢(t,s,x) € C(I x I x B,R™). Moreover, ¢(t,to,xo) is
Lipschitz continuous,

|6(t, to, w0) — (s, 50, 90)| < |0 — yo| X710l 4+ (|t — 5| + [to — sole™!=*) s,
(2.42)

where

L= sup it z) = f(t,y)|7 M = max |f(t,z)], (2.43)

(t,2)£(ty)eV [z —y| (tx)eV
with V. =¢(I xI x B) CU.
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Proof. Using the same notation as in the proof of Theorem 2.2 we can
find a compact set V' = [tg — e, tp + €] X Bs(xo) such that ¢(t,to,zo) exists
for |t — to] < e. But then it is straightforward to check that V; = [t; —
/2,11 + €/2] x Bja(w1) works to show that ¢(t,t1,71) exists for [t — 1] <
£/2 whenever |t; — tg] < €/2 and |z1 — 29| < 0/2. Hence we can choose
I = (ty —£/4,to +/4) and B = By p(x1).

To obtain the estimate observe

‘¢(t7 t07 IEO) - ¢<87 50, 3/0)’ S ’¢<t7 t07 3:'0) - (b(tv tO? yO)‘
+ |¢(t7 th yO) - ¢(t7 50, y0)|

+ |¢(t7 S50, yO) - ¢(S) 50, y0)|
Lit—to|

<lz—yle

t t
+| ] f(T,¢(T, t07y0))dr_/ f(T, </>(7’7 So,yo))dT‘

t
-H/f@ﬁ@wwmwl

where we have used (2.41) for the first term. Moreover, the third term can
clearly be estimated by M|t — s|. To estimate the second term, denote this
term by A(t) and use (assume ¢y < sg < t without loss of generality)

S0 t
A(T) < | t f(r,qb(r,to,yo))dTH/ £ (r, &(r,to, y0)) — f(r, &(r, 50, 90))|dr

t
< |7f0 — 50|M—|-L/ A(S)
S0
Hence an application of Gronwall’s inequality finishes the proof. O

Note that in the case of an autonomous system we have ¢(t,tg, o) =
@(t —10,0,z0) by Problem 1.8 and it suffices to consider ¢(t, z¢) = ¢(t,0, x¢)
in such a situation.

However, in many cases the previous result is not good enough and we
need to be able to differentiate with respect to the initial condition. Hence
we will assume f € C*(U,R") for some k > 1.

We first suppose that ¢(t,tg, x) is differentiable with respect to x. Then,
by differentiating (2.10), its derivative

9¢
—(t,t 2.44
22 (t,t0,) (244)
necessarily satisfies the first variational equation
. 0
J= Aoy, Atz = 2Lt to,2)), (2.45)

ox
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which is linear. The corresponding integral equation reads

t
yt) =1+ [ A(s,z)y(s)ds, (2.46)

to
where we have used ¢(tg,tp,z) = = and hence %(to,to,x) = 1. Applying
similar fixed point techniques as before, one can show that the first vari-
ational equation has a solution which is indeed the derivative of ¢(t, to, x)

with respect to x.

Theorem 2.10. Suppose f € C¥(U,R™), k > 1. Around each point (to, zo) €
U we can find an open set I x B C U such that ¢(t,s,x) € C*(I x I x B,R").
Moreover, 0¢/0x satisfies the first variational equation (2.45).

Proof. By adding t to the dependent variables it is no restriction to assume
that our equation is autonomous and consider ¢(t, ) = ¢(t, 0, z). Existence
of a set I x B C U such that ¢(t,z) is continuous has been established in
the previous theorem and it remains to investigate differentiability.

We start by showing the case k = 1. It suffices to prove that ¢(t,x) is
differentiable at some point ;1 € B, say x1 = 0 for notational convenience.
We will take I = (=7,T) and B some open ball around xo such that the
closure of I x B still lies in U.

Abbreviate ¢(t) = ¢(t,x1), A(t) = A(t,x1) and denote by (t) the
solution of the first variational equation ¢)(t) = A(t)(t) corresponding to
the initial condition v (ty) = I. Set

o(t,2) = P2) = Ol) —¥(t)

|z

)

99
then oz

0.

at 1 = 0 will exist (and be equal to v) if we can show lim,_,0 0(¢, z) =

Our assumption f € C' implies

s =1+ 3@ -0+ ([ (Fw+tv-2) - L)) -2

0
)~ @) = L@ =)+ ly—alBp2),  (247)
where
af of
< =L — 1)) — == (2)||.
1Ry 2)] < s 50 + 0 =) = 5 )
Here |.|| denotes the matrix norm (cf. Section 3.1). By uniform conti-

nuity of the partial derivatives % in a neighborhood of 1 = 0 we infer

lim, . |R(y, z)| = 0 again uniformly in = in some neighborhood of 0.
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Using (2.47) we see
L (F (6t 2)) — F(o() — At)p(t)z)

[]
= A(t)0(t, z) + WR

O(t,x) =

(o(t, ), o(1)).

Now integrate and take absolute values (note 8(0,x) = 0 and recall (2.41))
to obtain

0(t,2)| < R(z) + / LA@)I16(s, 2)ds,

where

T
Ria) = [ 1R((s.2). (5Dl

Then Gronwall’s inequality implies |0(t, z)| < R(x) exp(fOT |A(s)||ds). Since
limy_,; |R(y,z)| = 0 uniformly in = in some neighborhood of 0, we have
lim, o R(z) = 0 and hence lim, o 6(t, z) = 0. Moreover, %(t, z) is C0 as
the solution of the first variational equation. This settles the case k = 1 since
all partial derivatives (including the one with respect to t) are continuous.

For the general case kK > 1 we use induction: Suppose the claim holds
for k and let f € CF1. Then ¢(t,2) € C' and the partial derivative
g—x(t,x) solves the first variational equation. But A(t,x) € C* and hence
%(t,a:) € C*, which, together with Lemma 2.3, shows ¢(t,z) € C*1. O

In fact, we can also handle the dependence on parameters. Suppose f
depends on some parameters A € A C RP and consider the IVP
z(t) = f(t,x, \), x(to) = o, (2.48)
with corresponding solution
o(t, to, xo, A). (2.49)

Theorem 2.11. Suppose f € C*(U x A,R™), k > 1. Around each point
(to,xo, Ao) € U x A we can find an open set I x B x Ay C U x A such that
B(t,s,z,\) € CF(I x I x B x Ag, R™).

Proof. This follows from the previous result by adding the parameters A
to the dependent variables and requiring A = 0. Details are left to the
reader. O

Problem 2.11. Show (2.34).
Problem 2.12. Show (2.36). (Hint: Introduce 1)(t) = 1 (t) + 3-)

Problem 2.13. Find different functions f(t,x) = f(x) and g(t,x) = g(x)
such that the inequality in (2.38) becomes an equality.
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Problem 2.14. Suppose f € C(U,R"™) satisfies |f(t,x)— f(t,y)| < L(t)|z—
y|. If ¢(t, zo) is the solution of (2.10), then
t
0(t,20) = 6(t.30)] < |0 — yol oo ™

Problem 2.15. Show that in the one dimensional case, we have

0 to
Kf(t,x) = exp < \ ai(s,qf)(s,m))ds) .

s)ds

2.5. Extensibility of solutions

We have already seen that solutions might not exist for all £ € R even though
the differential equation is defined for all ¢ € R. This raises the question
about the maximal interval on which a solution of the IVP (2.10) can be
defined.

Suppose that solutions of the IVP (2.10) exist locally and are unique
(e.g., f is Lipschitz). Let ¢1, ¢2 be two solutions of the IVP (2.10) defined
on the open intervals Iy, I, respectively. Let I = Iy N 1o = (T-,T}) and
let (t—,t+) be the maximal open interval on which both solutions coincide.
I claim that (t_,t;) = (T-,T4). In fact, if ¢4 < T4, both solutions would
also coincide at ty by continuity. Next, considering the IVP with initial
condition z(t4) = ¢1(t4) = P2(t+) shows that both solutions coincide in a
neighborhood of ¢4 by local uniqueness. This contradicts maximality of ¢
and hence ty = T7 . Similarly, t_ =T_.

Moreover, we get a solution

. ¢1(t), tGIl,
o(t) = {@(t% el (2.50)

defined on I U I». In fact, this even extends to an arbitrary number of
solutions and in this way we get a (unique) solution defined on some maximal
interval.

Theorem 2.12. Suppose the IVP (2.10) has a unique local solution (e.g. the
conditions of Theorem 2.5 are satisfied). Then there exists a unique mazimal
solution defined on some mazximal interval I, ..y = (T-(to, z0), T+ (to, o))

Remark: If we drop the requirement that f is Lipschitz, we still have
existence of solutions (see Theorem 2.18 below), but we already know that
we lose uniqueness. Even without uniqueness, two given solutions of the
IVP (2.10) can still be glued together at ¢y (if necessary) to obtain a solu-
tion defined on I; U I5. Furthermore, Zorn’s lemma can be used to ensure
existence of maximal solutions in this case. For example, consider the dif-
ferential equation & = \/|z| where we have found global (and thus maximal)
solutions which are however not unique.
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Now let us look at how we can tell from a given solution whether an
extension exists or not.

Lemma 2.13. Let ¢(t) be a solution of (2.10) defined on the interval
(t_,ty). Then there exists an extension to the interval (t_,t4 +¢€) for some
e > 0 if and only if there exists a sequence t, € (t_,t;) such that

n%i_I}noo(tmaQS(tm)) = (ty+,y) € U. (2.51)

Similarly for t_.

Proof. Clearly, if there is an extension, then (2.51) holds for any sequence
tm T t+. Conversely, suppose there is a sequence satisfying (2.51). We first
show that in this case

tl%?j o(t) =y. (2.52)
Intuitively this follows, since otherwise the solution would need to oscillate
faster and faster as ¢t approaches t,. Consequently its derivative would need
to grow, which is impossible since f(t,x) is bounded near y. More precisely,
since U is open there is some § > 0 such that V = [t; — d,t1| x Bs(y) C U
and M = maxq ey |f(t,x)] < oco. Moreover, after maybe passing to a
subsequence, we can assume that ¢, € (t4 —6,t1) and t,, < ty41. If (2.52)
were wrong, we could find a sequence 7, 1 t4 such that |¢(7,,) — y| >
v > 0. Without loss we can choose v < § and 7,, > t,,. Moreover, by
the intermediate value theorem we can even require |¢(7,) — y| = v and
|p(t) —y| < 6 for t € [ty,, 7). But then

0 <v=18(Tm) =yl <[P(7im) — ¢(tm)| + [(tm) — ¥l

< /;m £ (s, 0(5)Ids +1(tm) = | < M7 — tin] + |$(tm) — 31,

where the right-hand side converges to 0 as m — oo. A contradiction and
thus (2.52) holds.

Now take a solution ¢(t) of the IVP z(ty) = y defined on the interval
(ty —e,t; +¢€). As before, we can glue ¢(t) and ¢(t) at t, to obtain a
function on (¢_,¢4 + ). This function is continuous by construction and
the limits of its left and right derivative are both equal to f(t4,y). Hence
it is differentiable at ¢ = ¢, and thus a solution defined on (¢_,t4 +¢). O

Our final goal is to show that solutions exist for all ¢t € R if f(¢, z) grows
at most linearly with respect to x. But first we need a better criterion which
does not require a complete knowledge of the solution.

Corollary 2.14. Let ¢(t) be a solution of (2.10) defined on the interval
(t_,ty). Suppose there is a compact set [to,t+]x C C U such that ¢(t,,) € C
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for some sequence t,, € [to,ty+) converging to ty. Then there exists an
extension to the interval (t—,t4 + ¢) for some € > 0.

In particular, if there is such a compact set C for every ty >ty (C might
depend on ty ), then the solution exists for all t > tg.

Similarly for t_.

Proof. Let t,, — t;+. By compactness ¢(t,,) has a convergent subsequence
and the claim follows from the previous lemma. U

The logical negation of this result is also of interest.

Corollary 2.15. Let Iy, ,,) = (T—(to, o), T+ (to, o)) be the mazimal inter-
val of existence of a solution starting at x(tg) = xo. If Ty = T (to, o) < 00,
then the solution must eventually leave every compact set C' with [to, T] X
C C U ast approaches Ty. In particular, if U = R x R", the solution must
tend to infinity as t approaches Ty .

Now we come to the proof of our anticipated result.

Theorem 2.16. Suppose U = R x R"™ and for every T > 0 there are con-
stants M (T), L(T) such that

[f(t,z)| < M(T) + L(T)|z|,  (t,z) € [-T,T] x R™ (2.53)
Then all solutions of the IVP (2.10) are defined for all t € R.

Proof. Using the above estimate for f we have (t9 = 0 without loss of
generality)

lp(t)] < |zo +/0 (M + L|p(s)|)ds, te[0,T]NI.

Setting ¥ (t) = 4 + |¢(t)| and applying Gronwall’s inequality (Lemma 2.7)

shows o
6(8) < Joole” + (T 1),

Thus ¢ lies in a compact ball and the result follows by the previous lemma.
0
Again, let me remark that it suffices to assume
Fta)| < MO+ L], zeR, (2.54)
where M(t), L(t) are locally integrable.

Problem 2.16. Show that Theorem 2.16 is false (in general) if the estimate
is replaced by

[f(t,z)] < M(T) + L(T)l|x|*
with o > 1.
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Problem 2.17. Consider a first-order autonomous system in R™ with f(x)
Lipschitz. Show that x(t) is a solution if and only if x(t — to) is. Use this
and uniqueness to show that for two mazimal solutions x;(t), j = 1,2, the
images v; = {z;(t)|t € I;} C R™ either coincide or are disjoint.

Problem 2.18. Consider a first-order autonomous equation in R with
f(x) Lipschitz. Suppose f(0) = f(1) = 0. Show that solutions starting
in [0,1] cannot leave this interval. What is the mazimal interval of defini-
tion (T_,Ty) for solutions starting in [0,1]? Does such a solution have a
limit ast — T4 7

Problem 2.19. Consider a first-order equation in R with f(t,z) defined
on R x R. Suppose x f(t,x) < 0 for |z| > R. Show that all solutions exist
for allt > 0.

2.6. Euler’s method and the Peano theorem

In this section we want to show that continuity of f(¢,z) is sufficient for
existence of at least one solution of the initial value problem (2.10).

If ¢(t) is a solution, then by Taylor’s theorem we have
d(to + h) = 20 + d(to)h + o(h) = mo + f(to,z0)h + o(h). (2.55)

This suggests to define an approximate solution by omitting the error term
and applying the procedure iteratively. That is, we set

Tp(tme1) = Ta(tm) + f(tm, 2p(tm))h,  tm =to +mh, (2.56)

and use linear interpolation in between. This procedure is known as Euler
method.

We expect that xp(t) converges to a solution as i | 0. But how should
we prove this? Well, the key observation is that, since f is continuous, it is
bounded by a constant on each compact interval. Hence the derivative of
xp(t) is bounded by the same constant. Since this constant is independent
of h, the functions z(t) form an equicontinuous family of functions which
converges uniformly after maybe passing to a subsequence by the Arzela-
Ascoli theorem.

Theorem 2.17 (Arzela-Ascoli). Suppose the sequence of functions x,(t) €
C(I,R™), n € N, on a compact interval I is (uniformly) equicontinuous, that
is, for every € > 0 there is a 6 > 0 (independent of n) such that

|z (t) — xm(s)| <e if |t—s]<d, nelN. (2.57)

If the sequence x,, is bounded, then there is a uniformly convergent subse-
quence.
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Proof. Let {¢;}72; C I be a dense subset of our interval (e.g., all rational

numbers in [). Since z,(t1) is bounded, we can choose a subsequence 2V (t)

such that x,(ll)(tl) converges (Bolzano—Weierstraf}). Similarly we can extract

a subsequence z7 (t) from ) (t) which converges at to (and hence also at 1

since it is a subsequence of xg)(t)). By induction we get a sequence 2V )(t)

converging at ti,...,t;. The diagonal sequence Z,(t) = x%n)(t) will hence
converge for all t = t; (why?). We will show that it converges uniformly for
all t:

Fix € > 0 and choose ¢ such that |z,(t) — z,(s)| < § for |t —s| < d. The
balls Bj(t;) cover I and by compactness even finitely many, say 1 < j < p,
suffice. Furthermore, choose N. such that |Z,,(t;) — Z,(t;)| < § for n,m >
Noand 1 <5 <p.

Now pick ¢ and note that ¢ € B;(t;) for some j. Thus

[En(8) — Ea(®)] <|Em(t) = En(t)] + [Em(ty) — Ea(t;)]
() — Eat)] <€

for n, m > N, which shows that z,, is Cauchy with respect to the maximum
norm. By completeness of C(I,R™) it has a limit. O

More precisely, pick 6,7 > 0 such that V = [tg,to + 1] X Bs(xo) C U
and let

M= t, 7). 2.58
(gg)egvlf( )| (2.58)

Then z,(t) € Bs(xg) for t € [to, to + To], where Ty = min{7T, %}, and
|z (t) — zn(s)] < M|t — s|. (2.59)

Hence any subsequence of the family z,(t) is equicontinuous and there is a
uniformly convergent subsequence ¢,,(t) — ¢(t). It remains to show that
the limit ¢(¢) solves our initial value problem (2.10). We will show this by
verifying that the corresponding integral equation (2.11) holds. Since f is
uniformly continuous on V, we can find a sequence A(h) — 0 as h — 0,
such that

F(s,9) — f(t,2)| SAR) for |y—a| <M, |s—t| <h.  (2.60)
To be able to estimate the difference between left and right-hand side of
(2.11) for xp(t) we choose an n with ¢ < t¢,, and write

m—1

o) =m0+ Y / () f (¢, an(t)))ds, (2.61)

j=0 Yt
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where x(s) =1 for s € [to,t] and x(s) = 0 else. Then

xp(t) — zp — t f(s,zp(s))ds
m-l tj+01
<3 [ NGt e) - fs.n()lds
j=0 7t
mol ety
<Am) Y [ s = [t~ lam), (2.62)
j=0 't

from which it follows that ¢ is indeed a solution
t

t
6(t) = Jim ou(t) =20+ lm_ [ f(s.om(s)ds =0+ [ fs.6(s))ds

m—r0o0 t()
(2.63)
since we can interchange limit and integral by uniform convergence.

Hence we have proven Peano’s theorem.

Theorem 2.18 (Peano). Suppose f is continuous on V = [to,to + T| X
Bs(xo) and denote its maximum by M. Then there exists at least one so-
lution of the initial value problem (2.10) for t € [to,to + To], where Ty =
min{T, %} The analogous result holds for the interval [ty — T, to].

Finally, let me remark that the Euler algorithm is well suited for the
numerical computation of an approximate solution since it only requires the
evaluation of f at certain points. On the other hand, it is not clear how
to find the converging subsequence, and so let us show that z,(t) converges
uniformly if f is Lipschitz. By (2.29) with z(t) = x(t) and y(t) = K (xp,)(t)
this yields

m—1
lon— K™@)l < S 1K (wn) — K7 )]
=0
m—1 ;
LTy)’
< - Kl Y SR, 2oy
3=0 '

using the same notation as in the proof of Theorem 2.2. Taking n — co we
finally obtain

lzn, — @Il < Toe™ P A(h), ¢ € [to,to + To), (2.65)
since our above estimate (2.62) for t = to + Tp reads
[zn — K (zp)|| < ToA(R). (2.66)

Note that if we can find some Lipschitz constant Ly such that |f(¢,z) —
f(s,z)| < Lo|t — s|, then we can choose A(h) = (Lo + LM)h.
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Thus we have a simple numerical method for computing solutions plus
an error estimate. However, in practical computations one usually uses some
heuristic error estimates, e.g., by performing each step using two step sizes
h and % If the difference between the two results becomes too big, the step
size is reduced and the last step is repeated.

Of course the Euler algorithm is not the most effective one available
today. Usually one takes more terms in the Taylor expansion and approxi-
mates all differentials by their difference quotients. The resulting algorithm
will converge faster, but it will also involve more calculations in each step.
A good compromise is usually a method, where one approximates ¢(to + h)
up to the fourth order in h. Setting ¢,, = to + hm and z,,, = p(t,,) the
resulting algorithm

h
Tm+l = Tm + g(kl,m + 2k2,m + 2k3,m + k4,m)a (2'67)

k1m = f(tmv wm); k?,m = f(tm + %me + %kl,m)a

]€3,m = f(tm + %, Tm + %k2,m)a k4,m = f(tm+17 Ty + hk?),m)a
is called Runge—Kutta algorithm. For even better methods see the liter-
ature on numerical methods for ordinary differential equations.

(2.68)

Problem 2.20. Heun’s method (or improved Euler) is given by

g(f(tmvxm) + f(thrlvym))? Ym = Tm + f(tm, Tm) D

Show that using this method the error during one step is of O(h3) (provided
fec?):

Tm+1 = Tm +

é(to +h) =z + g(f(to,wo) + f(t1,y0)) + O(R?).

Note that this is not the only possible scheme with this error order since

P(to + h) =z + g(f(tl, o) + f(to,40)) + O(h?)
as well.

Problem 2.21. Compute the solution of the initial value problem & = x,
x(0) = 1, using the Euler and Runge—Kutta algorithm with step size h =
107, Compare the results with the exact solution.






Chapter 8

Linear equations

3.1. The matrix exponential
We begin with the study of the autonomous linear first-order system
z(t) = Ax(t), z(0) = xo, (3.1)
where A is an n by n matrix. If we perform the Picard iteration we obtain
xo(t) = xo

t t
x1(t) = mo+ / Axo(s)ds = xo + Aa:o/ ds = zg + tAzo
0 0
¢ ¢ ¢
xa(t) = mo+ / Azi(s)ds = xo + Aa:o/ ds + A2$0/ sds
0 0 0

t2
= z9+tAxg + §A2$0

and hence by induction

T (t) = Az, (3.2)
=07
The limit as m — oo is given by
Sy B
z(t) = lm x,(t) = —Alxg. (3.3)
M—00 — 4!
j_

In the one dimensional case (n = 1) this series is just the usual exponential
and hence we will write

x(t) = exp(tA)xo, (3.4)

53
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where we define the matrix exponential by
=1
exp(A) = f'Aj. (3.5)
=07
Hence, in order to understand our original problem, we have to under-
stand the matrix exponentiall The Picard iteration ensures convergence
of exp(A)zo for every vector zy and choosing the canonical basis vectors
of R™ we see that all matrix elements converge. However, for later use we
want to introduce a suitable norm for matrices and give a direct proof for
convergence of the above series in this norm.

We will use C" rather than R™ as underlying vector space since C is
algebraically closed (which will be important later on, when we compute
the matrix exponential with the help of the Jordan canonical form). So let
A be a complex matrix acting on C™ and introduce the matrix norm

JAll = sup |Aal. (3.6)
z:|z|=1
It is not hard to see that the vector space of n by n matrices C**™ becomes
a Banach space with this norm (Problem 3.1). In fact, we have
max |ajk| < [|A]l < nmax|a;l (3.7)
thus a sequence of matrices converges in the matrix norm if and only if all
matrix entries converge. Moreover, using (Problem 3.2)

1A7]| < [1AJP (3-8)
|j

1Al
il

convergence of the series (3.5) follows from convergence of > 22,
exp(||A||) (Problem 3.4).

However, note that in general exp(A 4+ B) # exp(A)exp(B) unless A
and B commute, that is, unless the commutator

[A,B] = AB — BA (3.9)

vanishes. In this case you can mimic the proof of the one dimensional case
to obtain

Lemma 3.1. Suppose A and B commute. Then
exp(A + B) = exp(A) exp(B), [A,B] =0. (3.10)
If we perform a linear change of coordinates,
y=U"z, (3.11)
then the matrix exponential in the new coordinates is given by

U~ exp(A)U = exp(ULAU). (3.12)
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This follows from (3.5) by using U 1A/U = (U~1AU)’ together with con-
tinuity of the matrix product (Problem 3.3). Hence in order to compute

exp(A) we need a coordinate transform which renders A as simple as possi-
ble:

Theorem 3.2 (Jordan canonical form). Let A be an n by n matriz.
Then there exists a linear change of coordinates U such that A transforms
into a block matrix,

J1
UtAU = : (3.13)
Im
with each block of the form
a 1
a 1
J=al+ N = a . . (3.14)
1
o

Here N is a matriz with ones in the first diagonal above the main diagonal
and zeros elsewhere.

The numbers « are the eigenvalues of A and the new basis vectors u;
(the columns of U) consist of generalized eigenvectors of A. The general
procedure of finding the Jordan canonical form is quite cumbersome and
hence further details will be defered to Section 3.8. In particular, since most
computer algebra systems can easily do this job for us!

Example. Let

—11 =35 —-24
Inf[1]:=A=| -1 -1 =2 1;
8 22 17

Then the command
In[2]:= {U,J} = JordanDecomposition[A];

gives us the transformation matrix U plus the Jordan canonical form J =

UTAU.
In[3]:= J // MatrixForm

Out [3]//MatrixForm=
1 0 0

0 21
0 0 2
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If you don’t trust me (or Mathematica), you can also check it:
In[4]:= A == U.J.Inverse[U]

Out[4]= True

To compute the exponential we observe

exp(J1)
exp(UTAU) = ) (3.15)
exp(Jm)
and hence it remains to compute the exponential of a single Jordan block

J = al+N asin (3.14). Since al commutes with IV, we infer from Lemma 3.1
that

k—1
1 .
exp(J) = exp(al) exp(N) = e* E N7 (3.16)
J=0

Here we have used the fact that the series for exp(N) terminates after k
terms, where k is the size of N. In fact, it is not hard to see that N7 is a
matrix with ones in the j’th diagonal above the main diagonal and vanishes
once j reaches the size of J:

0100 0010 0001
(o010 > oo 01 ; o000
N=looo 1" |oooo) ¥M=|ooo0 o

0000 0000 0000

and N* = 0. In summary, exp(.J) explicitly reads

11 1

1
o (Zy)
1 1
exp(J) =e¢ 1 (3.17)

L
2!
1
1

Example. In two dimensions the exponential matrix of

A= (Cc‘ 2) (3.18)

exp(A) = e (cosh(A)]I+ Sm};@) (Z b,y)) , (3.19)

is given by
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where

5:a—;—d7 'y:a;d, A = /~?+ be. (3.20)

Here one has to set S22 — 1 for A = 0. Moreover, note cosh(iA) = cos(A)

sinh(iA) _ sin(A)
and —Rx— = —x -

To see this set A = 61+ B and use exp(A) = e’ exp(B) plus

A%k B =2k +1
Bm:{ , m=2k+1, B:<7 b>.

AT m = 2k, c -
Hence
> A2k & AQk
A)=¢° —1 —B
exp(A) = e (Z it 2 @)
k=0 k=0
establishing the claim. o

Note that if A is in Jordan canonical form, then it is not hard to see
that

det(exp(A)) = exp(tr(4)). (3.21)
Since both the determinant and the trace are invariant under linear trans-

formations, the formula also holds for arbitrary matrices. In fact, we even
have (Problem 3.6):

Lemma 3.3. A vector u is an eigenvector of A corresponding to the eigen-
value o if and only if u is an eigenvector of exp(A) corresponding to the
etgenvalue e*.

Moreover, the Jordan structure of A and exp(A) are the same. In par-
ticular, both the geometric and algebraic multiplicities of a and e® are the
same.

Clearly Mathematica can also compute the exponential for us:

In[5]:= MatrixExp[J] // MatrixForm

Out [5]//MatrixForm=
e 0 O
0 e ¢
0 0 &

To end this section let me emphasize, that both the eigenvalues and
generalized eigenvectors can be complex even if the matrix A has only real
entries. However, in many applications only real solutions are of interest.
For such a case there is also a real Jordan canonical form which I want
to mention briefly.
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So suppose the matrix A has only real entries. If an eigenvalue « is
real, both real and imaginary parts of a generalized eigenvector are again
generalized eigenvectors. In particular, they can be chosen real and there is
nothing else to do for such an eigenvalue.

If « is nonreal, there must be a corresponding complex conjugate block
J* = o[+ N and the corresponding generalized eigenvectors can be assumed
to be the complex conjugates of our original ones. Therefore we can replace
the pairs u;, v’ in our basis by Re(u;) and Im(u;). In this new basis the

J
block
J 0
(o) o)

I
R

is replaced by
R

I
R . , (3.23)

where

R:(I}fr(l‘()‘;) E;EZD and ]1:<1 0). (3.24)

(50 wa (40) 25

commute, the exponential is given by

Since the matrices

exp(R) exp(R) exp(R)% ... eXp(R)ﬁ
exp(R) exp(R) :
exp(R) - exp(R)g |- (3.26)
' exp(R)
exp(R)
where e )
ex _ GRe(a) [ COS Im(a sin(Im(«
pR) <—sin(1m(a)) cos(Im(a))>' (3.27)

Problem 3.1. Show that the space of n by n matrices C"*™ together with
the matriz norm is a Banach space. Show (3.7).

Problem 3.2. Show that the matriz norm satisfies
[AB|[ < [[All[|IB].
(This shows that C"*" is even a Banach algebra.) Conclude ||A%| < || Al.
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Problem 3.3. Show that the matriz product is continuous with respect to
the matriz norm. That is, if A; — A and B; — B we have AjB; — AB.
(Hint: Problem 3.2).

Problem 3.4. Let A; be a sequence in C"*". Show that
oo
>4
7=0

converges if 32 || Azl does.

Problem 3.5. Is there a real matriz A such that

exp(A) — (‘OO‘ _%) L a,B>07

(Hint: (3.19).)

Problem 3.6. Show Lemma 3.5. (Hint: It suffices to consider one Jordan
block.)

3.2. Linear autonomous first-order systems

In the previous section we have seen that the solution of the autonomous
linear first-order system (3.1) is given by

x(t) = exp(tA)xo. (3.28)

In particular, the map exp(tA) provides an isomorphism between all initial
conditions zg and all solutions. Hence the set of all solutions is a vector
space isomorphic to R™ (respectively C" if we allow complex initial values).

In order to understand the dynamics of the system (3.1), we need to
understand the properties of the function exp(tA). We will start with the
case of two dimensions which covers all prototypical cases. Furthermore, we
will assume A as well as zg to be real-valued.

In this situation there are two eigenvalues, a; and as, which are either
both real or otherwise complex conjugates of each other. We begin with
the generic case where A is diagonalizable and hence there are two linearly
independent eigenvectors, u; and wusg, which form the columns of U. In
particular,

—1 o aq 0
= (3 0) o)

and the solution (3.28) is given by

1 1 ealt 0 -1
xz(t) =Uexp(tU "AU)U 2o =U 0 oot U txg. (3.30)
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Abbreviating yo = U 'z = (Y0,1, Yo,2) we obtain
2(t) = yo 1™ ur + yo 26" ua. (3.31)

In the case where both eigenvalues are real, all quantities in (3.31) are real.
Otherwise we have g = o] and we can assume up = uj without loss of
generality. Let us write &1 = & = A + iw and ag = o = XA —iw. Then
Euler’s formula
e = cos(w) + isin(w) (3.32)

implies

e = eM (cos(wt) +isin(wt)), a=A+iw. (3.33)
Moreover, z; = xo implies yo1u1 + yo2u2 = yaluQ + y372u1 which shows
Y61 = Yo,2. Hence, both terms in (3.31) are complex conjugates of each
other implying

z(t) = 2Re(yo, 16 uy)
= 2 cos(wt)eMRe(yo 1u1) — 2sin(wt)eMIm(yo 1uy). (3.34)
This finishes the case where A is diagonalizable.

If A is not diagonalizable, both eigenvalues must be equal a; = as = a.
The columns w1 and wug of the matrix U are the eigenvector and generalized
eigenvector of A, respectively. Hence

U~ AU = <8‘ ;) (3.35)

and with a similar computation as before the solution is given by
2(t) = (yo,1 + yo2t)eur + yo,20* u. (3.36)
This finishes the case where A is not diagonalizable.

Next, let us try to understand the qualitative behavior for large ¢. For
this we need to understand the function exp(at). From (3.33) we can read
off that exp(at) will converge to 0 as t — oo if A = Re(a) < 0 and grow
exponentially if A = Re(a) > 0. It remains to discuss the possible cases
according to the respective signs of Re(a;) and Re(az).

Firstly, suppose both eigenvalues have positive real part. Then all so-
lutions grow exponentially as t — oo and decay exponentially as ¢t — —oc.
The origin is called a source in this case. Similarly, if both eigenvalues have
negative real part, the situation can be reduced to the previous one by re-
placing t — —t. The phase portrait stays the same except that the solution
curves are traversed in the opposite direction. The origin is called a sink in
this case. The typical phase portrait is depicted in Figure 3.1 for the case
of complex and in Figure 3.2 for the case of real eigenvalues. Note that in
the case of real eigenvalues the two lines correspond to the two eigenvectors
of the coefficient matrix (why are there no eigenvectors visible in the case
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Figure 3.1. Phase portrait for a planar system where both eigenvalues
have positive respectively negative real part.
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Figure 3.2. Phase portrait for a planar system where both eigenvalues

are positive respectively negative.

of complex eigenvalues?). In the complex case, the imaginary part w causes
a rotational component of the solutions and the origin is also called a spiral
source respectively spiral sink.

If one eigenvalue is positive and one eigenvalue is negative, the phase
portrait is shown in Figure 3.3 and the origin is called a saddle. Again the
two lines correspond to the two eigenvectors of the coefficient matrix. The
long-time behavior now depends on the initial condition xg. If zq lies in the
eigenspace corresponding to the negative eigenvalue, the solution will decay
exponentially as t — oo and grow exponentially as ¢t — —oo. If x¢ lies in
the eigenspace corresponding to the positive eigenvalue, it is the other way
round. If gy has components in both eigenspaces, it will grow exponentially

as t — too.

If both eigenvalues are purely imaginary, the solutions will be periodic
and encircle the origin. The phase portrait looks as in Figure 3.4 and the
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Figure 3.3. Phase portrait for a planar system with real eigenvalues of
opposite sign.
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Figure 3.4. Phase portrait for a planar system with purely imaginary eigenvalues.

origin is called a center. All solutions are clearly bounded in this case.

In the case where the matrix is not diagonalizable, the phase portrait
looks as in Figure 3.5. As before, the line corresponds to the eigenvector.
If « is negative all solutions will converge to 0, whereas if « is positive all
solutions will grow exponentially as ¢ — oo. The polynomial term ¢ does
not play a role since it is dominated by the exponential term exp(«t) unless
a =0 (cf. Problem 3.7). If & = 0 the solution is constant if we start in the
subspace spanned by the eigenvector (i.e., yp2 = 0 in (3.36)) and grows like
t otherwise (i.e., yo2 # 0).

Finally, we turn to the general case. As before, the considerations of
the previous section show that it suffices to consider the case of one Jordan



3.2. Linear autonomous first-order systems 63

Figure 3.5. Phase portrait for a planar system with equal real eigen-
values (not diagonalizable).

block
1t b (ﬁ:ff)!
1t :
exp(tJ) = e 1 t;' (3.37)
t
1

In particular, every solution is a linear combination of terms of the type
tJ exp(at). Since exp(at) decays faster than any polynomial, our entire
Jordan block converges to zero if A = Re(a) < 0 (cf. Problem 3.7). If
A =0, exp(at) = exp(iwt) will remain at least bounded, but the polynomial
terms will diverge. However, if we start in the direction of the eigenvector
(1,0,...,0), we won’t see the polynomial terms. In summary,

Theorem 3.4. A solution of the linear system (3.1) converges to 0 ast — oo
if and only if the initial condition xo lies in the subspace spanned by the
generalized eigenspaces corresponding to eigenvalues with negative real part.

It will remain bounded if and only if xqo lies in the subspace spanned by
the generalized eigenspaces corresponding to eigenvalues with negative real
part plus the eigenspaces corresponding to eigenvalues with vanishing real
part.

Note that to get the behavior as t — —oo, you just need to replace
negative by positive.

A linear system (not necessarily autonomous) is called stable if all solu-
tions remain bounded as t — oo and asymptotically stable if all solutions
converge to 0 as t — oo.
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Corollary 3.5. The linear system (3.1) is stable if and only if all eigenval-
ues aj of A satisfy Re(a;) < 0 and for all eigenvalues with Re(a;) = 0 the
corresponding algebraic and geometric multiplicities are equal. Moreover, in
this case there is a constant C such that

| exp(tA)|| < C. (3.38)

In the case of an asymptotically stable matrix we can even specify the
decay rate.

Corollary 3.6. The linear system (3.1) is asymptotically stable if and only
if all eigenvalues a; of A satisfy Re(a;) < 0. Moreover, in this case there
is a constant C = C(a) for every a < min{—Re(a;)}2; such that

| exp(tA)|| < Ce™*. (3.39)

Proof. It remains to prove the second claim. Since |Uexp(tJ) U <
|U|||| exp(J)||[||UL]| it is no restriction to assume that A is in Jordan
canonical form. Now note that || exp(tA)| = e | exp(t(A + «))||. Since
Re(aj+ ) < 0 all entries of the matrix exp(t(A + «)) are bounded and con-
sequently || exp(t(A+«))|| < C is bounded (cf. Problem 3.7) as required. O

Note that one can choose v = min{—Re(e;)}2; if and only if for all
eigenvalues «; with —Re(aj) = a the corresponding algebraic and geometric
multiplicities are equal.

Finally, observe that the solution of the inhomogeneous equation
z(t) = Az(t) + g(1t), x(0) = o, (3.40)
is given by
x(t) = exp(tA)xo + /Ot exp((t — s)A)g(s)ds, (3.41)

which can be verified by a straightforward computation (however, we will
in fact prove a more general result in Theorem 3.11 below). As always for
linear equations, note that the solution consists of the general solution of
the homogeneous equation plus a particular solution of the inhomogeneous
equation. Note that if the inhomogenous term is of a special form, an ansatz
might be faster than evaluating the integral in (3.41) — see Problem 3.13.

Problem 3.7. Show

lim t"e® =0, m € Ny, Re(a) <0,
t—o0
and
m m
m, aot| —m
oA [t™e| = (—Re(a)) e ™, m € No, Re(a) < 0.

(Hint: I’Hopital’s rule.)
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Problem 3.8. Solve the following equations:
(i) ¢ = 3x.
(i) ¢ =Fx, vyeR,
(iii) £ = = + sin(¢).

Problem 3.9. Solve the systems corresponding to the following matrices:

(i). A= <(2) ;) 0 = G) (ii). A= (‘01 }) 20— (_11>

Problem 3.10. Solve
t=-y—t, y=xz+t, x(0)=1,9(0)=0.

Problem 3.11. Find a two by two matriz such that x(t) = (sinh(t),et) is
a solution.

Problem 3.12. Which of the following functions

(i) z(t) =
(i) x(t) =

3el + et e?)

3et + et el)

(iii) x(t) = (3e’ + e, tef)

(iv) x(t) = (3et,t2et)

(v) x(t) = (' +2e7 ", €' 4+ 2¢77)

~~ I/~ —~

can be solutions of a first-order autonomous homogeneous system? (Hint:
Compare with the necessary structure of the solution found in this section.)

Problem 3.13. Let A be an n by n matrix and 8 a constant. Consider the
special inhomogeneous equation

&= Az + p(t)e’t,
where p(t) is a vector all whose entries are polynomials. Set deg(p(t)) =
maxi<j<n deg(p;(t)). Show that this equation has a particular solution of
the form
g(t)e™,

where q(t) is a polynomial vector with deg(q(t)) = deg(p(t)) if B is not
an eigenvalue of A and deg(q(t)) = deg(p(t)) + a if 5 is an eigenvalue of
algebraic multiplicity a.

(Hint: Investigate (3.41) using the following fact: [ p(t)ePldt = q(t)e”,
where q(t) is a polynomial of degree deg(q) = deg(p) if B # 0 and deg(q) =
deg(p) +1if 6 =0.)

Problem 3.14. Let A be a real 2 by 2 matriz. Then the eigenvalues can be
expressed in terms of the determinant D = det(A) and the trace T = tr(A).
In particular, (T,D) can take all possible values in R? if A ranges over
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all possible matrices in R?*2. Split the (T, D) plane into regions in which
the various cases discussed in this section occur (source, spiral source, sink,
spiral sink, saddle, center).

Problem 3.15 (Laplace transform). Let x : [0,00) — C" such that |x(t)| <
Me® for some constants M > 0 and a € R. Then the Laplace transform

L(2)(s) = / e (1) dt.
0
exists and is analytic for Re(s) > a. Show that for for x € C'([0,00))
satisfying |z(t)| + |2(t)] < Me™ we have
L(z)(s) = sL(x)(s) — x(0)
for Re(s) > a. Moreover, show that the initial value problem
&= Az + f(t), z(0) = xg

is transformed into a linear system of equations by the Laplace transform.

3.3. Linear autonomous equations of order n

In this section, we want to have a brief look at the case of the n’th order
equations

2™ 4, 12D 14 ed 4 o = 0, (3.42)
which appear frequently in applications. Here ¢y, ..., ¢,—1 are some real (or

complex) constants. Again the solutions form an n dimensional vector space
since a solution is uniquely determined by the initial conditions

(0) =20, ..., ™) =1, (3.43)
The corresponding system is given by
0 1
0 1
A= (3.44)
0 1
—CO _Cl “ e “ e _Cnfl

and hence all our considerations apply: The characteristic polynomial can
be computed by performing the Laplace expansion with respect to the last
row and is given by

xa(z) =det(zl — A) = 2" + ¢ 12"+ F 1z + co. (3.45)

One can show that the geometric multiplicity of every eigenvalue is one
(Problem 3.23).
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Theorem 3.7. Let oy, 1 < j < m, be the zeros of the characteristic poly-

nomial
m

Mty 12V 4 izt = H(z — )% (3.46)
j=1
associated with (3.42) and let a; be the corresponding multiplicities. Then
the functions

2 x(t) = t" exp(ajt), 0<k<a;, 1<j<m, (3.47)
are n linearly independent solutions of (3.42).

In particular, any other solution can be written as a linear combination
of these solutions.

Proof. Let uslook at a solution of the corresponding first-order system. By
construction, the first component of every solution of the system will solve
our n’th order equation. By collecting functions from each Jordan block
(3.37), this first component must be a linear combination of the functions
xj,(t). So the solution space of (3.42) is spanned by these functions. Since
this space is n dimensional, all functions must be present. In particular,
these functions must be linearly independent. ([

Note that if the coefficients c; are real, and if we are interested in real
solutions, all we have to do is to take real and imaginary part. That is, for
aj = \j +iw; take

theit cos(w;t), theit sin(w;t). (3.48)
Example. Consider the differential equation
i’—i—w%a::O, wp > 0.

The characteristic polynomial is @ + w2 = 0 and the zeros are a; = iwp,
g = —iwg. Hence for wy > 0 a basis of solutions is

z1(t) = ewot, zo(t) = e w0t
or, if we want real solutions,
x1(t) = cos(wot), xo(t) = sin(wot).

For wg = 0 we have only one zero a; = 0 of muliplicity two and a basis of
solutions is given by

.73170(15) = 1, xl’l(t) =t.

By (3.41) the solution of the inhomogeneous equation
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is given by
x(t) = xp(t) + / u(t — s)g(s)ds, (3.50)
0

where x(t) is an arbitrary solution of the homogeneous equation and u(t) is
the solution of the homogeneous equation corresponding to the initial con-
dition u(0) = @(0) = - - - = u(®2(0) = 0 and ("D (0) = 1 (Problem 3.20).

Hence the algorithm for solving a linear n’th order equation with con-
stant coeflicients is as follows: Start with the homogeneous equation, com-
pute the zeros of the characteristic polynomial and write down the general
solution as a linear combination of the fundamental solutions (3.47). Find
a particular solution of the inhomogeneous equation and determine the un-
known constants of the homogeneous equation from the initial conditions.
The particular solution of the inhomogeneous equation can be found by
evaluating the integral in (3.50). However, in many situations it is more
efficient to make a suitable ansatz for the solution. For example, if g(t) is
of the form p(t)e’?, where p(t) is a polynomial, then there is a solution of
the form q(t)e®, where ¢(t) is a polynomial of the same degree as p(t) if
B # a; (otherwise, if 5 = «;, the degree has to be increased by the algebraic
multiplicity of a; — see also Problem 3.21). Note that if you allow complex
values for 8 = A\ +iw, this also includes the case where g(t) = p(t)e* cos(wt)
or g(t) = p(t)eM sin(wt) after taking real and imaginary parts. Finally, the
case of linear combinations of such terms comes for free by linearity.

Of special importance is the case of second order, which appears in a
vast number of applications. For example when modelling electrical circuits:

Example. An electrical circuit consists of elements each of which has two
connectors (in and out), where every connector of one element is connected
to one or more connectors of the other elements. Mathematically speaking
we have a directed graph.

At each time ¢, there will be a certain current I(¢) flowing through each
element and a certain voltage difference V'(t) between its connectors. It is
of no importance which connector is called in and which one out. However,
the current is counted positively if it flows from in to out and similarly
for the voltage differences. The state space of the system is given by the
pairs (I,V) of all elements in the circuit. These pairs must satisfy two
requirements. By Kirchhoff’s first law, the sum over all currents in a vertex
must vanish (conservation of charge) and by Kirchhoff’s second law, the
sum over all voltage differences in a closed loop must vanish (the voltage
corresponds to a potential).
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In a simple circuit one has three types of different elements, inductors,
capacitors, and resistors. For an inductor we have

LI, =Vy, (3.51)

where L > 0 is the inductance, I (t) is the current through the inductor
and V7,(t) is the voltage difference between the connectors. For a capacitor
we have

CVC = I, (3.52)
where C' > 0 is the capacitance, I¢(t) is the current through the capacitor
and Vo (t) is the voltage difference. For a resistor we have (Ohm’s law)

Vr = RIp, (3.53)
where R > 0 is the resistance, Ir(t) is the current through the resistor and
VRr(t) is the voltage difference.

We will look at the case of one inductor L, one capacitor C, and one
resistor R arranged in a loop together with an external power source V' (the
classical RLC circuit).

Kirchhoff’s laws yield Igr = I, = I¢ and Vg4 Vi, + Vo = V. Using the prop-
erties of our three elements we arrive at the second-order linear differential
equation

LI(t)+ RI(t) + %I(t) =V(t) (3.54)

for the current I. Let us try to solve this equation for an external sinusoidal
voltage

V(t) = Vj cos(wt). (3.55)
It turns out convenient to use the complex voltage V () = Vpel“t:
. R. 1 _ .wV it
I+LI+LCI—1Le . (3.56)

We get the solutions for V(¢) = V{ cos(wt) and V (t) = Vpsin(wt) by taking
real and imaginary part of the complex solution, respectively.

arp=-nt4/n?—wd, (3.57)

where we have introduced the convenient abbreviations

The eigenvalues are

n=— and wy= (3.58)

1
2L VLC'
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If n > wo (over damping), both eigenvalues are negative and the solu-
tion of the homogeneous equation is given by

Ih(t) = k’lealt + k2€a2t. (3.59)
If n = wp (critical damping), both eigenvalues are equal and the solution
of the homogeneous equation is given by

In(t) = (k1 + kot)e ™. (3.60)
Finally, for n < wp (under damping) we have complex conjugate eigenval-
ues and the solution of the homogeneous equation is given by

I (t) = k1e ™ cos(Bt) + kge T sin(fBt), B=y/wi—n?>0. (3.61)

In every case the real part of both eigenvalues is negative and the homoge-
neous solution decays exponentially as ¢ — oo:

over danpi ng critical danping under danpi ng

Observe that for fixed n > 0, the choice wg = 1 gives that fastest decay
without an oscillatory component.

For the inhomogeneous solution we make the ansatz

I(t) = ket (3.62)
with an unknown constant k. This produces
Vo

k= . 3.63
R+i(Lw— —=) (3.63)

Since the homogeneous solution decays exponentially, we have after a short
time

Vo 1
I(t) = I(t) + Li(t) = Li(t) = 7%“ = V(). (3.64)
where 1
Z=RtZy+Zc. Zr=ilw, Zo=-i—g (3.65)

is the complex impedance. The current I(t) = £V/(t) attains its maximum

when

1
ZP? =R*+ (Lw — —)? 3.66
2P = B+ (Lo — —) (3.66)
gets minimal, that is, if Lw — i = 0 and hence
1
Ww=wy = —— (3.67)

VLC'
wo

The frequency 52 is called the resonance frequency of the circuit.
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By changing one of the parameters, say C', you can tune the circuit to
a specific resonance frequency. This idea is for example used to filter your
favorite radio station out of many other available ones. In this case the
external power source corresponds to the signal picked up by your antenna
and the RLC circuit starts only oscillating if the carrying frequency of your
radio station matches its resonance frequency. o

Furthermore, our example is not only limited to electrical circuits. Many
other systems can be described by the differential equation

P42mi+wiz =0, n,wo > 0, (3.68)

at least for small amplitudes z(¢). Here 52 is the resonance frequency of the

system and 7 is the damping factor. If n = 0, the solution corresponds to a
free (undamped) oscillation x(t) = k; cos(wot) + ko sin(wot).

Problem 3.16. Solve the following differential equations:
(i) &+ 3% + 2x = sinh(¢).
(ii) &4 2% + 22 = exp(t).
(iil) & + 2@ +x = 2.
Problem 3.17. Solve the equation
i+ wiz = cos(wt), wg,w > 0.
Discuss the behavior of solutions as t — co. What about the case w = wg?
Problem 3.18 (Euler equation). Show that the equation
a'é+%ljs+%gx:0, t>0,

can be solved by introducing the new dependent variable T = In(t). Discuss
the possible solutions for cg,c1 € R.

Problem 3.19. Find a formula for the Wronskian W(x,y) = xy — &y of
two solutions of the second-order autonomous equation

T+ 1z + cpxr = 0.

Problem 3.20. Prove (3.50) (either by reducing it to (3.41) or by a direct
verification — I recommend doing both;-)

Problem 3.21. Look at the second-order autonomous equation
T4 1T+ coxr = g

and let a1, g be the corresponding eigenvalues (not necessarily distinct).
Show that the equation can be factorized as

i it ome (L d
T c1T CoT — dt a9 dt a1 | T.
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Hence the equation can be reduced to solving two first order equations

da _ d_ _
dt az |y=4g, dt ap | r =Y.

Use this to prove Theorem 3.7 in the case n = 2. Prove the claims made
about the structure of the solution if g(t) = p(t)e®t, where p(t) is a polyno-
mial. Can you also do the general case n € N? (Hint: The solution for the
first order case is given in (3.41). Moreover, [ p(t)ePtdt = q(t)eP!, where q(t)
is a polynomial of degree deg(q) = deg(p) if B # 0 and deg(q) = deg(p) + 1
if 8 =0. For the general case use induction.)

Problem 3.22. Derive Taylor’s formula with remainder

x(t) = Z
=0

for x € C"L from (3.50).

e

) (to) o1t
TSN B (n+1) — S\
-y /ta: (s)(t — s)"ds

Problem 3.23. Show that the geometric multiplicity of every eigenvalue of
the matriz A from (3.44) is one. (Hint: Can you find a cyclic vector? Why
does this help you?)

3.4. General linear first-order systems

In this section we want to consider the case of linear systems, where the
coefficient matrix can depend on t. As a preparation let me remark that a
matrix A(t) is called differentiable with respect to ¢t if all coefficients are. In
this case we will denote by %A(t) = A(t) the matrix, whose coefficients are
the derivatives of the coefficients of A(t). The usual rules of calculus hold
in this case as long as one takes noncommutativity of matrices into account.
For example we have the product rule

%A(t)B(t) = A(t)B(t) + A(t)B(t) (3.69)
and, if det(A(t)) # 0,
%A(t)_l — AW AW AR (3.70)
(Problem 3.24). Note that the order is important!
Given vectors ay,...,a, we will write A = (a1,...,a,) for the matrix

which has these vectors as rows. Observe that BA is the matrix whose rows
are Bay, ..., Bag, that is, BA = (Bay, ..., Bas). Again note that the order
is important here.

We now turn to the general linear first-order system

#(t) = A(t)x(t), (3.71)
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where A € C(I,R™"*"). Clearly our theory from Section 2.2 applies:

Theorem 3.8. The linear first-order system (3.71) has a unique solution
satisfying the initial condition x(tg) = xo. Moreover, this solution is defined
forallt e 1.

Proof. This follows directly from Theorem 2.16 (or alternatively from Corol-
lary 2.6) since we can choose L(T') = maxy 7 [|A(t)|| for every T € I. [

It seems tempting to suspect that the solution is given by the formula
x(t) = exp(fttO A(s)ds)xg. However, as soon as you try to verify this guess,
noncommutativity of matrices will get into your way. In fact, this formula
only solves our initial value problem if [A(t), A(s)] = O for all ¢,s € R.
Hence it is of little use. So we still need to find the right generalization of
exp((t — tg)A).

We start by observing that linear combinations of solutions are again
solutions. Hence the set of all solutions forms a vector space. This is of-
ten referred to as superposition principle. In particular, the solution
corresponding to the initial condition z(tg) = x¢ can be written as

n

Bt to,0) = Y _ B(t,to, 0;)x0 5, (3.72)

j=1

where J; are the canonical basis vectors, (i.e, §;, = 1if j = k and d;;, =0
if j # k) and x,; are the components of xo (i.e., zo = > 7_; d;20,;). Using
the solutions ¢(t,tp,d;) as columns of a matrix

H(tatO) = (¢(t,t0,51),...,¢(t,t0,5n)), (373)
we see that there is a linear mapping o — ¢(¢,tg, xo) given by
(Z)(t,to,l‘o) = H(t,to)l‘o. (374)

The matrix I1(t, t) is called principal matrix solution (at ) and it solves
the matrix valued initial value problem

II(t, tg) = A(H)II(t, o),  I(to,to) =1. (3.75)
Again observe that our basic existence and uniqueness result applies. In
fact, it is easy to check, that a matrix X (¢) satisfies X = A(¢)X if and only
if every column satisfies (3.71). In particular, X (¢)c solves (3.71) for every
constant vector c¢ in this case. In summary,

Theorem 3.9. The solutions of the system (3.71) form an n dimensional
vector space. Moreover, there exists a matriz-valued solution I1(t,tg) such
that the solution satisfying the initial condition x(tg) = xo is given by
H(t,to)l’o.
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Example. In the simplest case, where A(t) = A is constant, we of course
have TI(t, tg) = e(t=t0)A, o

Example. Consider the system

&= <é ;) z, (3.76)

T] = x1 + txa, To = 2T9. (377)

which explicitly reads

We need to find the solution corresponding to the initial conditions z(tg) =
91 = (1,0) respectively x(tg) = d2 = (0,1). In the first case x(tg) = 01, the
second equation gives zo(t) = 0 and plugging this into the first equation
shows x1(t) = el that is, ¢(t,t9,01) = (e!~%,0). Similarly, in the second
case z(tg) = (0,1), the second equation gives z3(t) = 2(*~%) and plugging
this into the first equation shows x1(t) = e2(t=t0) (¢t — 1) — et~ (t — 1), that
is, ¢(t, g, 02) = (2710)(t — 1) — et (tg — 1),e2~%)), Putting everything
together we obtain

et—to e2(t—t0) (t _ 1) _ et—to (tO _ 1)
I(t, ty) = < 0 o20—t0) > : (3.78)
o
Furthermore, TI(¢, o) satisfies
TI(¢, t)II(t1, to) = TI(, o) (3.79)

since both sides solve II = A(t)II and coincide for ¢t = ¢;. In particular,
choosing t = tg, we see that II(t,y) is an isomorphism with inverse

(¢, to) "' = (o, t). (3.80)

More generally, taking n solutions ¢, ..., ¢, we obtain a matrix solution
U(t) = (¢1(t),. .., dn(t)). Note that the differential equation is uniquely de-
termined by n linearly independent solutions by virtue of A(t) = U(t)U (t)~ 1.

The determinant of U(t) is called Wronski determinant

W (t) = det(d1(1),. .., bnlt)). (3.81)

If det U(t) # 0, the matrix solution U(t) is called a fundamental matrix
solution. Moreover, if U(t) is a matrix solution, so is U(¢)C, where C
is a constant matrix. Hence, given two fundamental matrix solutions U (t)
and V (t) we always have V (t) = U(t)U (to) "1V (to), since a matrix solution
is uniquely determined by an initial condition. In particular, the principal
matrix solution can be obtained from any fundamental matrix solution via

II(t,t0) = U(t)U(to) .
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The following lemma shows that it suffices to check det U(t) # 0 for one
t eR.

Lemma 3.10. The Wronski determinant of n solutions satisfies

W (t) = W(to) exp ( / t tr(A(s)) d5> . (3.82)

to
This is known as Abel’s identity or Liouville’s formula.
Proof. By (3.75) we have
II(t+e,t) =1+ A(t)e + o(e)
and using U(t +¢) = II(t 4+ €,t)U(t) we obtain (Problem 3.25)
W(t+e) =det(I+ A(t)e + o(e))W(t) = (1 + tr(A(t))e + o(e)) W ()

implying
d
$W(t) = tr(A(t)) W(t).
This equation is separable and the solution is given by (3.82). U

Now let us turn to the inhomogeneous system
T =A(t)r + g(t), x(to) = xo, (3.83)

where A € C(I,R" x R") and g € C(I,R"). Since the difference of two
solutions of the inhomogeneous system (3.83) satisfies the corresponding
homogeneous system (3.71), it suffices to find one particular solution. This
can be done using the following ansatz

x(t) = TI(¢, to)c(t), c(to) = o, (3.84)

which is known as variation of constants (also variation of parame-
ters). Differentiating this ansatz we see

&(t) = A(t)z(t) + I1(¢, to)é(t) (3.85)
and comparison with (3.83) yields
¢(t) = I(to, t)g(t). (3.86)

Integrating this equation shows

o(t) = 0 + /t Ti(to, 5)g(s)ds (3.87)

and we obtain (using (3.79)):
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Theorem 3.11. The solution of the inhomogeneous system corresponding
to the initial condition x(tg) = xo is given by

x(t) = T(t, to)zo + /t I1(t, s)g(s)ds, (3.88)

to
where I1(t, to) is the principal matriz solution of the corresponding homoge-
neous system.

To end this section, let me emphasize that there is no general way of
solving linear systems except for the trivial case n = 1 (Problem 1.22).
However, if one solution ¢;(t) is known, one can use the following method
known as reduction of order (d’Alembert): At least one component of
¢1(t) is nonzero, say the first one for notational simplicity. Let X (¢) be the
identity matrix with the first row replaced by ¢1(t),

X(t) = (¢1(t)7 02, ... >5n) (389)
and consider the transformation
x(t) = X (t)y(t). (3.90)
Then the differential equation for y(t) = X (t)~'xz(t) reads
y=X"1i- XXXz =X"1AX - X)y (3.91)
with
AX — X = AX — (61,0,...,0) = A(X — (¢1,0,...,0)) = A(0,02,...,5,).
(3.92)
In particular, the right-hand side of the resulting system does not contain
y1. Hence we can first solve the n — 1 by n — 1 system for (yo,...,y,) and

finally determine y; by one additional integration.

Example. Consider the system
-1
Al) = <2t 0 )
and note that ¢1(t) = (1,?) is a solution. Hence we can make the change
of coordinates

z(t) = X(t)y(t), where X(t) = <t12 2)

in which the differential equation reads

p=xean (g )= (5 2)»

In particular, the right-hand side does not involve y;. Hence this system
can be solved by first solving the second component 1o = t>ys which gives

ya(t) = /%,
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Now integrating the first component 11 = —ys gives

y1(t) = /653/3d8

and thus a second solution is given by
1 0 f683/3d8 et’/3
Pa(t) = <t2 1> < ot?/3 - the53/3ds+et3/3 :

Problem 3.24 (Differential calculus for matrices.). Suppose A(t) and B(t)
are differentiable. Prove (3.69) and (3.70). (Hint: AA~! =1.)

<

Problem 3.25. Show that for any n by n matrix A we have
det(I+eA+o0(e)) =1+etr(A) + o(e),

where o(e) (Landau symbol) collects terms which vanish faster than € as
e — 0. (Hint: E.g. Jordan canonical form.)

Problem 3.26. Compute I1(t,tg) for the system

At) = G g) .

Problem 3.27. Compute I1(t,to) for the system

(242t 342
A(t)_<—1—2t —2—2t>'

(Hint: ¢1(t) = e t(1,—1) is a solution.)

Problem 3.28 (Quantum Mechanics). A quantum mechanical system which
can only attain finitely many states is described by a complez-valued vector
Y(t) € C. The square of the absolute values of the components |;|* is
interpreted as the probability of finding the system in the j’th state at time
t. Since there are only n possible states, these probabilities must add up to
one, that is, ¥ (t) must be normalized, |1)| = 1. The time evolution of the
system is governed by the Schrodinger equation

ip(t) = H(t)p(t), (to) = o,

where H(t), is a self-adjoint matriz, that is, H(t)* = H(t). (Here A* is the
adjoint (complex conjugate of the transposed) matriz.) The matriz H(t) is
called the Hamiltonian and describes the interaction. Show that the solution
s given by

¥(t) = U(L, to)vo, Ulto, o) =L,
where U(t,to) is unitary, that is, U(t,tg) "' = U(t,to)* (Hint: Problem 3.24).
Conclude that ¢(t) remains normalized for all t if 1q is.
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Each observable (quantity you can measure) corresponds to a self-adjoint
matriz, say Lo. The expectation value for a measurement of Lo if the system
is in the state ¥ (t) is given by
where (p, 1) = @™ is the scalar product in C". Show that

d .
2% (), Loy (t)) = (¥ (1), [H(2), Lo]¥(t)
where [H, L] = HL — LH s the commutator.

Problem 3.29. Show that if limsup,_, ft'; tr(A(s))ds = oo, then (3.71)
has an unbounded solution. (Hint: (3.82).)

Problem 3.30. Show

l[A(s)llds|

T2, to)| < o (3.93)

(Hint: Problem 2.1/.)

Problem 3.31. For any matriz A, the matriz Re(A) = (A + A*) is sym-
metric and hence has only real eigenvalues. (Here A* is the adjoint (complex
conjugate of the transposed) matriz.) Let ag be its largest eigenvalue.

Let A(t) be given and define ag(t) as above. Show that
t
It o) < exp| [ aals)ds]
to

(Hint: Compute %|x(t)|? for x(t) = II(t,tg)xo and note that (v, Re(A)z) <
ao|z|? for every x € R™.)

Remark: If A(t) = A is constant, we know that one can do much better
and replace ag by the real part of the largest eigenvalue of A plus an arbi-
trarily small € (the € is necessary to cover possible polynomial terms) — cf.
also Corollary 3.6. Hence one might conjecture that the same is true in the
general case. However, this is not the case as Problem 3.40 below shows.

3.5. Linear equations of order n

In this section, we want to have a brief look at the case of the n’th order
equations

2™ 4 g1 ()2 Y + o+ (D)d 4 qo(t)z = 0. (3.94)

where qo(t),...,cn—1(t) are some continuous functions. Again the solutions
form an n dimensional vector space since a solution is uniquely determined
by the initial conditions

z(to)) =0, ..., =" V(to) =zpoa (3.95)
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and, as in the case of constant coefficients (cf. Section 3.3), the corresponding
system is given by

0 1
0 1

A(t) = RTINS (3.96)

0 1

—q(t) —q(t) - - —gna(t).
If we denote by ¢;(t,t9) the solution corresponding to the initial condition
(z(to), ..., 2 VD (tg)) = d;, the principal matrix solution is given by

¢1(t,to) - On(t,to)

o1(t,to) - daltsto)
II(t, ty) = : : : (3.97)

o' (tte) - ol V(1 t0)

As a consequence of Theorem 3.11 we obtain:

Theorem 3.12. The solution of the inhomogeneous n-th order linear equa-

tion
2™ 4 g1 ()2 4 4 @ (0)E + go(t)z = g(t) (3.98)
corresponding to the initial condition
z(to) = zo, ... 2" V(to) = zp1, (3.99)
18 given by

t

x(t) = 201 (t, to) + -+ Tn_10n(t,to) + [ on(t,s)g(s)ds,  (3.100)
to

where ¢;(t,tp), 1 < j < n, are the solutions corresponding to the initial
conditions (¢;(to, to), - . . 7¢§n71)(t07 to)) = 4;.

Next, given sufficiently smooth functions fi, ..., f;, we define their Wron-
ski determinant (or simply the Wronskian) as
i fa

i h

W(f1,..., fm) = det (3.101)

fl(rr;—l) gﬁ—n

Note that the Wronskian will vanish identically if the functions are linearly
dependent, but the converse is in general not true (cf. Problem 3.33).

By Lemma 3.10 the Wronskian of n solutions satisfies

W(p1,...,00)(t) = W(p1,...,0n)(to) exp <—/t qnl(s)ds> (3.102)
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and it will vanish if and only if the solutions are linearly dependent.

Finally, note that the differential equation (3.94) is uniquely determined
by n linearly independent solutions ¢1, ..., ¢, since this is true for the cor-
responding system. Explicitly we have

W(¢la s ,¢n7$)(t)
W(¢1a s a¢n)(t)

In fact, by expanding the Wronski determinant with respect to the last
column we see that the left-hand side is of the same form as the right-hand
side with possibly different coefficients ;. However, since the Wronskian on
the left-hand side vanishes whenever we choose x = ¢;, the corresponding
differential equation has the same solutions and thus ¢; = g;.

= 2™ (1) + g1 (2" () + - + qo(t)z(t). (3.103)

Example. For example, in the case of second order equations we obtain
using Laplace expansion along the last row

W (1, do,x) = W (1, ¢2)i — W (1, ¢2)i + W (), ¢h)z (3.104)
and thus
_ Wlne) Wind)
"= W (g1, ¢2) = W (o1, p2) (3.105)
Note that the formula for ¢; is consistent with (3.102). o

As for the case of systems, there is no general way of solving linear n’th
order equations except for the trivial case n = 1 (Problem 1.22). However, if
one solution ¢;(t) is known, one can again use the following method known
as reduction of order (d’Alembert):

Given one solution ¢;(t) of (3.94), the variation of constants ansatz

x(t) = c(t)p1(t) (3.106)
gives a (n— 1)’th order equation for ¢: Setting g, = 1 and using Leibniz rule
we obtain

n n J . ' n J . )
PEEEDIIDY @ SRS (D Mo~ (3.107)
§=0

j=0 k=0 §=0 k=1

where we have used > " qjcgbgj ) =0 for k = 0. Thus z solves (3.94) if and
only if d = ¢ solves

n—1 n .
J —k—1
S a3 (1 Jus ™ o (3.108)

k=0 j=k+1

Hence it remains to solve this (n — 1)’th order equation for d and perform
one additional integration to obtain c.



3.5. Linear equations of order n 81

There is also an alternative method based on factorizing the differential
equation outlined in Problems 3.35 and 3.36. Moreover, one can choose
dn—1(t) = 0 without loss of generality by Problem 3.37.

Example. Consider the differential equation
T—2tx+ 22 =0

and observe that ¢;(¢) = e'” is a solution. Hence we can set x(t) = etzc(t)
to obtain

(e é(t) + 4te” é(t) + (2 + 4t2)et c(t)) — 2(eé(t) + 2te’ e(t)) — 267 ¢(t)
— e (&(t) + 2té(t)) = 0.
The solution of this equation is given by
. —¢2
¢ty =e
implying

t
c(t) = / e 5 ds = \/27? erf(t),

where erf(z) = % Iy e~ dz is the Gauss error function. Hence a second
™

solution is given by ¢a(t) = et erf(t). o
Problem 3.32. Use reduction of order to find the general solution of the
following equations:

(i)t —2(t+ 1)+ (t+2)z =0, ¢1(t) = €.

(ii) #23 — 3ta +4x = 0, ¢1(t) = t2.
Problem 3.33. Show that the Wronskian of the two functions fi(t) = t

and fa(t) = t|t| vanishes identically even though the two solutions are not
linearly dependent.

Problem 3.34. Consider the equation & = q(t)x + g(t). Use reduction of
order to show that a second solution is given by

02(0) = n(0) [ (ﬁ(l)d

Problem 3.35. Verify that the second-order equation
i+ (1—-tHz=0

(d—t) (d—i—t)af—O

dt dt

(note that the order is important). Use this to find the solution. (Hint: The
solution can be found by solving two first order problems.)

can be factorized as
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Problem 3.36. Show that any linear n-th order equation can be factorized
into first order equations:

Let ¢, ..., ¢n be linearly independent solutions of the n-th order equation
L,(f)=0. Set
" (¢17 f) / /1
L = — - = _
1(f) ™ f ™

and define ; = L1(¢;). Show that 1o, ..., 1, are linearly independent and

Lo(f) = o). L) = et

Problem 3.37. Consider the change of variables

y(t) = Q(t)x(t), Q(t) = ex " an-1()ds
Show that if x(t) satisfies (3.94), then y(t) satisfies

n—2 n

R DY (i) 4 (HQU™ (t)y™,

k=0 j=k

where qn(t) = 1. In particular, the new equation does not contain y(”*l).

Problem 3.38. Show that x solves
i+ q(t)d+qt)r =0
if and only if
. t
_ e o /
y(t) € x(t)v Q( ) QI(S)d's?

solves the Riccati equation

g4 e QWy% 1 QW g (1),
3.6. Periodic linear systems

In this section we want to consider (3.71) in the special case where A(t) is
periodic,

At+T)=At), T>0. (3.109)
This periodicity condition implies that x(t+T') is again a solution if x(t) is.
Moreover, we even have

Lemma 3.13. Suppose A(t) is periodic with period T'. Then the principal
matriz solution satisfies

(it + T, to+ T) = (¢, to). (3.110)
Proof. By L1I(t+T,to+T) = A(t+T)I(t+T,to+T) = AR)I(t+T, to+T)

and I(to+ T,to+T) = I we see that II(t + T, ty + T') solves (3.75). Thus it
is equal to II(¢,tg) by uniqueness. O
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Hence it suggests itself to investigate what happens if we move on by
one period, that is, to look at the monodromy matrix
M(to) = H(to + T, to). (3.111)
Note that M(tg) is periodic by our previous lemma, that is, M (to + 1) =
M (tp).
A first naive guess would be that all initial conditions return to their
starting values after one period (i.e., M (tp) = I) and hence all solutions are

periodic. However, this is too much to hope for since it already fails in one
dimension with A(¢) a constant.

However, we have
(tg + 4T, tg) = I(to+ €T to+ (£ —1)T)(tg+ (¢ — 1)T,to)
= M(to+ (0 —1)T)II(to + (¢ — 1)T, to)
= M(to)l(to + (€ — 1)T, to)
= M(to)TI(to, to) = M (t)". (3.112)
Thus II(¢, o) exhibits an exponential behavior if we move on by one period

in each step. If we factor out this exponential term, the remainder should
be periodic.

To factor out the exponential term we need to give a meaning to M (o)
for the case where % =/ is not an integer. If M (ty) is a number, the usual
way of doing this is to set M (to)"/? = exp(% In(M(ty))). To mimic this trick
we need to find a matrix Q (o) such that

M(to) = exp(TQ(to)),  Qto+T) = Q(to)- (3.113)
This is possible if and only if det (M (£9)) # 0 (see Section 3.8). Note however,
that Q(tp) is not unique.

That det(M (tp)) # 0 follows from Liouville’s formula (3.82) which im-
plies that the determinant of the monodromy matrix

to+T T
det(M (tg)) = exp </ tr(A(s))ds> = exp </ tr(A(s))ds) (3.114)
to 0

is independent of ty and positive.

Now writing
II(t, to) = P(t,to) exp((t — t0)Q(t0)) (3.115)
a straightforward computation shows that
P(t+T,tg) = I({t+T, tO)M(tO)*le*(t*to)Q(to)
TI(t + T, to + T)e~(t—t0)Qt0)
= II(t, to)e~ 700)RM) — p(¢ t) (3.116)
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as anticipated. In summary we have proven Floquet’s theorem.

Theorem 3.14 (Floquet). Suppose A(t) is periodic. Then the principal
matriz solution of the corresponding linear system has the form

II(t, to) = P(t,to) exp((t — to)RQ(to)), (3.117)
where P(.,ty) has the same period as A(.) and P(to,to) = L.

Note that any fundamental matrix solution can be written in this form
(Problem 3.41). Moreover, recall that Q(to) will be complex even if A(t) is
real unless all real eigenvalues of M (t() are positive. However, since A(t) also
has the period 27" and TI(tg + 27T, ty) = M (tp)?, we infer from Lemma 3.24.

Corollary 3.15. Suppose A(t) is real and periodic. Then the principal
matriz solution of the corresponding linear system has the form

1I(t, to) = P (2, to) exp((t — t0)Q(t0)), (3.118)
where both P(t,tg), Q(to) are real and P(.,ty) has twice the period as A(.).

Hence to understand the behavior of solutions one needs to understand
the Jordan canonical form of the monodromy matrix. Moreover, we can
choose any ty since M (t;) and M(ty) are similar matrices by virtue of

M(ty) = TI(ty + T, to + T)M (to)I1(to, t1)
= TI(ty,to) M (to)I(t1, o)~ . (3.119)

Thus the eigenvalues and the Jordan structure are independent of ¢y (hence
the same also follows for Q(tp)).

The eigenvalues p; of M(ty) are known as Floquet multipliers (also
characteristic multipliers) and the eigenvalues v; of Q(tg) are known as
Floquet exponents (characteristic exponents). By Lemma 3.3 they
are related via p; = e’ Since the periodic part P(t,t) is bounded we
obtain as in Corollary 3.5

Corollary 3.16. A periodic linear system is stable if all Floquet multipliers
satisfy |pj| < 1 (respectively all Floquet exponents satisfy Re(vy;) < 0) and
for all Floquet multipliers with |p;| = 1 (respectively all Floquet exponents
with Re(vy;) = 0) the algebraic and geometric multiplicities are equal.

A periodic linear system is asymptotically stable if all Floquet multipliers
satisfy |pj| < 1 (respectively all Floquet exponents satisfy Re(y;) < 0).

Before I show how this result is used in a concrete example, let me
note another consequence of Theorem 3.14. The proof is left as an exercise
(Problem 3.42).
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Corollary 3.17. The transformation y(t) = P(t,to) 'x(t) renders the sys-
tem into one with constant coefficients,

y(t) = Q(to)y(t). (3.120)
Note also that we have P(t,t9) ! = exp((t — to)Q(to)) P(to, t) exp(—(t —
to)Q(t)) by virtue of II(t, o) ~! = (to, t).

In the remainder of this section we will look at one of the most prominent
examples, Hill’s equation

Z+q(t)r =0, q(t+T) = q(t). (3.121)
In this case the associated system is
T =y, = —qu (3.122)
and the principal matrix solution is given by
_ C(tatO) S(t,to)

where ¢(t, tp) is the solution of (3.121) corresponding to the initial condition
c(to, to) = 1, é(to, to) = 0 and similarly for s(¢,ty) but corresponding to the
initial condition s(tg,to) = 0, $(to,to) = 1. Liouville’s formula (3.82) shows

det TI(t, tg) = 1 (3.124)

and hence the characteristic equation for the monodromy matrix

c(to+T,to) s(to+T,to)
Mto) = (¢ i , 3.125
(to) <C(t0 +T,to) $(to+ T, to) ( )
is given by
P’ —20p+1=0, (3.126)
where v . T
t t t t 5(t t
If A% > 1 we have two different real eigenvalues
pr =A+ VA2 -1 =g, (3.128)
with corresponding eigenvectors
1
uy (ty) = , 3.129
0= () (3.120)
where
p+ —c(to + T, to) $(to + T, %o)
my (ty) = = . . 3.130
+(f0) s(to + T, to) px — &(to + T, to) (3.130)

Note that uy(tg) are also eigenvectors of Q(tg) corresponding to the eigen-
values vy = %ln(pi) (Lemma 3.3). From pyp_ =1 we obtain v4 +v_ =0
mod 271 and it is no restriction to assume |py| > 1 respectively Re(y4) > 0.
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If we set v = Re(4), we have y4 = £y if pyx > 0 (i.e. A = (p++p-)/2 > 0)
and v+ = £y +ir if px <0 (i.e. A <0).

Considering
(¢, to)us(to) = P(t,to)exp((t — t0)Q(to))u(to)
= (00) P(t to)us (to), (3.131)
we see that there are two solutions of the form
e (t), pL(t+T)=0ps(t), 0> =1,v>0, (3.132)

where o = sgn(A) and v = Re(y4).

If A? < 1 we have two different complex conjugate eigenvalues and hence
two solutions

pi(t),  pe(t+T)=px(t), >0, (3.133)
where v = Im(7y4).

If A2 =1 we have p+ = A and either two solutions
p+(),  ps(t+T)=0ps(t), (3.134)

or two solutions

p+(t), p-(t) +tps(t),  p(t+T) =0op=(t), (3.135)
where 0 = sgn(A) = A.
Since a periodic equation is called stable if all solutions are bounded,
we have shown

Theorem 3.18. Hill’s equation is stable if |A| < 1 and unstable if |A| > 1.

This result is of high practical importance in applications. For example,
the potential of a charged particle moving in the electric field of a quadrupole
is given by

v

U(x) = 6—2(1‘% —z2). (3.136)
a

The corresponding equations of motion are Newton’s equation (1.5), where

the force is given by

F(x) = —;BU(ZE). (3.137)

If the voltage V' varies with respect to time according to V (¢) = Vo+V; cos(t),
one gets the following equations of motion (neglecting the induced magnetic
field)

. 2e
¥ = _W(VO + Vi cos(t))xq,
. 2e
T = 4+ (Vo + Vi cos(t))za,

is = 0. (3.138)
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The equation for the x1 and x9 coordinates is the Mathieu equation
i = —w?(1 +ecos(t))z. (3.139)

A numerically computed stability diagram for 0 <w < 3and —1.5 <e < 1.5
is depicted below.

1.5

1

|
-

-1.5
0 0.5 1 1.5 2 2.5 3

The shaded regions are the ones where A(w,e)? > 1, that is, where the
equation is unstable. Observe that these unstable regions emerge from the
points 2w € Ny where A(w,0) = cos(2mw) = +1.

Varying the voltages V) and V; one can achieve that the equation is
only stable (in the 1 or xy direction) if the mass of the particle lies within
a certain region. This can be used to filter charged particles according to
their mass (quadrupole mass spectrometry).

Hill’s equation also can be used as a simple one-dimensional model in

quantum mechanics to describe a single electron moving in a periodic field
(cf. Problem 5.29). We will further investigate this problem in Section 5.6.

Problem 3.39. Consider @ = a(t)x, where a : R — R is periodic with
period T. Compute the Flogquet exponent, and find P(t,ty) and Q(to) in this
case.

Problem 3.40. Compute the monodromy matriz where A(t) is of period 1
and given by

a 1
0<t <3,
0 «
A(t) = aeC.
a 0 1
§St<1,
1l «

For which values of a remain all solutions bounded? Show that the bound
found in Problem 3.31 is optimal by considering A(t/T) as T — 0.

Problem 3.41. Show that any fundamental matriz solution U(t) of a pe-
riodic linear system can be written as U(t) = V (t) exp(tR), where V(t) is
periodic and R is similar to Q(to).

Problem 3.42. Prove Corollary 3.17.
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Problem 3.43. Consider the inhomogeneous equation
i(t) = A(t)z(t) + g(t),

where both A(t) and g(t) are periodic of period T. Show that this equation
has a unique periodic solution of period T if 1 is not an eigenvalue of the
monodromy matrix M(ty). (Hint: Note that xz(t) is periodic if and only if
x(T) = x(0) and use the variation of constants formula (3.88).)

3.7. Perturbed linear first order systems

In this section we want to consider stability of perturbed linear systems of
the form

&= (A+ B(t)z, (3.140)

where B(t) is continuous and satisfies ||B(t)|| — 0 as ¢ — co. As our first
result we will show that asymptotic stability is preserved under such pertur-
bations. To this end recall that by Corollary 3.6 the system corresponding
to B(t) = 0 is asymptotically stable if and only if all eigenvalues of A have
negative real part.

Theorem 3.19. Suppose all eigenvalues oj of A have negative real part and
B(t) satisfies
lim ||B(t)|| = 0. (3.141)

t—o00

Then the linear system (3.140) is asymptotically stable. More precisely, for
every o < min{—Re(a;)}J2; there is a constant C such that

()] < Ce ", (3.142)

where x(t) is the solution corresponding to the initial condition x(0) = xg.

Proof. The key ingredient is the variation of constants formula (3.88),
where we rewrite (3.140) as

&t —Ax = —B(t)x

and regard the right-hand side as an inhomogenous term g(t) = —B(t)xz(t).
Then
t
z(t) = 0% (tg) — / U=DAB(s)a(s)ds.
to

Abbreviate ap = min{—Re(a;)}72; and fix some a < a9 and some a; €

(o, 0). Then, by (3.39), there is a C' such that

et 4] < Cemltto)on ¢ >,
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Next, choose € = a1 — a and a corresponding sufficiently large ¢y such that
|B(t)|| < e/C for t > ty. By virtue of (3.39) we obtain

t
[o(t)] < Ce TN a(to)] + | Co™ (179 Za(s)|ds.
0

t—to)oq

Introducing y(t) = |z(t)|e we get

mws@mm+/w@w

to

and Gronwall’s inequality implies y(t) < C|z(to)|ec*~*) and hence
12(t)] < Cla(to)le” ) (1=) — O|z(ty)|e—t0),

Finally, since |x(tg)| < €|z for some 3 by Problem 3.31 the claim follows.
(]

As our second result we will show that stability is preserved under such
perturbations if the norm of the perturbation is integrable. Again recall
that by Corollary 3.5 the system corresponding to B(t) = 0 is stable if and
only if all eigenvalues of A have nonpositive real part.

Theorem 3.20. Suppose all eigenvalues aj of A satisfy Re(oj) < 0 and for
all eigenvalues with Re(a;) = 0 the corresponding algebraic and geometric
multiplicities are equal, and B(t) satisfies

| 1Bl < o (3.143)
0

Then the linear system (3.140) is stable. More precisely, there is a constant
C such that

[z()]| < Clwol, (3.144)

where x(t) is the solution corresponding to the initial condition x(0) = xg.

Proof. As in the previous proof our starting point is

z(t) = eay — /Ot eU=9DAB(s)x(s)ds
and using (3.38) we obtain

[(8)] < Clwol + /OtCIB(S)IIfU(S)IdS-
Hence an application of Gronwall’s inequality

()] < Claol exp(C [~ 1B(s)lds)

finishes the proof. O
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Problem 3.44 (Long-time asymptotics). Suppose

/Oo JA(H)|[dt < oo.
0

Show that every solution z(t) of (3.71) converges to some limit:

tlggo z(t) = Too-

(Hint: First show that all solutions are bounded and then use the corre-
sponding integral equation.)

3.8. Appendix: Jordan canonical form

In this section we want to review some further facts on the Jordan canonical
form. In addition, we want to draw some further consequences to be used
later on.

Consider a decomposition C* = V7 @& V5. Such a decomposition is said

to reduce A if both subspaces V7 and V5 are invariant under A, that
is, AV; € V;, 5 = 1,2. Changing to a new basis u1,...,u, such that

Ul, ..., Uy 1S a basis for Vi and up,41,...,uy, is a basis for V4, implies that
A is transformed to the block form
A 0
-1 _ 1
U AU = (0 A2> (3.145)
in these new coordinates. Moreover, we even have
-1 _ -1 _ exp(41) 0
U exp(A)U =exp(U "AU) = ( 0 exp(As) ) (3.146)

Hence we need to find some invariant subspaces which reduce A. If we look
at one-dimensional subspaces we must have

Az = ax, x # 0, (3.147)

for some a € C. If (3.147) holds, « is called an eigenvalue of A and
x is called eigenvector. In particular, o is an eigenvalue if and only if
Ker(A — a) # {0} and hence Ker(A — «) is called the eigenspace of « in
this case. Here we have used the shorthand notation A —a for A—al. Since
Ker(A — a) # {0} implies that A — « is not invertible, the eigenvalues are
the zeros of the characteristic polynomial of A,

xa(z) =[] (z = a;)% = det(zI — A), (3.148)

j=1

where a; # aj. The number a; is called algebraic multiplicity of o; and
g; = dimKer(A — o) is called geometric multiplicity of ;.
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The set of all eigenvalues of A is called the spectrum of A,
o0(A) ={a € C| Ker(A — «a) # {0}}. (3.149)

If the algebraic and geometric multiplicities of all eigenvalues happen to
be the same, we can find a basis consisting only of eigenvectors and Ut AU
is a diagonal matrix with the eigenvalues as diagonal entries. Moreover,
U~lexp(A)U is again diagonal with the exponentials of the eigenvalues as
diagonal entries.

However, life is not that simple and we only have g; < a; in general. It
turns out that the right objects to look at are the generalized eigenspaces

Vj = Ker(A — a;)%. (3.150)

Lemma 3.21. Let A be an n by n matriz and let V; = Ker(A—a;)%. Then
the V;’s are invariant subspaces and C" can be written as a direct sum

Ct=WVi&- - ®Vp. (3.151)
As a consequence we obtain

Theorem 3.22 (Cayley—Hamilton). Every matriz satisfies its own charac-
teristic equation

xa(A) =0. (3.152)
So, if we choose a basis u; of generalized eigenvectors, the matrix U =
(uq,...,uy) transforms A to a block structure
Ay
U 1AU = : (3.153)
Am

where each matrix A; has only the eigenvalue ;. Hence it suffices to restrict
our attention to this case.

A vector u € C" is called a cyclic vector for A if the vectors Au,
0 <j<n-—1span C", that is,

n—1
C" = {Z a;Alula; € C}. (3.154)
j=0

The case where A has only one eigenvalue and where there exists a cyclic
vector u is quite simple. Take

U= (u,(A—a)uy,...,(A—a)"tu), (3.155)
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then U transforms A to
J=U1AU = a . , (3.156)

since xa(A) = (A — a)” = 0 by the Cayley-Hamilton theorem. The matrix
(3.156) is called a Jordan block. It is of the form ol + N, where N is
nilpotent, that is, N" = 0.

Hence, we need to find a decomposition of the spaces V; into a direct
sum of spaces Vj, each of which has a cyclic vector wuy.

We again restrict our attention to the case where A has only one eigen-
value av and set
K; =Ker(A—a)’. (3.157)
In the cyclic case we have K; = @izl span{(A — a)" *}. In the general
case, using K; C K, 1, we can find Lj such that

j
K; =P L. (3.158)
k=1

In the cyclic case L, = span{u} and we would work our way down to L;
by applying A — « recursively. Mimicking this, we set M,, = L, and since
(A—a)Ljy1 € Lj we have L, = (A —a)L, & M,,_1. Proceeding like this
we can find M; such that

n
Ly =A—-a)" "M, (3.159)
I=k
Now choose a basis u; for My @ --- ® M,, where each u; lies in some M;.
Let V; be the subspace generated by (A —a)'u;. Then V =V, @---®V,, by
construction of the sets M), and each V; has a cyclic vector u;. In summary,
we get

Theorem 3.23 (Jordan canonical form). Let A be an n by n matriz.
Then there exists a basis for C™, such that A is of block form with each block
as in (3.156).

In addition, to the matrix exponential we will also need its inverse. That
is, given a matrix A we want to find a matrix B such that
A = exp(B). (3.160)

In this case we will call B = In(A) a matrix logarithm of A. Clearly, by
(3.21) this can only work if det(A) # 0. Hence suppose that det(A) # 0.
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It is no restriction to assume that A is in Jordan canonical form and to
consider the case of only one Jordan block, A = ol + N.

Motivated by the power series for the logarithm,

= ()
In(1+a) =Y ~——a/, |z]<1, (3.161)
— ]
j_
we set
n—1 ;
—1)y+
B = In(a)l+ ( ) NY
; Jjod
7j=1
1 —1 -n"
In(a) 5 72 (nfl)o)znfl
In(a) 1 . :
= In(e) " % . (3.162)
1
(e
In(«)

By construction we have exp(B) = A. Note that B is not unique since
different branches of In(«) will give different matrices. Moreover, it might
be complex even if A is real. In fact, if A has a negative eigenvalue, then
In(e) = In(Jer|) + im implies that In(A) will be complex. We can avoid this
situation by taking the logarithm of A2.

Lemma 3.24. A matrix A has a logarithm if and only if det(A) # 0.
Moreover, if A is real and all real eigenvalues are positive, then there is a

real logarithm. In particular, if A is real we can find a real logarithm for
A2

Proof. Since the eigenvalues of A2 are the squares of the eigenvalues of
A (show this), it remains to show that B is real if all real eigenvalues are
positive.

In these only the Jordan block corresponding to complex eigenvalues
could cause problems. We consider the real Jordan canonical form (3.23)
and note that for

Nl Gt R i e R

the logarithm is given by

In(R) = In(r)I + (g _090) .
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Now write the real Jordan block RI + N as R(I + R~'N). Then one can

check that
]-‘rl
log(RI + N) = log(R 11+Z ~ = RINI

is the required logarithm. O

Similarly, note that the resolvent (A — z)~! can also be easily computed
in Jordan canonical form, since for a Jordan block we have

n—1

(J—z)t= ! Z( L v (3.163)

a—z4~ (z—a)
7=0

In particular, note that the resolvent has a pole at each eigenvalue with the
residue being the projector onto the corresponding generalized eigenspace.

For later use we also introduce the subspaces

E*(4) = P Ker(4d-a))",
laj|F1<1

E°(4) = P Ker(Ad—a;)", (3.164)
laj|=1

where «a; are the eigenvalues of A and a; are the corresponding algebraic
multiplicities. The subspaces E*(A), E~(A), E°(A) are called contract-
ing, expanding, unitary subspace of A, respectively. The restriction of
A to these subspaces is denoted by A,, A_, Ag, respectively.

Problem 3.45. Denote by r(A) = max;{|a;|} the spectral radius of A.
Show that for every € > 0 there is a norm ||.||e such that

[Alle = sup [[Azfle <r(A) +e.

a:[lz]le=1
(Hint: It suffices to prove the claim for a Jordan block J = ol + N (why?).
Now choose a diagonal matriz Q = diag(1,¢,...,&") and observe Q~1JQ =

al +eN.)

Problem 3.46. Suppose A()) is C* and has no unitary subspace. Then
the projectors PT(A(N)) onto the contracting, expanding subspace are C*.
(Hint: Use the formulas

P =g [ hpy PN =1 P



Chapter 4

Differential equations
in the complex domain

This chapter requires some basic knowledge from complex analysis. Readers
only interested in dynamical systems can skip this and the next chapter and
go directly to Chapter 6.

4.1. The basic existence and uniqueness result

Until now we have only imposed rather weak requirements on the smoothness
of our differential equations. However, on the other hand, most examples
encountered were in fact (real) analytic. Up to this point we did not use
this additional information, but in the present chapter I want to show how
to gain a better understanding for these problems by taking the detour over
the complex plane.

In this chapter we want to look at differential equations in a complex
domain Q C C**!. We suppose that

f:Q—=C", (z,w) = f(z,w), (4.1)
is analytic (complex differentiable) in €2 and consider the equation
w' = f(z,w), w(zp) = wp. (4.2)
Here the prime denotes complex differentiation,

e

and hence the equation only makes sense if w(z) is analytic as well.
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We recall that the existence of the complex derivative is a much stronger
condition than existence of the real derivative. In fact, it implies that w(z)
can be expanded in a convergent power series near zg:

2w (z) . . @’
B w\ (2o () _ dw(2o)
w(z) = JE:O i (z —20)!, w\9(z) = 0 (4.4)
If f(w) = f(wi,...,wy,) depends on more than one variable, it is called
analytic if the partial complex derivatives
0
= fw), 1<j<n, 45
s /), 1<i<n (15)

exist (in the complex sense as defined in (4.3)). Again it can be shown that
f(w) can be expanded in a convergent power series. However, we will not
need this result here. Just observe that the definition implies that if f(z,w)
is analytic in the n + 1 variables (z,w) and w(z) is analytic in the single
variable z, then f(z,w(z)) is analytic in the single variable z by the chain
rule.

Clearly, the first question to ask is whether solutions exist at all. For-
tunately, this can be answered using the same tools as in the real case. It
suffices to only point out the differences.

The first step is to rewrite (4.2) as

) = wo + / f(Cw (4.6)

But note that we now have to be more careful since the integral is along a
path in the complex plane and independence of the path is not clear. On
the other hand, we will only consider values of z in a small disc around
zg. Since a disc is simply connected, path independence follows from the
Cauchy integral theorem. Next, we need a suitable Banach space. As in the
real case we can use the sup norm

sup  [w(z) (4.7)

|z—z0|<e

since the (locally) uniform limit of a sequence of analytic functions is again
analytic by the Weierstrafl convergence theorem. Now we can proceed as in
the real case to obtain

Theorem 4.1. Suppose f : Q — C is analytic. Then the initial value prob-
lem (4.2) has a unique solution defined in a sufficiently small disc around
20-

Next, let us look at maximally defined solutions. Unfortunately, this
topic is more tricky than in the real case. In fact, let wq(z) and ws(z)
be two solutions defined on the domains U; and Us respectively. If they
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coincide at a point z; € Uy N Us, they also coincide in a neighborhood of z;
by our local uniqueness result. Hence the set where they coincide is open.
By continuity of w;(z) it is also closed (in the relative topology) and hence
both solutions coincide on the connected component of Uy N Us containing
z1. But this is all we can say in general as the following example shows.

Example. Consider
1
w' = = w(l) =0, z € C\{0}. (4.8)
The solution is given by
w(z) =In(z) = In|z| + iarg(z) (4.9)

and different choices of the branch cut (i.e., the halve ray along which arg(z)
will jump by 27) will give different solutions. In particular, note that there
is no unique maximal domain of definition. o

Finally, let us show how analyticity can be used in the investigation of
a simple differential equation.

Example. Consider
w4+ w? =z, w(0) = wp. (4.10)

This is a Riccati equation and we already know that it cannot be solved
unless we find a particular solution. However, after you have tried for some
time, you will agree that it seems not possible to find one and hence we need
to try something different. Since we know that the solution is analytic near
0, we can at least write

[e.9] [e.9]
w(z) = ijzj, w'(z) = ijjzj_l, (4.11)
=0 =0

and plugging this into our equation yields
2

e . e .
ijjzjfl + ijzj = z. (4.12)
=0 =0

Expanding the product (using the Cauchy product formula) and aligning
powers of z gives

Z <(] + Dwjy + Zwkw]‘—k> 2 =2 (4.13)

j=0 k=0
Comparing powers of z we obtain

1 -1

2 3
w1 = —Wp, w2zwo+§7 wj+1:j+1
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Hence we have at least found a recursive formula for computing the coeffi-
cients of the power series of the solution. o

In general one obtains the following result by differentiating the differ-
ential equation:

Theorem 4.2. Suppose f : Q — C is analytic. Then the expansion coef-
ficients in the power series (4.4) of the solution w(z) for the initial value
problem (4.2) can be found recursively via

w(]) (ZO) = fj(z(b ’l,U(Z()), cee w(j_l) (ZO))> (415)
where the function f7 is recursively defined via
. . J .
[ w®, ) = %@,w«», L wlD)

owk)
FHzw®) = f(z,0®). (4.16)

=1 o
+ Z or (z,w @, .. wl= D)+,
k=0

However, this procedure gets too cumbersome if the function f involves
w in a too complicated way. Hence we will only investigate the case of linear
equations further. But, to make things a bit more exciting, we will allow for
poles in the coefficients, which is often needed in applications. In fact, this
will eventually allow us to solve the Riccati equation from the last example
using special functions (Problem 4.13).

Problem 4.1. Make a power series ansatz for the following equations:

(i) w4+ w =z, w(0) = wp.
(ii) w' 4+ w? = 22, w(0) = wp.
(i) v’ +w = L, w(0) = wo.

Problem 4.2. Try to find a solution of the initial value problem
w’ = (22 — 1w, w(0) =1, w'(0) = 0,

by using the power series method from above. Can you find a closed form
for the solution? What is a second solution? (Hint: Problem 3.34)

Problem 4.3. Make a power series ansatz for the differential equation

2w =w — 2.
What is the radius of convergence of the resulting series?

Problem 4.4. Consider (4.2) at zyp = 0. Show that the power series for
the n’th Picard iteration and the solution coincide up to order n. This
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can be used to derive an effective numerical scheme known as the Parker—
Sochacki algorithm. (Hint: Let w,(z) be the Picard iterates and suppose
w(z) = wy(2) + O(z"). What does the Lipschitz estimate tell you about
the relation between f(z,w(z)) and f(z,w,(2))?)

4.2. The Frobenius method for second-order equations

To begin with, we will restrict our attention to second-order linear equations
"+ p(2)u + q(2)u =0, (4.17)

which are among the most important ones in applications. Clearly, every-
thing we know from the real case (superposition principle, etc.) carries over
to the complex case and we know that the solutions are analytic whenever
the coefficients p(z) and ¢(z) are. However, in many applications the coeffi-
cients will have singularities and one of the main questions is the behavior
of the solutions near such a singularity. This will be our next topic. We will
assume that the singular point is zgp = 0 for notational convenience.

Recall that a function u(z), which is analytic in the domain Q = {z €
C|0 < |z| < r}, can be expanded into a (convergent) Laurent series

u(z) = Zujzj, z € . (4.18)
JEZ
It is analytic at z = 0 if all negative coefficients u;, j < 0, vanish. If
all but finitely many vanish, u(z) is said to have a pole. The smallest
n with u_,, = 0 for m > n is called the order of the pole. Otherwise, if
infinitely many negative coefficients are nonzero, z = 0 is called an essential
singularity.
Now let us begin by considering the prototypical example.

Example. The Euler equation is given by

W+ By By =0, zec\{oh (4.19)

z z

Obviously the coefficients have poles at z = 0 and, since C\{0} is not sim-
ply connected, solutions might not be defined for all = € C\{0}. Hence
we introduce a branch cut along the negative real axis and consider the
simply connected domain 2 = C\(—o0,0]. To solve (4.19) we will use the
transformation

¢ =In(z) = In|z| + iarg(z), —7 < arg(z) <, (4.20)

which maps Q to the strip Q = {z € C| — 7 < Im(2) < 7}. The equation in
the new coordinates reads

W+ (po — 1w’ + qgow = 0, w(¢) = u(ed). (4.21)
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Since it has constant coefficients, a basis of solutions can be given in terms
of the characteristic eigenvalues

a1 = %(1 —po £ v/ (po — 1)% — 4qo) (4.22)

according to Theorem 3.7. If they are different, a; # «g, we have two
linearly independent solutions

ui(z) = 24, ug(z) = 24? (4.23)

and if they are equal, a1 = ag, we have two linearly independent solutions
up(z) = 291, ug(z) = In(z)z*. (4.24)

o

Now let us turn to the general case. As a warm up, we will look at
first-order equations.

Lemma 4.3. The first-order equation

' +p(z)u=0 (4.25)
has a solution of the form
u(z) =2%h(z),  h(z)=> hjzd, ho=1, (4.26)
§=0

if and only if p(z) has at most a first-order pole. In this case we have
a = —lim,,02p(z) and the radius of convergence for the power series of
h(z) and the Laurent series of p(z) are the same.

Proof. If p(z) = 2 4 p; + pez + ... has a first-order pole, the solution of
the above equation is explicitly given by (cf. Problem 1.14)

u(z) = exp (— /Zp(t)dt> =exp(—poln(z) +c—p1z+...)
=z Pexp(c—piz+...).

Conversely we have

O

Now we are ready for our second-order equation (4.17). Motivated by
our example, we will assume that the coefficients are of the form

1 — . 1 & ,
p(z) =~ z%pjzj, a(2) = 5 E%sz], (4.27)
J]= J=
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and we will search for a solution of the form
u(z) = 2%h(z2), (4.28)

where av € C and h(z) is analytic near z = 0 with h(0) = 1. This is the
generalized power series method, or Frobenius method.

Using our ansatz we obtain

1 - . ()l-‘rj a—2 X
= Z DM DD ahixd,  (429)
-0 =0 =0 k=0
o0 o0
LS S s
k=0 j:0
22NN (ot — k)pehjoi?, (4.30)
7=0 k=0
o
u'(z) = 2272 Z(a + ) (a+j—1)h. (4.31)

Plugging this into (4.17) and comparing coefficients we obtain

J
((OHFJ')(04+j—1)+(a+j)Po+QO> hfrz ((a+j—k)pe+ar) hj—r = 0. (4.32)
k=1
Since hg = 1, this gives for j = 0 the characteristic equation

o+ (po — Da + gy = 0. (4.33)

Hence the possible choices for « are the characteristic exponents

2 = %(1 —po £/ (po —1)? — 4qo). (4.34)

Here we will take the standard branch of the root (with branch cut along
the negative real axis), such that Re(a1) > Re(asg). Moreover, using (4.33)
and 1 — pg = ay + a3 the recursion (4.32) can be simplified to

J
<(2a—a1—a2 +7) ) +Z (a+j—k pk—I—qk)hj,k:O. (4.35)
k=1

In the case o = o7 we obtain

1 J
h-:— i — k hi_ i >0, 4.36
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which is always solvable since Re(a; — ag) > 0 by assumption. In the case
a = a9 we obtain
-1

J
hi=——— N (g + 7 — F)p+ ) b 4.37
J (a2_a1+j>j;(( 27T )] )pk Qk) j—k ( )

which might have a problem at j = m if a3 = as + m for some m € Ny.
In this case, hj, 1 < j < m — 1, are uniquely determined by our choice

ho = 1, whereas for j = m we obtain
m
0= ((a1 = k)pr + a) hun—k- (4.38)
k=1
If this equation is fulfilled, we can choose h,, as we like and the remaining
hj, j > m, are again determined recursively. Otherwise there is no solution
of the form z*2h(z).

Hence we need a different ansatz in this last case. To find the form
of the second solution we use the variation of constants ansatz (compare
Section 3.5)

uz(z) = c(2)ui(z) = c(2)2**hi(2). (4.39)
Then
hi(z)
4 22l 4 9 (2) = 4.4
)+ (25 2t )¢ =0, (4.40)
where
ar M) 1t ,
(2 NG +p(z)) = o (0) 4+ (44D)
Hence, by Lemma 4.3,
d(z) = zo27al Z c;jzl, co#0. (4.42)
=0

Integrating once we obtain (neglecting the integration constant)

o0

c; ~
c(z) = 27 — 4.43
St w19
7=0
if a1 —as € Ny and
c(z) = 227" — P4 enn(z), 4.44
) Y e, @
Jj=0,j#m

if a1 — as = m € Ny. In the latter case ¢, could be zero unless m = 0.

In summary we have:
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Theorem 4.4 (Fuchs). Suppose the coefficients p(z) and q(z) of the second
order equation (4.17) have poles of order (at most) one and two respectively.
Then, if aq, ag are the characteristic exponents defined in (4.34) and ordered
according to Re(a1) > Re(az), two cases can occur:

Case 1. If a1 — ag € Ny, a fundamental system of solutions is given by
uj(z) =2%h(z), j=1,2, (4.45)
where the functions hj(z) are analytic near z =0 and satisfy h;(0) = 1.
Case 2. If a1 —as = m € Ny, a fundamental system of solutions is given
by
ui(z) = z%hi(z),
ug(z) = 2%ha(2) 4+ ¢ In(2)ui(z), (4.46)
where the functions h;(z) are analytic near z = 0 and satisfy h;(0) = 1.
The constant ¢ € C might be zero unless m = 0.

Moreover, in both cases the radius of convergence of the power series for
hi(z) and he(z) is at least equal to the minimum of the radius of convergence

for p(z) and q(z).

Proof. Since u; and us are clearly linearly independent, the only item re-
maining is to show that the power series for hi(z) has a nonzero radius of
convergence. Let h; be the coefficients defined via (4.36) and let R > 0 be
smaller than the radius of convergence of the series for p(z) and ¢(z). We
will show that |h;|R? < C for some C > 0.

Abbreviate
oo ) [e.e] ]
P=>"IplR, Q=) |¢lR.
j=1 j=1
Then there is a jg > 0 such that
(loa] +5)P +Q
(Re(on — o) +4)j
for j > jo. Choose C' = maxg<;<j, |h;|R’. Then the claim holds for j < jg

and we can proceed by induction: Suppose it holds up to j — 1. Then we
obtain from (4.36)

, 1 j
hillt < 37 ar| + )lpk| + larl) C R*
’ J’ (Re(a1 — a2) +J)J ; ((| 1’ J)’pk’ ’CIkD
< (|a1‘+])P+Q_C§C,
(Re(on — ) +4)J
which proves the claim. 0

Furthermore, the conditions on p and ¢ are optimal:
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Theorem 4.5 (Fuchs). The equation (4.17) has two solutions uy(z), ua(z)
as in the previous theorem if and only if p(z) and zq(z) have at most first-
order poles.

Proof. Consider v(z) = (u2(z)/ui(z))" and observe that it is of the form
v(2) = 2Pk(z), where k(2) is analytic near z = 0.

Now a straightforward calculation shows

oo — _PC) _prh(e)

v(z)  Tui(z)
and since the right-hand side has at most a first-order pole, so does p.
Similarly,

has at most a second-order pole. O

Note that (3.105) implies that p(z) and ¢(z) will be holomorphic near
z = 0 if and only if there are two linearly independent holomorphic solutions
u1(z) and ug(z).

Finally, let me remark that this characterization can also be applied
to classify singularities at zgp = oo. To this end one makes the change of
variables ¢ = % which transforms our equation to

W (207 =TT W+ RO T w =0, w(Q) =u(CTh). (4.47)
In particular, the equation is of Fuchs type at zg = oo if and only if the
following limits

2 lim zp(z) =po,  lim 2%q(2) = qo (4.48)

Z—00

exist in C. Now, let us see how this method works by considering an explicit
example. This will in addition show that all cases from above can occur.

Example. Consider the famous Bessel equation
20 4 zu' + (22 = v =0, veC. (4.49)

1

z

After dividing by 2% we see that it is of the form (4.17) with p(z) = % and

q(Z) =1- g In particu]ar, Po = 1 and qo = —VZ.

restriction to assume Re(r) > 0 and hence we will do so.

Moreover, it is no

The characteristic exponents are given by a2 = +v and hence there is
a solution of the form

ul(z) = ZV Z hl,jzj, hl,O =1. (4.50)
7=0
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Plugging this into our equation yields

o0 o0
2 hG v =D +0)A T2 by )
j=0 §=0

00
+ (22 — 1/2) Z hl’ij-H/ =0 (4.51)
7=0

and after multiplying by 27" and aligning powers of z

o0
> (G +v =10 +v) +hi(G +v) + hjo—hgr?) 22 =0, (4.52)
§=0
where we set hi; = 0 for j < 0. Comparing coefficients we obtain the
recurrence relation

J(G+2v)h1j+h1j2=0 (4.53)
for the unknown expansion coefficients hq ;. In particular, this can be viewed

as two independent recurrence relations for the even hj2; and odd hi 2j41
coefficients. The solution is easily seen to be

(=1

where we have used the Pochhammer symbol

h12j = haj+1 =0, (4.54)

I(z+j)
I'(z)
Here I'(x) is the usual Gamma function (cf. Problem 4.5). This solution,

with a different normalization, is called Bessel function

o (2) B > (fl)j 2\ 2j+v
W) = 1) = jz_:o FNOFTESY (3) (4.56)

(2)o=1, (v)j=xz(x+1)--(z+j-1)= (4.55)

of order v. Now what about the second solution? So let us investigate the
equation for —v. Replacing v by —v in the previous calculation, we see
that we can find a second (linearly independent) solution J_,(z) provided
(—v+1); # 0 for all j, which can only happen if v € Ny. Hence there are no
logarithmic terms even for v = 2”2“, where a1 —ao =2v=2n+1€ N. It
remains to look at the case, where v = n € N. All odd coefficients must be
zero and the recursion for the even ones gives us a contradiction at 2j = 2n.
Hence the only possibility left is a logarithmic solution

ug(z) = 27 "ha(2) + cIn(2)ui(2). (4.57)

Inserting this into our equation yields

GG —2n)haj + haj 2 = —2c(j —n)hij_on. (4.58)
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Again all odd coefficients vanish, ho 2j41 = 0. The even coefficients ho 2; can
be determined recursively for j < n as before

1

hooj = ————— | < n. 4.59
The recursion for j = 2n reads hg 3(,—1) = —2cn from which
-2
S — 4.60
47nl(n —1)! (4.60)

follows. The remaining coefficients now follow recursively from
45(3 + n)hagjron + hopi—1)12n = —2¢(25 + n)hi 2; (4.61)

once we choose a value for ho o,. This is a first-order linear inhomogeneous
recurrence relation with solution given by (see Problem 4.9 and note that
the solution of the homogeneous equation is h1 2;)

J

c 2k +n
hooivon =hioi | hoon — =y — " . 4.62
2,2j+2 1,2j ( 22n = 5 2 k(k+n)> (4.62)

Choosing hg 2, = 5 Hy, where

J
1
Hi=>" - (4.63)
k=1

are the harmonic numbers, we obtain

(=1)/ (Hj4n + H;)

hoonio; = — . 4.64
2,2n+2j 4J+”(n— 1)']'(]+n)' ( 6 )
Usually, the following linear combination
_ 2"n—-1)! v —1n(2)
Wz = mm ) e )
n—1 ; .
2 z 1 (=) (n—1)! r2\2—n
- g - 1S LS )
20+ n<2>> (2) Tj_j e G
1 o n+ Hj 2j+n
*Z et T (2)” (4.65)
s (7 +n) 2

Jj=

is taken as second independent solution. Here v = lim;_,o(H; — In(j)) =~
0.577216 is the Euler—Mascheroni constant.

Finally, let me remark that one usually uses the Hankel function
cos(mv)J,(z) — J_p(2)

sin(7v)

Y (2) = (4.66)
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as second solution of the Bessel equation. For fixed z # 0 the right-hand
side has a singularity for v € Ny. However, since

B ° (—1)7 2N 2j—n
Tn(2) =3 JIT(=n+j+1) (5)

j=0
IR ST VAN AT S
_;ﬂf(—nﬂﬂ) (5) = (=1)"Ju(2), neNy, (4.67)

(here we used I'(—n+j+1)"t =0 for j =0,1,...,n— 1) it can be removed
and it can be shown that the limit is a second linearly independent solution
(Problem 4.10) which coincides with the one from above.

Whereas you might not find Bessel functions on your pocket calculator,
they are available in Mathematica. For example, here is a plot of the Bessel
and Hankel function of order v = 0.

In[1]:= Plot[{BesselJ|0, z|, BesselY|[0, z]}, {z, 0, 12}]
05+ \//\\

Out[1]= J/’ > \A\ 5 s 10 12

-o05f |

~10f

Problem 4.5. The Gamma function is defined via
I'(z) = /000 ¥ e % dg, Re(z) > 0.
Verify that the integral converges and defines an analytic function in the
indicated half plane. Use integration by parts to show
I(z+1) ==2I'(2), 1) =1.

Conclude I'(n) = (n—1)! forn € N. Show that the relation I'(z) = I'(2+1)/z
can be used to define I'(z) for all z € C\{0,—1,—-2,...}. Show that near

z =—n, n € Ny, the Gamma functions behaves like T'(z) = ) I 0(1).

nlz

Problem 4.6. Show that the change of variables
v(z) = o2 fzp(odcu(z)

transforms (4.17) into

o'+ (a2) = 39 - 302 ) 0=
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Problem 4.7. Solve the following differential equations by the Frobenius
method:

(i
(ii

(ii

zu'+ (1+2)u=0.

u' —2u + (14 g5)u =0.
1— 1—

u” + z(l-‘,—zz) u' — z(1+z)2

zu" +u' +u=0.

u = 0.

~— ~— ~— —

(iv

Problem 4.8. Show that the coefficients of h(x) from Lemma 4.3 are re-
cursiely given by

13-
hj ==Y pjkhk,
J k=0

if p(z) = 271 3572 pjzl.
Problem 4.9. Consider the first-order liner inhomogeneous difference equa-
tion
z(n+1) = f(n)z(n) = g(n), f(n) #0.
Show that the solution of the homogeneous equation (g =0) is given by

TG, o,
§=0

zp(n) = z(0) < 1, n =0,
—1
[T G n<o,

Jj=n

Use a wvariation of constants ansatz for the inhomogeneous equation and
show that the solution is given by

n—1 .
m(n) ¥ 5y, n>0,
]:
xz(n) = zp(n) + < 0, n =0,
~1 :
—zp(n) X2 %, n < 0.
j=n

Problem 4.10 (Hankel functions). Prove that the Hankel function is a
second linearly independent solution for all v as follows:

(i) Use (4.67) to prove that the Hankel function is well defined for all
v and analytic in both variables z and v (for z € C\(—o0,0] and
Re(v) > 0).

(ii) Show that the modified Wronskian

W(u(z),v(2)) = 2(u(2)v'(2) — u'(2)v(2))
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of two solutions of the Bessel equation is constant (Hint: Liou-
ville’s formula). Prove
_9 .
TOTa =) = sin(mv).
(Hint: Use constancy of the Wronskian and evaluate it at z = 0.

You don’t need to prove the second equality which is just Euler’s
reflection formula for the Gamma function.)

(iii) Now show

W(Ju(2),J-u(2)) =

W, (2), Yo (2)) = %

Differentiate this formula with respect to z and show that Y,(z)
satisfies the Bessel equation.

Problem 4.11. Prove the following properties of the Bessel functions.
() (27 0,(2)) = £ da (2).
(i1) Jos1(2) + Jom1(2) = Z 00 (2).
(iil) Jy41(2) — Ju—1(2) = 2J,(2) .
Problem 4.12. Show

a a?
/ J(2)%2dz = EJ,/,(CL)2 +
0

(Hint: Multiply Bessel’s equation by u'(z) and show that the result is a
complete differential up to one term.)

CL2—I/2

J,(a)?, v>0.

Problem 4.13. Many differential equations occur in practice that are not
of the standard form (4.49). Show that the differential equation

1—-2 2,22
w' + —— =2 4 (bez"1)? 4 L% Y w=o.
z 22
can be transformed to the Bessel equation via w(z) = 2%u(bz°).
Find the solution of
o w +w? =z,
o w =w?— 2?2
in terms of Bessel functions. (Hint: Problem 3.38.)

Problem 4.14 (Legendre polynomials). The Legendre equation is given
by

(1 —2%)w” — 220" 4+ n(n+ 1)w = 0.
Make a power series ansatz at z = 0 and show that there is a polynomial
solution p,(z) if n € Ng. What is the order of p,(z)?
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Problem 4.15 (Hypergeometric equation). The hypergeometric equa-
tion s given by

z(1 —2)w" + (¢ — (1 + a+b)z)w' — abw = 0.

Classify all singular points (including co). Use the Frobenius method to show

that

o0

L) (a);(b); j
F(a’abvcﬂz)_zwza _C¢N07

j=o \“iJ
is a solution. This is the hypergeometric function. Show that z' ~“w(z) is
again a solution of the hypergeometric equation but with different coefficients.
Use this to prove that F(a—c+1,b—c+ 1,2 —¢; 2) is a second solution for

¢ —2 & Ny. This gives two linearly independent solutions if ¢ & Z.

Problem 4.16 (Confluent hypergeometric equation). The confluent hy-
pergeometric equation is given by

2w"” + (¢ — 2)w' — aw = 0.

Classify all singular points (including co). Use the Frobenius method to show
that

oo

K(a,b;z) = Z ((C()lj;!Zj, —c ¢ No,

s a solution. This is the confluent hypergeometric or Kummer func-
tion.

Jj=0

Show that z'~¢w(2) is again a solution of the confluent hypergeometric
equation but with different coefficients. Use this prove that K(a —c+ 1,2 —
¢; z) is a second solution for ¢ —2 & Ny. This gives two linearly independent
solutions if ¢ € 7.

Problem 4.17. Show that any second-order equation (4.17) with finitely

many singular points zg, . .., zn, 00 of Fuchs type is of the form
n n
Dj 4j ]
p(2) = i)=Y ( 1)
jzzjoz—zj’ jgo (z—25)2 z—2z)

where pj,q;,r; € C and necessarily

n
Z 7’]' =0.
7=0

Show that there is no singularity at oo if in addition Peo = oo = Teo = 0,

where
n n

n
Poo =2= D Pjr oo =D (45 +752), Too= Y 2i(205 +75%).
j=0

J=0 J=0
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Problem 4.18 (Riemann equation). A second-order equation is called a
Riemann equation if it has only three singular points (including co) of
Fuchs type. Solutions of a Riemann equation are denoted by the Riemann
symbol

20 21 22
Psar B m zp,
az P2 7o

where the numbers z; are the singular points and the numbers below z; are
the corresponding characteristic exponents.

Recall that given distinct points z;, j = 0,1,2, can be mapped to any
other given points (j = ((2;), j = 0,1,2, by a fractional linear transform
(Mébius transform,)

az+b
C(Z) = m, ad—bc;éO

Pick (o =0, (1 =1 and (2 = co and show that

20 21 22 0 1 o
Plaw fiom z0=Plan B m (EHET
[6%) 52 Y2 s /32 7o
For the case zo =0, z1 = 1, 22 = 00 show that
_ @ P1 _ @ @ q B o
p(z)— 2 +Z—1’ (Z) 22 5 (2—1)2 L1

FEzpress the coefficients p(z) and q(z) in terms of the characteristic exponents
and show that

a1+ + B+ Po+v1+7 =1
Conclude that a Riemann equation is uniquely determined by its symbol.

Finally, show

0 1 o0 0 1 00
ZX’1=2PSay 1 1 zp=Plas+v Pi+p mm—p—v =z
az B2 72 azt+v Patp ye—p—v

and conclude that any Riemann equation can be transformed into the hyper-
geometric equation

0 1 00
P 0 0 a z
l1—c c—a—-b b

Show that the Legendre equation is a Riemann equation. Find the transfor-
mation which maps it to the hypergeometric equation.
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4.3. Linear systems with singularities

Now we want to extend the results from the previous section to linear sys-
tems

w' = A(2)w, w(zg) = wo, z,20 € Q CC, (4.68)
where A(z) is a matrix whose coefficients are analytic in €.

As in the real case one can show that one can always extend solutions.
However, extensions along different paths might give different solutions in
general, as we have seen in example (4.8). These problems do not arise if
is simply connected.

Theorem 4.6. Suppose w' = A(z)w + b(z) is linear, where A : Q@ — C**"
and b : Q — C™ are analytic in a simply connected domain 2 C C. Then for
every zg € §) the corresponding initial value problem has a unique solution

defined on all of §2.

In particular, the power series for every solution will converge in the
largest disc centered at zg and contained in 2.

Proof. If (2 is a disc centered at zg the result follows as in Corollary 2.6.
For general Q, pick z € Q and let v : [0,1] — © be a path from 2 to z.
Around each point «(t) we have a solution in a ball with radius independent
of the initial condition and of ¢ € [0,1]. So we can define the value of w(z)
by analytic continuation along the path ~. Since €2 is simply connected, this
value is uniquely defined by the monodromy theorem. O

This result has the important consequence that a solution of a lin-
ear equation can have singularities (poles, essential singularities, or branch
points) only at the points where the coefficients have isolated singularities.
That is, the singularities are fixed and do not depend on the initial condi-
tion. On the other hand, nonlinear equations will in general have movable
singularities, as the simple example

w = —w?, (4.69)

whose general solution is
1
= 4.70
w(z) = ——. (4.70)

shows. Equations whose only movable singularities are poles play an impor-
tant role in applications. It can be shown that a first order equation

w' = f(z,w) (4.71)

which is rational in w and meromorphic in z has this property if it is of
Riccati type, that is, f(z,w) = fo(2) + fi(2)w + f2(2)w?, and can hence
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be transformed to a second order linear equation (cf. Problem 3.38). In the
case of a second order equation

w” = f(z,w,w') (4.72)

which is rational in w, w’ and meromorphic in z, Painlevé and his coworkers
showed that there are six equations which cannot be linearized or solved by
well-known special functions. These are nowadays known as the Painlevé
transcendents. For example, the first two are given by

Pr: w' = 6w? + 2z,

Pp: w' =zw+ 2w +a, aeC. (4.73)
They play an important role in nonlinear physics just as special functions
(like Bessel functions) play in linear physics. However, this is beyond this

introduction, see for example the book by Ince [17], and we return to linear
equations.

Again, as in the real case, the superposition principle holds. Hence, we
can find a principal matrix solution II(z, zg) such that the solution of (4.68)
is given by

w(z) = II(z, z0)wo. (4.74)
It is also not hard to see that Liouville’s formula (3.82) extends to the
complex case.

Again we will allow singularities at zg = 0. So let us start with the
prototypical example. The system

1
w' = ;Aw, z € C\{0}, (4.75)

is called Euler system. Obviously it has a first order pole at z = 0 and
since C\{0} is not simply connected, solutions might not be defined for all
z € C\{0}. Hence we introduce a branch cut along the negative real axis
and consider the simply connected domain 2 = C\(—o0,0]. To solve (4.75)
we will use the transformation

¢ =1In(z) =In|z| +iarg(z), —7 < arg(z) <, (4.76)

which maps Q to the strip Q = {z € C| — 7 < Im(2) < 7}. The equation in
the new coordinates reads

W= Aw, w(¢) = w(ed). (4.77)
Hence a fundamental system is given by
W (z) = 2 = exp(In(2) A), (4.78)

where the last expression is to be understood as the definition of z4. As
usual, z4 can be easily computed if A is in Jordan canonical form. In
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particular, for a Jordan block J we obtain

1 1In(z) LICIRA.. (G

In(z
2! (n—1)!
1 In(z) :
ZJ = z® 1 In(2)2 . (479)
2!
In(z)
1

Therefore the solution consists of terms of the form 2% In(2)*, where a is an
eigenvalue of A and k is a nonnegative integer. Note that the logarithmic
terms are only present if A is not diagonalizable.

This behavior is in fact typical near any isolated singularity as the fol-
lowing result shows.

Theorem 4.7. Suppose A(z) is analytic in Q = {z € C|0 < |z — 29| < £}.
Then a fundamental system of w' = A(z)w is of the form

W(z) =U(2)(z — 20)™, (4.80)

where U(z) is analytic in Q.

Proof. Again we use our change of coordinates ( = In(z) to obtain
W' = eSA(ed)w, Re(¢) < In(e).

But this system is periodic with period 27i and hence the result follows as
in the proof of Floquet’s theorem (Theorem 3.14). O

Observe that any other fundamental system W (z) can be written as
W(z) = W(2)C =U(2)C (2 — 2)¢ M, det(C) 0, (4.81)

and hence has a representation W (z) = U(z)(z — Zo)M , where M is linearly
equivalent to M.

Please note that this theorem does not say that all the bad terms are
sitting in (2 — 20). In fact, U(z) might have an essential singularity at zq.
However, if this is not the case, the singularity is called regular and we can
easily absorb the pole of U(z) in the (z — 29) term by using

W(z) =U(2)(z — 20)™ (z — z)M ™ (4.82)

But when can this be done? We expect this to be possible if the singularity
of A(z) is not too bad. However, the equation w' = Z%w has the solution
w(z) = exp(—%), which has an essential singularity at 0. Hence our only
hope left are first-order poles. We will say that zg is a simple singularity
of our system if A(z) has a pole of (at most) first order at zo.
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Theorem 4.8. Suppose A(z) is analytic in Q = {z € C|0 < |z — 2| < ¢}
and has a simple singularity at zo. Then W (z) is of the form (4.80) and
U(z) can be chosen analytic in {z € C||z — 29| < €}.

Proof. It is no restriction to consider zy = 0 and it suffices to show that
U(z) can have at most a pole. Let w(z) be any solution. Moreover, for given
ro > 0 we can find a number m such that ||A(z)|| < |m7‘ for |z| < rp. Using

polar coordinates z = re'¥ we have
. . T'O . . .
lw(re'?)| = |w(ree'¥) —i—/ A(se'*)w(se'?)e'?ds|
'
0

. 0 m, .
< lulrae?)]+ [ fu(sel?) ds
for 0 < r < rg. Applying Gronwall and taking the maximum over all ¢ we
obtain

o |™
w(z) < sup fw(O)l| 2]
¢:l¢l=ro <

which is the desired estimate. ([

The converse of this result is in general not true (except in one dimen-
sion). However,

Lemma 4.9. If 2z is a reqular singularity, then A(z) has at most a pole at
20-

Proof. This follows from

Az) =U'(2)U(2) 7" + U(z)MU(2)7,

Z— 20

since det(U(z)) can have at most a finite order zero, and hence the entries
of U(z)~! can have at most poles of the same order. O

There are no restrictions on the order of the pole as can be seen from
the following

Example.

<z9” me> U(Z):<(1) Z9n> Mz((l) é) (4.83)

<o

Problem 4.19. Let zy be a simple singularity and let W (z) be a fundamental
system as in (4.80). Show that

det(W(z)) = (2 — 20)")d(2),  d(z0) #0,
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where d(z) is analytic near zy and Ay = lim,_,,,(z — 20)A(z). Moreover,
conclude that tr(Ag — M) € Z. (Hint: Use Abel’s identity (3.82) for the
determinant. )

4.4. The Frobenius method

In this section we pursue our investigation of simple singularities. Without
loss of generality we will set zg = 0. Since we know how a fundamental
system looks like from Theorem 4.8, we can make the ansatz

W(z)=U(2)2M, Uz) = Z U;zl, Uy #0. (4.84)

Using
1 & ,
= - A 4.
Z;—o: j= (4.85)

and plugging everything into our differential equation yields the recurrence
relation

(j+ M) ZA;CU] K (4.86)

for the coefficients U;. However, since we don t know M, this does not help
us much. By (4.78) you could suspect that we just have M = Ay and Uy = L.
Indeed, if we assume det(Up) # 0, we obtain UgM = AUy for j = 0 and
hence W (2)U, b = U(2)Uy '240 is of the anticipated form. Unfortunately,
we don’t know that det(Up) # 0 and, even worse, this is wrong in general
(examples will follow).

So let us be less ambitious and look for a single solution first. If y is an
eigenvalue with corresponding eigenvector ug of M, then

wo(z) = W(2)ug = 2*U(2)uo (4.87)

is a solution of the form
wo(z) = 2%p(2) ZUQJ ;o uo#0,a=p+m.  (4.88)

Here m € Ny is chosen such that uo(O) = up,0 7# 0. Inserting this ansatz into
our differential equation we obtain

J
(a +j)u07j = ZAkUO,j—k (4.89)
k=0
respectively
J
(Ao — o — fluo, + Y Agugjp = 0. (4.90)

k=1
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In particular, for 7 =0,
(Ao — @)uo,0 =0, (4.91)
we see that o must be an eigenvalue of Ag!
Now what about the case where p corresponds to a nontrivial Jordan

block of size n > 1?7 Then, by (4.79), we have a corresponding set of gener-
alized eigenvectors u;, 1 <1 < n, such that

n(z)!
wy(z) = W(z)u = 2% (ul(z) +In(2)u—1(2) + -+ 1 E! ) ug(z)> , (4.92)

1 <[ <n, are n solutions. Here

[e.e]
w(z) =20 (2)u; = Z w2, U, #0, 1<1<n, (4.93)
J=my
As before, my € Z is chosen such that u;,,, # 0 (note that m; > p —a =
—m). We set u;; = 0 for j < m; and u_;; = 0 for notational convenience
later on.

Again, inserting this ansatz into our differential equation, we obtain

w1 =0,  j<my, (4.94)
and
J—my
(a4 Jupj +u—1; = Z Aguy ik, J=my. (4.95)
k=1

The first part implies m;_1; > m; and in particular m; < mg = 0. The
second implies

J
(Ao - — j)ul,j + ZAkul,j—k = Ul—1,5, j = my. (4.96)
k=1

Furthermore, for j = m; we get
(Ao — o — my)ugm;, = W—1,m,- (4.97)

Hence there are two cases, m; = my_1 and (Ag — o — my)um, = U—1,m,_,»
that is, @ +my_1 corresponds to a nontrivial Jordan block of Ag. Or my; <
my—1 and (Ag — a — my)uy,, = 0, that is, o + my is another eigenvalue of
Ap.

In summary,

Theorem 4.10. If A(z) has a simple pole at zo = 0 with residue Ay, then
every solution of w' = A(z)w is of the form

l In(z)*

w(z) = zaZul_k(z) o w(z) = Z w2, upm, #0, (4.98)

k=0 Jj=my




118 4. Differential equations in the complex domain

where —my € Ng and m; < my—1 < --- <mq < mg = 0. The vectors ujm,
are eigenvectors, (Ao — o+ my)upm, = 0, if m; = my_; (set m—y = 0) or
generalized eigenvectors, (Ao — o + M)y m, = Um,_,, if my < my_q.

In particular, the Jordan structures of M and Ag are related as follows:

Theorem 4.11. For every eigenvalue p of M there must be an eigenvalue
a=pu+m, me Ny, of Ag. For every Jordan block of i there is a corre-
sponding Jordan block of o, which might be smaller or equal. If it is smaller,
there must be eigenvalues aj = ao+mj, —m; € N, of Ay with corresponding
Jordan blocks, which make up for the missing parts.

If no two eigenvalues of Ao differ by an integer, then Ay and M are
similar.

So we have found a quite complete picture of the possible forms of solu-
tions of our differential equation in the neighborhood of the singular point
z = 0 and we can now try to go the opposite way. Given a solution of the
system of linear equations (4.96), where « is an eigenvalue of Ay we get a
solution of our differential equation via (4.92) provided we can show that
the series converges.

But before turning to the problem of convergence, let us reflect about
how to solve the system (4.96). If the numbers « + j are not eigenvalues of
Ay for j > 0, we can multiply (4.96) by (Ag —  — j)~! and u; ; is uniquely
determined by u; ;1. Whereas this might not always be true, it is at least
true for j > jo with jo sufficiently large. Hence we are left with a finite
system for the coefficients u;;, 0 <1 < n, 0 < j < jg, which we can solve
first. All remaining coefficients are then determined uniquely in a recursive
manner.

Theorem 4.12. Suppose v ; solves (4.96). Then w(z) defined via the power
series (4.93) has the same radius of convergence as the power series for
2zA(z) around z = 0. Moreover, wi(z) defined via (4.92) is a solution of

w = A(z)w.

Proof. Suppose § is smaller than the radius of convergence of the power
series for zA(z) around z = 0 and abbreviate

M=) |46 < .
j=0

We equip the space of vector valued u = (u;);en, expansion coefficients with
the norm (Problem 4.20)

e .
lull = fuy] &7
j=0
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The idea is now to cut off the first jy terms which cause trouble and view
the rest as a fixed point equation in the above Banach space. Let

Kus — 70 ] SjUa
j = . .
! k OAku] ks J > Jo,

W
then
oo Jj
[ Kl <3 |Re |ZZ||Ak|| 1|6
7=0 k=0
= ZZ || Akl |uj|6]+ = m”ﬂ”-

=0 k=0

Hence for jo sufficiently large, the equation u; = v; + Ku; has a unique
solution by the contraction principle for any fixed v;. Now let wu;; be a
solution of (4.95)

1 1
u = — E Aru g U ;
l,my+j o+ l+jk_1 kW m;+5—k o+ l+j l—1,m;+j
and choose v = a + my and v; = uy;m4; for j < jo respectively v; =

_m“l—lmzﬂ' for 7 > jg. Then the solution of our fixed point problem

u; coincides with our solution g m,,+; of (4.96) by construction. (]

In summary, we obtain the following procedure for finding a full set of
linearly independent solutions:

For all eigenvalues a of Ay for which a + j is not an eigenvalue for
all j € Ny, take corresponding generalized eigenfunctions ug; # 0, (Ag —
a)ug; = up—1. Then wi(z) as defined in (4.92) with m; = 0 and

J
u; = (Ao —a— )~ (ull,j - Z akul,jk> ) (4.99)
k=1

are linearly independent solutions.

For all other eigenvalues & = o + mj, there are two cases. First try
to find solutions for & as in the case before until a sufficient number of
solutions has been found or until this is no longer possible (i.e., (4.96) has
no nontrivial solution). Next, add further terms in the ansatz (4.92) for «
until a sufficient number of solutions has been found. This will produce a
full set of linearly independent solutions.

This procedure for finding the general solution near a simple singularity
is known as Frobenius method. The eigenvalues of Ay are also called
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characteristic exponents. Observe that our requirement of the singular-
ity to be simple is indeed crucial, since it ensures that the algebraic system
of equations for the coefficients can be solved recursively.

Clearly we can also try to apply this procedure to get a power series
around infinity. To this end, one makes the change of coordinates { = %
Then our system transforms to

1 1 1
W= ——A(E)w, w(z) =w(-). (4.100)
z
In particular, co is a simple singularity if and only if A(z) has (at least) a
first-order zero at oo, that is,

Ay = inng. (4.101)
o

A system is called a Fuchs system if it has only finitely many singularities
all of which, including infinity, are simple.

Lemma 4.13. Every Fuchs system is of the form

Az) = . (4.102)

Proof. Consider,

where A; = lim,,, (2 — 2z;)A(2). Then B(z) is analytic on all of C by
construction. Moreover, since A(z) vanishes at oo so does B(z) und thus
B(z) vanishes by Liouville’s theorem (every bounded analytic function is
constant). O

Note that a Fuchs system is regular at oo if and only if 25:1 A; = 0.
Hence every nontrivial (A(z) # 0) Fuchs system has at least two singulari-
ties.

Finally, let me remark, that all results for systems apply to the n’th
order linear equation

U™ (2) + guoa (D () + -+ @1 (2 (2) + qo(2ulz) = 0. (4.103)

Transforming this equation to a system as usual, shows that zp = 0 is a
simple singularity if the coefficients ¢;(z), 0 < j < n — 1 have at most
first-order poles. However, we can do even better. Introducing

w(z) = (u(z2), 2/ (2),..., 2" "D (2)). (4.104)
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shows that
0 1
1 1
1

1

A(z) = =
()=

1
—2"qo _zn_lfh et —ZQQn—Z n—1—-zq,_1

(4.105)
has a simple singularity at z = 0 if ¢j(z), 0 < j < n — 1, has a pole of order
at most n — 7 at z = 0.

For example, transforming (4.17) we obtain the system

w' = A(2)w, A(z)z( 0 : ) (4.106)

—2q(2) 1 =p(2)

Problem 4.20. Let w; > 0, j € Ny, be given weights. Show that the set of
all sequences u = (uj)jen, with u; € C* for which the norm

o0
lul = Juj|w;
=0

is finite, form a Banach space.






Chapter 5

Boundary value
problems

5.1. Introduction

Boundary value problems are of fundamental importance in physics. How-
ever, solving such problems usually involves a combination of methods from
ordinary differential equations, functional analysis, complex functions, and
measure theory. Since the remaining chapters do not depend on the present
one, you can also skip it and go directly to Chapter 6.

To motivate the investigation of boundary value problems, let us look
at a typical example from physics first. The vibrations of a string can be
described by its displacement u(t, x) at the point x and time t. The equation
of motion for this system is the one dimensional wave equation

1 02 H?

where ¢ is the speed of sound in our string. Moreover, we will assume that the
string is fixed at both endpoints, that is, z € [0,1] and u(¢,0) = u(¢,1) =0,
and that the initial displacement u(0,z) = w(z) and the initial velocity
%(0, x) = v(x) are given.

Unfortunately, this is a partial differential equation and hence none of
our methods found thus far apply. In particular, it is unclear how we should
solve the posed problem. Hence let us try to find some solutions of the
equation (5.1) first. To make it a little easier, let us try to make an ansatz
for u(t, x) as a product of two functions, each of which depends on only one

123
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variable, that is,
u(t,z) = w(t)y(x). (5.2)
This ansatz is called separation of variables. Plugging everything into
the wave equation and bringing all ¢, x dependent terms to the left, right
side, respectively, we obtain
1 . t /!
1) _ ) 65
w(t)  y(z)
Now if this equation should hold for all ¢t and z, the quotients must be equal
to a constant —\. That is, we are lead to the equations

1

— gw(t) = Aw(t) (5.4)
and
—y'(@) =My(x),  y(0)=y(1)=0 (5:5)
which can easily be solved. The first one gives
w(t) = 1 cos(eVAt) + co sin(ev/At) (5.6)

and the second one
y(z) = ez cos(VAz) + egsin(VAz). (5.7)

However, y(z) must also satisfy the boundary conditions y(0) = y(1) = 0.
The first one y(0) = 0 is satisfied if ¢3 = 0 and the second one yields (¢4 can
be absorbed by w(t))

sin(VA) = 0, (5.8)
which holds if A = (7n)2, n € N. In summary, we obtain the solutions
u(t, z) = (c1 cos(enmt) 4 cp sin(cenmt)) sin(nrx), n € N. (5.9)
In particular, the string can only vibrate with certain fixed frequencies!

So we have found a large number of solutions, but we still have not
dealt with our initial conditions. This can be done using the superposition
principle which holds since our equation is linear. Moreover, since we have
infinitely many solutions we can consider infinite linear combinations under
appropriate assumptions on the coefficients.

Lemma 5.1. Suppose c1,, and ca, are sequences satisfying

o0 oo
Zn2|cl7nl < 00, ZnQ\can < 00. (5.10)
n=1 n=1
Then
o
u(t,x) = Z (c1,n cos(enmt) + ca,p sin(enmt)) sin(nrz), (5.11)

n=1
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is in C?(R,[0,1]) and satisfies the wave equation (5.1) and the boundary
conditions u(t,0) = u(t, 1) = 0.

Proof. Consider

M=

un(z,t) = (c1,n cos(cnmt) + o p sin(cenmt)) sin(nr),

Il
—

n

WE

un(z,t) = (€1,n cos(enmt) + co pn sin(enmt)) nw cos(nmwx).

i
L

By our assumption (5.10) the Weierstrafl M-test implies that both series
converge uniformly to continuous functions u(zx,t), v(z,t), respectively. Fur-
thermore, since vy (t, z) = a%uN(x, t) this also shows that u(x,t) has a con-
tinuous partial derivative with respect to x given by %u(az,t) = v(t, z).
Similarly one shows existence of the remaining derivatives. In particular,
the fact that uy solves the wave equation remains valid in the limit. U

Next, under the assumptions (5.10) the proof of the previous lemma also
shows

u(0,x) = Z 1 psin(nrz), gtu((), x) = Z enmeg psin(nrx).  (5.12)
n=1 n=1

Hence, expanding the initial conditions into Fourier series
oo oo
u(z) = Z up, sin(nmx), v(x) = Z vy, sin(nmx), (5.13)
n=1 n=1

we see that the solution of our original problem is given by (5.11) with

Cln = Up and ¢z, = 7 provided the Fourier coefficients satisfy
oo oo
an\un\ < 00, Z”’"Un’ < 0. (5.14)
n=1 n=1

It can be shown that this last condition holds if u € C3[0, 1] and v € C?[0, 1].
For a different method

In general, a vast number of problems in various areas leads to the
investigation of the following problem

Le) = Mle), L= (—dp<x>d " q<m>) . (515)

subject to the boundary conditions

cos(a)y(a) = sin(a)p(a)y'(a), cos(B)y(b) =sin(B)p(b)y'(b),  (5.16)



126 5. Boundary value problems

a,B € R. Such a problem is called Sturm—Liouville boundary value
problem. Our example shows that we should prove the following facts
about Sturm—Liouville problems:

(i) The Sturm-Liouville problem has a countable number of eigen-
values E,, with corresponding eigenfunctions u,(z), that is, u,(x)
satisfies the boundary conditions and Luy(z) = Epun(z).

(ii) The eigenfunctions u,, are complete, that is, any nice function u(x)
can be expanded into a generalized Fourier series

u(z) = cntin(x).
n=1

This problem is very similar to the eigenvalue problem of a matrix.
However, our linear operator is now acting on some space of functions which
is not finite dimensional. Nevertheless, we can equip such a function space
with a scalar product

b
(f.9) = / f*(2)g(x)dz, (5.17)

where ‘x’ denotes complex conjugation. In fact, it turns out that the proper
setting for our problem is a Hilbert space and hence we will recall some facts
about Hilbert spaces in the next section before proceeding further.

Problem 5.1. Note that the wave equation (5.1) can be factorized according

to
9 _19N(o 19N, (9 10\(d 10Y
O0x cOt oz cot)" " \oz T con or cot) T

Hence f(x + ct) and g(x — ct) as well as f(x + ct) + g(x — ct) are solutions
of the wave equation for arbitrary f,g € C2.

Express f and g in terms of the initial conditions u(0,z) = u(x) € C*(R)
and %U(O,x) =v(z) € CY(R) to obtain d’Alembert’s formula

t —ct 1 ot
x

v(y)dy.

—ct

In order, to obtain a solution on x € [0,1] satisfying the boundary conditions
u(0,2) = u(1l,2) = 0 use the following reflection technique: Extend the ini-
tial condition u(x) € C2[0,1] to [—1,1] using reflection u(—x) = —u(x) and
then to R using periodicity u(x+2) = u(x). Show that the resulting function
u will be C*(R) provided u(0) = u"(0) = u(1) = v”"(1) = 0. Similarly we
can extend v € C1[0,1] to a function v € C1(R) provided v(0) = v(1) = 0.

Problem 5.2. Show that
e@)y" + q(x)y + qx)y
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can be written as .

e A N/
(@Y +a@)y).
Find r, p, q in terms of qu, q1, qo.
Write the Bessel and Legendre equations (Problem 4.14) in this form.
Problem 5.3 (Hanging cable). Consider the vibrations of a cable suspended

at © = 1. Denote the displacement by u(t,z). Then the motion is described
by the equation

0? o 0
wu(t,x) 6—$8—u(t x),
with boundary conditions u(t,1) = u/(¢t,0) = 0. Find all solutions of the

form u(t,z) = w(t)y(x). (Hint: Problem 4.13.)

Problem 5.4 (Heat equation). Use the method described in this section to
solve the heat equation
2
aat (t,z) = 862 (t,x)

with boundary conditions u(t,0) = ug, v(t,0) = u; and initial condition
u(0,z) = u(z). What can you say about limy_ oo u(t,z). (Hint: If u(x,t)
solves the heat equation so does u(z,t) + a + bx. Use this to reduce the
boundary conditions to the case ug = u; = 0.)

Problem 5.5 (Harmonic crystal in one dimension). Suppose you have a
linear chain of identical particles coupled to each other by springs. Then the
equation of motion is given by

2

m S u(t,n) = ku(t,n + 1) = u(t, ) + k(ult,n — 1) — u(t,n)),

where m > 0 is the mass of the particles and k > 0 is the spring constant.
(This is an infinite system of differential equations to which our theory does
not apply!) Look for a solution in terms of Bessel functions c(t,n) = Jun(bt).
(Hint: Problem 4.11.) Show that s(t,n) fo s,m)ds is a second solution.
Can you give the solution corresponding to the initial data u(0,n) = u(n),
%(O,n) = v(n) provided u(n) and v(n) decay sufficiently fast?

5.2. Compact symmetric operators

Suppose £ is a vector space. A map (., ..) : HyxHy — Cis called skew linear
form if it is conjugate linear in the first and linear in the second argument,
that is,

<>‘1f1+)\2f27g> = )\T(fl,g>—|—)\§<f2’g>
(fidigr + Xag2) = M{f.g1) + Na(f,g0) A1, Az € C. (5.18)

A skew linear form satisfying the requirements
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(i) (f,f) >0for f#0
(ii) (f,9) = (9, )"

is called inner product or scalar product. Associated with every scalar
product is a norm

1fIl = VAF, ) (5.19)

(We will prove later that this is indeed a norm.) The pair (£, (., ..)) is called
inner product space. If §j is complete with respect to the above norm,
it is called a Hilbert space. It is usually no restriction to assume that g
is complete since one can easily replace it by its completion §). However, for
our purpose this is not necessary and hence we will not do so here to avoid
technical complications later on.

A vector f € £ is called normalized or unit vector if ||f|| = 1.
Two vectors f,g € o are called orthogonal or perpendicular (f L g) if
(f,g9) = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal we have the Pythagorean theorem:

IF+gI* =717+ llgl*,  FLg, (5.20)

which is one line of computation.
Suppose u is a unit vector. Then the projection of f in the direction of
u is given by
fi = (u, flu (5.21)
and f| defined via
fr=[f—(u flu (5.22)

is perpendicular to u since (u, f1) = (u, f — (u, f)u) = (u, ) — (u, f)(u,u) =
0.

f fL

fi

Taking any other vector parallel to u it is easy to see

If = aull® = f + (fy) — aw) | = I£L]* + [(u, ) — af? (5.23)

and hence f) = (u, f)u is the unique vector parallel to u which is closest to

As a first consequence we obtain the Cauchy—Schwarz—Bunjakowski
inequality:
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Theorem 5.2 (Cauchy—Schwarz—Bunjakowski). Let $o be an inner product
space. Then for every f,g € $Ho we have

[l < [IfIHgll (5.24)
with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ||g|| = 1. But then the claim follows
from || fI* = [{g, /)* + I f]I. O

Note that the Cauchy—Schwarz inequality entails that the scalar product
is continuous in both variables, that is, if f,, — f and g, — g we have

<fnagn> — <f7g>-

As another consequence we infer that the map ||.|| is indeed a norm.
1f + 9> = IF11” + (£, 9) + {g..f) + llall® < (IF1 + gl (5.25)

Next, let us generalize the projection to more than one vector. A set
of vectors {u;} is called orthonormal set if (u;,u;) = 0 for j # k and
<Uj, Uj> =1.

Lemma 5.3. Suppose {Uj}?:o is an orthonormal set. Then every f € $Hg
can be written as

n

=1+ 7fL il :Z<ujaf>ujv (5.26)

Jj=0

where f| and fi are orthogonal. Moreover, (uj, f1) =0 forall1 < j <n.
In particular,

1P =D g AP+ 1L (5.27)
j=0

Moreover, every f in the span of {u;}i_o satisfies

1F = Al = 11l (5.28)

with equality holding if and only iff = fy- In other words, f| is uniquely
characterized as the vector in the span of {Uj}?:o closest to f.

Proof. A straightforward calculation shows (u;, f — f) = 0 and hence f
and f; = f — f are orthogonal. The formula for the norm follows by
applying (5.20) iteratively.

Now, fix a vector

n
f= Z Cju;.
Jj=0
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in the span of {u;}7_;. Then one computes

If = FIZ=11f + fo = AP = Il + 1 fy = FI
= LI+ ley = (g, )P
=0
from which the last claim follows. O

From (5.27) we obtain Bessel’s inequality
> N NP <17 (5.29)
=0

with equality holding if and only if f lies in the span of {u;}]_.
In particular, the Bessel inequality shows that we can also handle count-

able orthonormal sets (cf. Problem 5.7). An orthonormal set {uj}j-vzo, N e
Np U {oc} is called an orthonormal basis if

N
A1 =D 1wy ) (5.30)
5=0

for all f € $y. Abbreviating

n

fn = Z<Uj7 f>Uj, (5'31)

§=0
equation (5.27) implies f — f, — 0 as n — N and hence (5.30) is equivalent
to

N
F=> {uj, fu (5.32)
=0

for every f € 9.

A linear operator is a linear mapping
A:D(A) — $Ho, (5.33)

where D(A) is a linear subspace of ), called the domain of A. A linear
operator A is called symmetric if its domain is dense (i.e., its closure is
$o) and if

(9. Af) =(Ag.f),  [.9€D(A). (5.34)
A number z € C is called eigenvalue of A if there is a nonzero vector
u € ©®(A) such that

Au = zu. (5.35)

The vector u is called a corresponding eigenvector in this case. The set of
all eigenvectors corresponding to z is called the eigenspace

Ker(A — 2) (5.36)
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corresponding to z. Here we have used the shorthand notation A — z for A—
zI. An eigenvalue is called simple if there is only one linearly independent
eigenvector.

Theorem 5.4. Let A be symmetric. Then all eigenvalues are real and
etgenvectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose A is an eigenvalue with corresponding normalized eigen-
vector u. Then A\ = (u, Au) = (Au,u) = \*, which shows that A is real.
Furthermore, if Au; = A\ju;, j = 1,2, we have

()\1 — )\2)<U1,U2> = <AU1,UQ> — (ul,AuQ> =0
finishing the proof. [l

The linear operator A defined on ©(A) = §) is called bounded if
[All = sup [[Af]] (5.37)
fllfll=1

is finite. It is not hard to see that this is indeed a norm (Problem 5.8) on
the space of bounded linear operators. By construction, a bounded operator
is Lipschitz continuous

TAfI < IANAIl (5.38)
and hence continuous.

Moreover, a linear operator A defined on D(A) = g is called compact
if every sequence A f,, has a convergent subsequence whenever f,, is bounded.
Every compact linear operator is bounded and the product of a bounded and
a compact operator is again compact (Problem 5.9).

Theorem 5.5. A compact symmetric operator has an eigenvalue ag which
satisfies |ao| = || A]|.

Proof. We set a@ = ||A|| and assume a # 0 (i.e, A # 0) without loss of
generality. Since

IAI? = sup [Af|]® = sup (Af Af)= sup (f A°f)
sl fl=1 silfl=1 Filfl=1

there exists a normalized sequence u,, such that

lim (up, A%u,) = o?.
n—oo

Since A is compact, it is no restriction to assume that A%u,, converges, say
lim,, 00 A%u, = o>u. Now

1(A% = o®)un | = || A%un|* — 20% (un, A%un) + o

< 2a2(a2 — (un,Agum)
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(where we have used [|A%u,| < ||A||[[Aun| < ||A|?||unll = o?) implies
limn_,oo(AQUn — a2un) = 0 and hence lim,, .o u, = u. In addition, u is
a normalized eigenvector of A? since (A? — a?)u = 0. Factorizing this last
equation according to (A — a)u = v and (A + a)v = 0 shows that either
v # 0 is an eigenvector corresponding to —« or v = 0 and hence u # 0 is an
eigenvector corresponding to «. O

Note that for a bounded operator A, there cannot be an eigenvalue with
absolute value larger than ||A||, that is, the set of eigenvalues is bounded by
||A]| (Problem 5.10).

Now consider a compact symmetric operator A with eigenvalue «q (as
above) and corresponding normalized eigenvector ug. Set

o = {f € Hol(uo, f) = 0} (5.39)

and observe that .6(()1) is a closed linear subspace and hence an inner product
space of its own. Moreover, we can restrict A to .6(()1) since f € 5’)(()1) implies
(Af,ug) = aog(f,up) = 0 and hence Af € 55(()1). Denoting this restriction by
Az, it clearly inherits both the symmetry and compactness from A (check
this!). Hence we can apply Theorem 5.5 iteratively to obtain a sequence of
eigenvalues «; with corresponding normalized eigenvectors u;. Moreover, by
construction, u; is orthogonal to all u; with k& < j and hence the eigenvectors
{u;} form an orthonormal set. This procedure will not stop unless ) is finite
dimensional. However, note that o; = 0 for j > n might happen if A, = 0.

Theorem 5.6 (Spectral theorem for compact symmetric operators). Sup-
pose o is an inner product space and A : Ho — Ho is a compact symmetric
operator. Then there exists a sequence of real eigenvalues o; converging to
0. The corresponding normalized eigenvectors u; form an orthonormal set
and every f € Ran(A) = {Ag|g € $Ho} can be written as

f=2 (uj, fu;. (5.40)
=0

J

If Ran(A) is dense, then the eigenvectors form an orthonormal basis.

Proof. Existence of the eigenvalues «; and the corresponding eigenvectors
has already been established. If the eigenvalues should not converge to zero,
there is a subsequence such that vy = ozj*klujk is a bounded sequence for
which Avy, has no convergent subsequence since [|Avy — Av|*> = |luj, —
s, ||2 =2.
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Next, let f = Ag € Ran(A). Set

Fo= (uj fuj,  gn=> (uj,g)u;
=0 =0
and observe
fo = (g, Aghuy = (Auj, gyu; = > aj(uy, g)u; = Agn.
§=0 j=0 j=0

Thus

Hf - an = |A(g — gn)ll = HAn—&-l(g _gn)H < |0‘n+1m9 - gnH < |04n+1\H9H

since g — gy, € ﬁé’”l). Letting n — oo shows f, — f proving (5.40) in the

case f € Ran(A).

Next, let f € $o be arbitrary and suppose l%an(A) is dense. For fixed
€ > 0, there is an f. € Ran(A) such that ||f — f.|| < §. Moreover, by the
previous part, there is an f. in the span of {uj};‘:o for some sufficiently
large n, such that || f. — fo| < §. That is, ||f — f:]| < € and since, by
Lemma 5.3, f, is the best approximation within the span of {Uj}?:o we
even have ||f — foll < ||f — f:|| < € for n sufficiently large. O

This is all we need and it remains to apply these results to Sturm-—
Liouville operators.

Problem 5.6. Prove the parallelogram law
1F+gl® + 1L = gll> = 211717 + 2llg]1?
for f,g € $o.

Problem 5.7. Let {u;}32, C $o be a countable orthonormal set and f € $)o.
Show that

n
Fu= (uj, flu;
j=0
is a Cauchy sequence.

Problem 5.8. Show that (5.37) is indeed a norm. Show that the product of
two bounded operators is again bounded with |AB| < ||A|||| B

Problem 5.9. Show that every compact linear operator is bounded and that
the product of a bounded and a compact operator is compact (compact oper-
ators form an ideal).

Problem 5.10. Show that if A is bounded, then every eigenvalue o satisfies
laf <Al
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5.3. Sturm—Liouville equations

Before we will apply the theory of inner product spaces to the investigation
of Sturm—Liouville problems we have a look at the underlying differential
equation

— (p(2)y") + (q(x) — zr(z))y =0, z2€C,zel=a,b), (5.41)

for y € C?(I,C), which is equivalent to the first-order system

y = v
W = (q(x) - 2r(@)y (5.42)

where w(z) = p(x)y’(z). Hence we see that there is a unique solution if
p~1(z), q(x), and r(z) are continuous in I. In fact, as noted earlier, it
even suffices to assume that p~!(z), ¢(z), and r(z) are integrable over each
compact subinterval of I. I remark that essentially all you have to do is to
replace differentiable by absolutely continuous (respectively differentiable in
the weak sense) in the sequel. However, we will assume that

r,q € C%[a,b],R), p € C([a,b],R), p(z),r(x) >0, z € [a,b], (5.43)

for the rest of this chapter and call the differential equation (5.41) regular
in this case. Note that if we only assume p € C°([a, b],R), we will still be
within the framework of the theory developed so far, but then y might no
longer be C? since only know w = py’ € C.

By (3.97) the principal matrix solution of (5.42) is given by

H(Z,.T7,’E0) - < C(Z,fﬂ,xo) S(Z,x,xo)

p(x)c (2,2, 20) p(x)s’(z,:c,xo)) ,ozeC (544)

where ¢(z, x, o) is the solution of (5.41) corresponding to the initial condi-
tion ¢(z, zo, o) = 1, p(xo)(2z,z0,20) = 0 and similarly for s(z,z,zq) but
corresponding to the initial condition s(z, zo, o) = 0, p(z0)s'(z, xo, x0) = 1.
We know that II(z,z,z0) is continuous with respect to z and xy by
Theorem 2.9. But with respect to z a much stronger result is true.

Lemma 5.7. The principal matriz solution 11(z, x,xo) is analytic with re-
spect to z € C for every fived (x,z¢) € I x I.

Proof. It suffices to show that every solution is analytic with respect to
z € C in a neighborhood of zg if the initial conditions are constant. In this
case each of the iterations (2.13) is analytic (in fact even polynomial) with
respect to z € C. Moreover, for z in a compact set, the Lipschitz constant
can be chosen independent of z. Hence the series of iterations converges
uniformly for z in a compact set, implying that the limit is again analytic
by the Weierstrafl convergence theorem. O
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Moreover, by Liouville’s formula (3.82) the modified Wronskian
We(u,v) = u(@)p(z)v'(z) — p(x)u (z)v(z) (5.45)
is independent of z if u(z) and v(z) both solve (5.41) with the same z € C.
In particular, det I1(z, z, zg) = 1.

Moreover, by (3.88) the solution of the inhomogeneous equation

= (p(@)y) + (a(2) — 2r(2)y = g(x) (5.46)
is given by
y(z) = c1e(z, z, o) + cas(z, x, o) + /m s(z,z,t)g(t)r(t)dt (5.47)

Moreover, note that given two linearly independent solutions u, v of (5.41)
we have

u(x)v(zo) — u(wo)v(z)
W (u,v) )

s(z,x,x0) = (5.48)
Problem 5.11. Given one solution u(x) of (5.41), make a variation of
constants ansatz v(z) = c(x)u(x) and show that a second solution is given

by
1

v(z) = u(x)/ Wdt

While this formula breaks down at points where u vanishes, Rofe-Beketov’s
formula works even at such points:

) ) — () (ult)? — (p(e (9)?)
o) =u(e) | (@ + (PO (D)2 I

p(x)u'(x)
u(z)? + (p(x)u (x))*
Problem 5.12. Show that if u is a solution of (5.41), then w = pu'/u
satisfies the Riccati equation

w + p(z)tw? = q(z) — zr(x).

Problem 5.13 (Liouville normal form). Show that the differential equation
(5.41) can be transformed into one with r = p = 1 using the transformation

y(x) =/;\/;8dtv v(y) = Vr(z)p(z(y)) u(z(y)),

—(pu") + qu = ru

Then

transforms into
—" + Qu = v,
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where
(pr)t/*

r

b , e , - b@
[ )@ - /0 P, o= [ W

Problem 5.14. Suppose u(z) satisfies
u”(2) + g(x)u'(x) + f(z)u(z) = h(z).

Q=q- (p((pr) /%Y’

Moreover,

Show that -
v(z) = ez / 9y (1)
satisfies
V(@) + (F(z) — 50'(x) — o) u(x) = e} S SO Wp(r)

5.4. Regular Sturm—Liouville problems

Now we want to apply the theory of inner product spaces to the investigation
of Sturm-Liouville problems.

Now let us look for a suitable scalar product. We consider

(f.9) = /] f(2)*g(z)r(z)dz, (5.49)

and denote C([a, b],C) with this inner product by $o.
Next, we want to consider the Sturm—Liouville equation as operator

L= (- ato)) (5.50)

in $g. Since there are function in £y which are not differentiable, we cannot
apply it to any function in $)9. Thus we need a suitable domain

D(L) = {f € C*([a,b],C)|BC4(f) = BCy(f) = 0}, (5.51)

where
BCA(f) = cos(a)f(a) — sin(a)p(a) (o) 6552
BCy(f) = cos(B)f(b) —sin(B)p(b) f'(b). '
In other words, we allow linear combinations of the boundary values f(a) and
f'(a) (resp. f(b) and f’(b)) as a boundary conditions. This choice ensures
that ©(L) is a linear subspace of £y and one can even show (Problem 5.17)
that it is dense.

The two most important cases are & = 0 (i.e., u(a) = 0) and o = 7/2
(i.e., u/(a) = 0). The condition u(a) = 0 is called a Dirichlet bound-
ary condition at a and the condition u/(a) = 0 is called a Neumann
boundary condition at a.
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Clearly we want L to be symmetric. Using integration by parts it is
straightforward to show the Lagrange identity

o @hrde=Watg' )~ Wilg' )+ [(Layran 553
for f,g € C?%([a,b],C). Moreover, if f,g € D(L), the above two Wronskians
vanish (Problem 5.18) and hence

(9,Lf) =(Lg,f),  f,9€D(L), (5.54)

which shows that L is symmetric.

Of course we want to apply Theorem 5.6 next and for this we would
need to show that L is compact. Unfortunately, it turns out that L is not
even bounded (Problem 5.15) and it looks like we are out of luck. However,
there is one last chance: the inverse of L might be compact so that we can
apply Theorem 5.6 to it.

Since L might not be injective (0 might be an eigenvalue), we will con-
sider L — z for some fixed z € C. To compute the inverse of L — z we need to
solve the inhomogeneous equation (L —z) f = ¢g which can be done by virtue
of (5.47). Moreover, in addition to the fact that f is a solution of the differ-
ential equation (L — z)f = g it must also be in the domain of L, that is, it
must satisfy the boundary conditions. Hence we must choose the unknown
constants in (5.47) such that the boundary conditions are satisfied. To this
end we will choose two solutions u4 and u_ of the homogeneous equation,
which will be adapted to our boundary conditions, and use (5.48). In this
case (5.47) can be written as

= ut (%) c zu z r
1@) = s (e [ ung )

u_(z,x) b

ey (e [ e a0rna). 6.5

implying

v, (2, )

W(u(2),u-(2))
/ b

u_(z,x)
W (2).u () <02+/x U+(2’7t)9(t)7"(t)dt>. (5.56)

f(x) (01 n / ' u,(z,t)g(t)r(t)dt)

Now let us choose ¢; = 0. Then f(a) = cu_(a) and f'(a) = cu’_(a)

(where ¢ = %) So choosing u_(z,z) such that BCy(u_(z)) = 0,
we infer BC,(f) = 0. Similarly, choosing co = 0 and uy(z,x) such that

BCy(u4+(2)) = 0, we infer BCy(f) = 0. But can we always do this? Well,
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using the initial conditions

u_(z,a) =sin(a), pla)u’(z,a) = cos(a),

ui(5,b) = sin(B), p(bty (2,5) = cos(B),
we have two solutions of the required type except for the fact that the
Wronskian W (u4(z),u—(z)) might vanish. Now what is so special about
the zeros of this Wronskian? Since W (uy(z),u—(z)) = 0 implies that u(z)
and u_(z) are linearly dependent, this implies that uy(z,2) = cu_(z,x).
Hence BC,(u4(z)) = ¢BCy(u—_(z)) = 0 shows that z is an eigenvalue with
corresponding eigenfunction uy(z). In particular, z must be real, since L is
symmetric. Moreover, since W (u4(z),u—(z)) is analytic in C by Lemma 5.7,
the zeros must be discrete.

(5.57)

Let us introduce the operator (the resolvent of L)

/ Gz, 2. 0)g(t) r()dt, (5.58)

where

W(ug(z),u ug(z, )u_(z,z), =<t

is called the Green function of L. Note that G(z,x,y) is meromorphic
with respect to z € C with poles precisely at the zeros of W(uy(z),u_(2))
and satisfies G(z, z,t)* = G(z*, z,t) (Problem 5.19) respectively G(z, z,t) =
G(z,t,z). Then, by construction we have R (z) : 9 — D(L) and

(L=2)Rr(2)g=y9g, Rr(z)(L—-=2)f=/f g€, feDL). (5.60)
In other words, Ry (z) is the inverse of L — z. Our next lemma shows that
Rp(z) is compact.

Gz, a,t) = ! ) {“+(”Z’$)“(’z’t>’ vzt (5.59)

Lemma 5.8. The operator Ry (z) is compact. In addition, for z € R it is
also symmetric.

Proof. Fix z and note that G(z, ., ..) is continuous on [a, b] X [a, b] and hence
uniformly continuous. In particular, for every e > 0 we can find a § > 0 such
that |G(z,y,t) — G(z,z,t)| < e whenever |y—z| < 4. Let g(x) = Rr(2) f(z).
Then

b
|mm—g@ﬂs/ﬁG@w¢w4%aawHﬂMrmﬁ

<a/!f (t)dt < el|1]| | £1]

whenever |y — z| < §. Hence, if f,(x) is a bounded sequence in o, then
gn(z) = Rp(z) fn(zx) is equicontinuous and has a uniformly convergent sub-
sequence by the Arzela-Ascoli theorem (Theorem 2.17). But a uniformly
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convergent sequence is also convergent in the norm induced by the scalar
product since

I/l < Vb —a sup [f(z)].

z€la,b]
Therefore Ry (z) is compact.
If A € R, we have G(\,t,2)* = G(A\*,z,t) = G(\ x,t) from which
symmetry of Ry (\) follows. O

As a consequence we can apply Theorem 5.6 to obtain

Theorem 5.9. The reqular Sturm—Liouville problem has a countable number
of discrete and simple eigenvalues E, which accumulate only at co. The
corresponding normalized eigenfunctions w, form an orthonormal basis for
o, that is, every f € Ho can be written as

F@) =" (un, fHun(). (5.61)
n=0

Moreover, for f € ®(L) this series is uniformly convergent.

Proof. Pick a value A € R such that Ry () exists. By Theorem 5.6 there are
eigenvalues ay, of Rp(\) with corresponding eigenfunctions u,. Moreover,
Rr(Mun, = anu, is equivalent to Lu, = (A + ﬁ)un, which shows that
E,=\+ i are eigenvalues of L with corresponding eigenfunctions u,,.

Hence the first two claims follow from Theorem 5.6 (note that Ran(Ry) =
D (L) is dense) except that the eigenvalues are simple. To show this, observe
that if u, and v, are two different eigenfunctions corresponding to F,, then
BCy(uy) = BCy(v,) = 0 implies Wy (up,v,) = 0 and hence u,, and v,, are
linearly dependent.

To show that (5.61) converges uniformly if f € ©(L) we begin by writing
f=RL(N)g, g € Ho, implying

Z(un,f>un(:r) - Zan<umg>un($)
n=0 n=0

Moreover, the Cauchy—Schwarz inequality shows

n

2
> agtug,g)ui()] < 37 )* D g ()],

j=m

Now, by (5.30), > 72, |(uj, g)|> = ||lg||* and hence the first term is part of a
convergent series. Similarly, the second term can be estimated independent
of z since

b
antn(x) = Rp(Nup(x) = / G\, z, t)u, (t)r(t)dt = (up, G(A\, x,.))
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implies
n o b
D lagui@)P <Y g, GO, )P = / |G\, @, 0)[*r(t)dt
j=m 7=0 a

again by (5.30). O

It looks like Theorem 5.9 answers all our questions concerning Sturm-—
Liouville problems. Unfortunately this is not true since the assumptions
we have imposed on the coefficients are often too restrictive to be of real
practical use! First of all, as noted earlier, it suffices to assume that r(x),
p(x)~L, g(x) are integrable over I. However, this is a minor point. The more
important one is, that in most cases at least one of the coefficients will have
a (non integrable) singularity at one of the endpoints or the interval might
be infinite. For example, the Legendre equation (Problem 4.14) appears on
the interval I = (—1,1), over which p(z)~! = (1 — 22)~! is not integrable.

In such a situation, the solutions might no longer be extensible to the
boundary points and the boundary condition (5.52) makes no sense. How-
ever, in this case it is still possible to find two solutions u_(zg, x), u4 (20, )
(at least for zyp € C\R) which are square integrable near a, b and satisfy
limg o We(u—(20)",u—(20)) = 0, limg Wa(us(20)*u+(20)) = 0, respec-
tively. Introducing the boundary conditions

BCu(f) = limga Wa(u—(20),f) =0
BCb(f) = limm W$(u+(zo),f) =0

one obtains again a symmetric operator. The inverse Ry, (z) can be computed
as before, however, the solutions u (z,x) might not exist for z € R and they
might not be analytic in the entire complex plane.

It can be shown that Lemma 5.8 (and thus Theorem 5.9) still holds if

(5.62)

b rb
/ / |G (z, z,y)*r(z)r(y) de dy < co. (5.63)

This can be done for example in the case of Legendre’s equation using the
explicit behavior of solutions near the singular points +1, which follows from
the Frobenius method.

However, even for such simple cases as r(z) = p(x) = 1, g(z) = 0 on
I =R, this generalization is still not good enough! In fact, it is not hard to
see that there are no eigenfunctions at all in this case. For the investigation
of such problems a sound background in measure theory and functional
analysis is necessary and hence this is way beyond our scope. I just remark
that a similar result holds if the eigenfunction expansion is replaced by an
integral transform with respect to a Borel measure. For example, in the case
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r(z) =p(x) =1, ¢(x) =0 on I =R one is lead to the Fourier transform on
R.

Problem 5.15. Show directly that L = —dd2 on I = (0,7) with Dirichlet

dz?
boundary conditions is unbounded. (Hint: Consider f(x) = sin(nz).)

Problem 5.16. Show that ©(L) is a linear subspace invariant under com-
plex conjugation.

Problem 5.17. Show that the set of twice differentiable functions with com-
pact support C2(I) is dense in $9. (Hint: Show that every continuous func-
tion can be approximated by a piecewise polynomial function.)

Problem 5.18. Show that if f and g both satisfy BC,(f) = BCq(g) = 0,
then Wy (f,g) = 0.

Problem 5.19. Show uy(z,x)* = ug(z*, x).
Problem 5.20 (Periodic boundary conditions). Show that L defined on
D(L) = {f € C*([a,],C)|f(a) = f(b),p(a)f'(a) = p(b) f'(B)}  (5.64)

18 symmetric.

5.5. Oscillation theory

In this section we want to gain further insight by looking at the zeros of the
eigenfunctions of a Sturm-Liouville equation.

Let u and v be arbitrary (nonzero) solutions of Lu = Aou and Lv = Av
for some Ag, A € C. Then we have

W' (u,v) = (Mg — \)ruw, (5.65)

or equivalently for ¢,d € I
d
Wa(u,v) — We(u,v) = (Ao — )\)/ u(t)v(t) r(t)dt. (5.66)
c

To gain a better understanding we now introduce Priifer variables
defined by

w(@) = pu(z) sin(Bu(z)),  p(@)u'(z) = pu(@) cos(Bu()). (5.67)
If (u(z),p(x)u'(x)) is never (0,0) and u is differentiable, then
pu(e) = Vu(2)? + (p(x)u/ (x))? (5.68)
is positive and
0, (x) = arctan( u(z) ) = arccot(zM) (5.69)

p(x)u! (z) u(z)
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is uniquely determined once a value of 6,(z¢) is chosen by requiring 6,, to
be continuous.

That u satisfies Lu = Au is now equivalent to the system (Problem 5.21)

cos(6,)?

0, = » + (A\r—q) sin(&u)Q,
1 sin(26,,
Pu = Pu (5 +q—Ar) (2 ) (5.70)

By an easy super solution argument we see (Problem 5.22)

Lemma 5.10. Let L;, j = 0,1, be two operators associated with p;, q;, ;
and let uj be solutions of Lju; = Aju;. Suppose p1 < po and Aoro — qo <
A1 —q1-

If 04,(c) > 0y,(c) for some ¢ € (a,b), then O,,(x) > O, (x) for all
x € (¢,b). If the first inequality is strict, so is the second.

Moreover, if 0y, (c) = 0u,(c) for some c € (a,b) and 0y, (d) = 0,,(d) for
some d € (¢,b), then p1 = pg and Aoro — qo = \ir1 — q1 on (¢, d).

In addition, notice that
We(u,v) = pu()py(x) sin(fy(z) — 0,(x)). (5.71)
Thus,

Lemma 5.11. Suppose (u,pu’) and (v,pv’) are never (0,0). Then u(xg) is
zero if and only if 0,(zo) = 0 mod 7 and Wy, (u,v) is zero if and only if
0u(xo) = 0y(zp) mod 7.

In linking Priifer variables to the number of zeros of u, an important
role is played by the observation that 6, (z¢o) =0 mod 7 implies

i 0 o SO eos(0,(a0)
ToT0 T — X T—T0 T — X p(ﬂ?o)
(5.72)
and hence we have
. sin(0y(x)) B cos (0, (o))
xlggo r—w0 ~ plwo) (5.73)
Using sin(6,(x)) = cos(0, (o)) sin(fy(x) — 0y (x0)) we further see
b m sin(fy(x) — 0y (o))
p(xg) =m0 x — 1z
~ im sin(0y(z) — 0y (x0)) Ou(z) — Oy (x0)
z—=zo  Gy(x) — Oy(x0) T — 1z
_ i 2u(®) = ulz0) (5.74)

T—T0 T — X0
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The same result also follows from (5.70), but the present proof does not
require that u is a solution of our differential equation.
So we have proven
Lemma 5.12. If u is any C' function obeying (u(x),p(x)u’'(z)) # (0,0) on
(a,b), then if 6,(xp) =0 mod T,
0 -0 1
lim 20l = bulwo) _ . (5.75)

T—T0 T — X0 P(%)

In exactly the same way, we have
Lemma 5.13. Let A\g < A1 and let u,v solve Lu = Agu, Lv = \v. Introduce
Ayp(x) = 0y(z) — Oy(z). (5.76)
Then, if Ayy(x0) =0 mod 7 but 0, (z9) 0 mod T,
lim Au,v(x) - Au,v (370)

T—T0 r — X
And if Ay »(zo) =0 mod 7 but 0,(x9) =0 mod m,
i Au,v(x) - Au,v(xO) o (>\1 - )\0)7“(13())
im —
=0 (x — )3 3p(xp)?
Proof. If A, ,(20) =0 mod 7 and 6,(x0) # 0 mod =, then (from (5.71))
lim pu(®)py(T) sin(Ay (7))

T—TQ T — X

= (A1 — Xo)r(zo) sin(fy(x0))? > 0. (5.77)

> 0. (5.78)

= —W;O (u,v)

implies the first assertion. If A, ,(x0) =0 mod 7 and 0, (zg) = 6,(z9) =0
mod 7, then (using de I'Hospital and again (5.71))

i pu()po() Sin(Au,v(x)) T ~W, (u,v)
im = A ANl A
z—x0 (x — x0)3 z—zo 3(x — 20)?
_ (M1 = do)r(@o)pu(@o)pu(zo) | - sin(Gu(z)) sin(6y(z))
= im
3 T—a0 (x — x0)?
and the result follows using (5.73). (]

Or, put differently, the last two lemmas imply that the integer parts of
0y (x)/m and A, ,(z)/7 are increasing.

Lemma 5.14. Let \g < A1 and let u,v solve Lu = \gu, Lv = A\jv. Denote
by #(u,v) the number of zeros of W(u,v) inside the interval (a,b). Then

#(u,v) = [Auw(0) /7] — [Aup(a)/7] — 1, (5.79)
where |x| = max{n € Z|n < x}, [z] = min{n € Z|n > x} denote the floor,
ceiling functions, respectively. Moreover, let #(u) be the number of zeros of
u inside (a,b). Then

#(u) = [0u(b)/7] = [Ou(a)/m] —1. (5.80)



144 5. Boundary value problems

Proof. We start with an interval [z¢,z1] containing no zeros of W(u,v).
Hence |Ayy(z0)/m| = [Ayy(z1)/m]. Now let xg | a, 1 T b and use
Lemma 5.11 and Lemma 5.13. The second assertion is proven similar. [J

Now we come to Sturm’s comparison theorem.

Theorem 5.15 (Sturm). Let L;, j = 0,1, be two operators associated with
Dj, qj, r; and let u; be solutions of Lju; = Ajuj. Suppose p1 < po and
Aoro —qo < M1 — @i

If at each end of (¢,d) C (a,b) either W(ui,up) = 0 or up = 0, then
uy must vanish in (¢, d) unless up and ug are equal up to a constant. (The
latter case can only happen if Lo — Ao = L1 — A\1.)

Proof. Without loss (and perhaps after flipping signs of up and u;) we
can assume 0y,(c), 0y, (c) € [0,7). Since by assumption either 6,,(c) = 0
or 0y,(c) = 6y,(c), we have 0,,(c) < 6,,(c). Hence Lemma 5.10 implies
Ouo(d) < 0y,(d). Now either 6,,(d) = 0 mod m and thus 7 < 6,,(d) <
0, (d) or Huo( ) = 6y, (d) mod 7 and hence 7 < 0,,(d) + 7 < 6y, (d) unless
o (d) = 0y, (d), which can only happen if Lo — Ao = L1 — A;. O

U

Up to this point u was essentially arbitrary. Now we will take u(x) =
ux (A, ), the solutions defined in (5.57), and investigate the dependence of
the corresponding Priifer angle on the parameter A € R. As a preparation
we show

Lemma 5.16. Let A € R. Then

| 2 O 07 r (0
Wa(usx(A), (A 5.81
(ﬂ:()i()){fu r(t)dt, (5.81)
where the dot denotes a derivative with respect to .
Proof. From (5.66) we know
b -
~ ~ ur (A Huy (N, 1) r(t)dt,
Walus (0, us (1) = (- ) o D (B D7)
— [T u_ (N u_ (A ) r(t)de.
Now use this to evaluate the limit
. ur(N) —uz())
lim Wy (ug(N), ——————= ).
. (1 A=A )
O
Now, since by (5.69)
bulz) = — Velw ) (5.82)
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equation (5.81) immediately implies

: JPug (A1) r(t)dt

Tu_(\ )2 r(t)dt
0\, z) =— PROWOE Zf“ Q&) r(t)

<0, 6_(\ux) o Oa)?

>0,

(5.83)
where we have abbreviated p+ (A, z) = p,, (\)(7) and 0L (A, x) = 0, (1) (7).
Next let us choose

_(N\a)=acl0,7), —0+(\b)=m—p€l0,7) (5.84)
and since F04(.,z) > 0 is increasing, the limit
FOi(x)= :F,\lfinoo L\, z) >0 (5.85)
exists. In fact, the following lemma holds.
Lemma 5.17. We have
0y(x) =0, x € [a,b), 0_(x) =0, x € (a,b)]. (5.86)

Proof. We only do the proof for _(x). Fix 2y € (a,b] and consider w(z) =
T — (7 — ) ;=% for £ > 0 small. Then, for sufficiently small A, we have

1cos(w)2 — (g — N sin(w)? < 11) — (g —N)sin(e)? < w’

p
for x € [a, xo] which shows that w is a super solution. Hence by Lemma 1.1
we infer 0 < 0_(xp) < e for any ¢. O

Now observe that u_(\) is an eigenfunction if and only if it satisfies the
boundary condition at b, that is, if and only if 6_(A\,b) = f mod w. This
shows that u_(\) can eventually no longer satisfy the boundary condition
at b as A — —oo. Hence there is a lowest eigenvalue Fy and we note

Lemma 5.18. The eigenvalues of a regular Sturm—Liouville problem can be
ordered according to By < Ep < ---.

Moreover, observe that we have

0_(E,,b)=0+nm, Be€0,n], 0 (E,a)=a—(n+1)m «acl0,nr).

(5.87)
After these preparations we can now easily establish several beautiful and
important results.

Theorem 5.19. Suppose L has a Dirichlet boundary condition at b (i.e.,
u(b) =0). Then we have

#(—oo) (L) = #(u—(X)), (5.88)
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where #f(u) is the number of zeros of u inside (a,b) and #x,.x,)(L) is the
number of eigenvalues of L inside (Ao, A\1). Likewise, suppose L has a Dirich-
let boundary condition at a. Then we have

#(—oon) (L) = #(ur(N)). (5.89)

Proof. For A small, u_(\) has no zeros by Lemma 5.17. Hence the result
holds for small A. As X increases, §_ (A, b) increases and is 0 mod 7 if and
only if A is an eigenvalue of L (Lemma 5.11) completing the proof. O

The same proof together with Sturm’s comparison theorem (Theorem 5.15)
shows

Theorem 5.20. Suppose the eigenvalues are ordered according to Ey <
Ey < ---. Then the eigenfunction u, corresponding to E, has precisely n
zeros in the interval (a,b) and the zeros of uny1 interlace the zeros of uy.
That is, if xy, ; are the zeros of uy inside (a,b), then

4 < Tnt+11 < Tpl < Tpt12 < < Tptintl < b. (5.90)

In precisely the same way one proves
Theorem 5.21. We have for \g < A\

#non) (L) = #(u—(No), u+ (A1) = #(ut(Xo), u—(M)), (5.91)
where #(u,v) is the number of zeros of W (u,v) inside (a,b) and #f(x, x,)(L)
is the number of eigenvalues of L inside (Ag, \1).

Proof. We only carry out the proof for the #(u—(Xo), u4+(A1)) case. Ab-
breviate A(A1,7) = Ay_(ag)up(r) (7). Since the Wronskian is constant for
A1 = A, our claim holds for A\; close to A\g. Moreover, since A(\,b) = 5 —
©_ (Ao, b) is independent of A1, it suffices to look at A(\1, a) by Lemma 5.14.
As A\ > )\ increases, —A(A1,a) increases by (5.83) and is 0 mod 7 if and
only if A\; is an eigenvalue of L (Lemma 5.11) completing the proof. ([

Finally, we note that given a positive function h one can modify the
Priifer variables according to

u(x) = ﬁuh(z;)) sin(0,(x)), p(x)u (z) = V/h(z)pu(z) cos(By(z)). (5.92)

That is, they are the Priifer variables for (1/h(z)u(x), p(z)u'(z)/+/h(z)) and
hence have the same properties. In particular,

pu(@) = Vh(z)u(@)? + h(z) =} (p(x)u ()2 (5.93)

is positive and

; h(z)u(z) pl@)u'(z)

Oy (x) = arctan(m) = arccot(i ) (5.94)
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is uniquely determined once a value of éu(xo) is chosen by requiring 6, to
be continuous. In the special case h = 1 we recover our original Priifer
variables, and since the modified Priifer angle equals the original one at
every zero of u as well as at every zero of «/, they can differ by at most 7 /2:

20,
Suy . 5.95
122 = 12 (5.95)
That u satisfies Lu = Au is now equivalent to the system
B h —1h2 _ - - K
0, = - W sin(f.)? + sin(26,) -
—172 /
g . (PR tqg—Ar ~ i
Py = Pu (2h sin(26,,) + Cos(20u)2h . (5.96)

Making appropriate choices for h one can read off the asymptotic behavior
of 8,,.

Lemma 5.22. Suppose pr € C1. Then the Priifer angles 0+ (\, ) satisfy

e(A,x)zﬁ/j,/;gdHou), L\ ) \f/,/ idt+0
(5.97)

as A — 0.

Proof. We only consider the case of 6_. Without loss of generality we can
replace the original Priifer angles by modified ones with h(z) = \/Ar(z)p(x)
(assuming A > 0). Then the differential equation for §_ reads

= r__4¢ sin(6_)2 + sin(26 (pr)’
‘ﬁ\/; v

and the claim follows after integrating both sides observing [sin(f)| < 1. O

As a simple corollary we now obtain from (5.87) a famous result of Weyl:

Theorem 5.23 (Weyl asymptotics). Suppose pr € C'. Then the eigenval-

ues satisfy ,
NN AT
( / p(t)dt> +0(n). (5.98)

For another application of the modified Priifer transformation to obtain
asymptotics for large x see Problem 5.26

Problem 5.21. Prove equation (5.70).
Problem 5.22. Prove Lemma 5.10. (Hint: Lemma 1.1.)
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Problem 5.23. Consider the equation —u” + qu = 0 and suppose qy <
q(z) < q1 < 0. Show that for two consecutive zeros xy, and xy41 of u(z) we
have
T T
< xpy1 — o < .
—q0 —q1
Problem 5.24. Suppose that q(x) > 0 and let —(pu')’ + qu = 0. Show that
at two consecutive zeros xy, and Ty of u’(a:) we have

u(z)| < [u(zen)l  if (pg) 2 0.

Hint: Consider
1
2 "2
u® — —(pu')*.
pq

Problem 5.25. Consider the ordered eigenvalues E, (o) of our Sturm-
Liouville problem as a function of the boundary parameter a. Show that
the eigenvalues corresponding to different parameters are interlacing. That

is, suppose 0 < ap < ag < 7 and show E,(a1) < Ep(az) < Epyi(ar).
Problem 5.26. Show that solutions of the Bessel equation (4.49) have the

asymptotics

sin(x —v?) cos(z
)= (B0 (A slot) o)

21/2 213/2
cos(x +b)  (1/4 —v?)sin(x + b) _5/2
u/(z) = < pvo e Y +0(x™?) ).

(Hint: Show that after the transformation v(x) = y/zu(x) the Bessel equa-
tion reads (cf. Problem 4.13)

1/4 —v?
T
Now use a modified Prifer transform with h(x) = \/—q(x) (set p(z) = 1,
r(z) = 0) and verify

—v"(x) +q(x)o(x) =0,  q(z)=-1

1/4— 17 ()

O,(2) =1+~ 5—+0@"),

as x — 00.)

5.6. Periodic Sturm—Liouville equations

We will now suppose that r(z), p(x), and g(x) are ¢-periodic functions.
Denote by

B c(z,x,x0) s(z,z,xp)
R E it ) I L0
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the principal matrix solution of (5.42). Here ¢(z,z,x0) and s(z,z,x0) is a
fundamental system of solutions of (5.41) corresponding to the initial condi-
tions ¢(z, zo,xo) = p(x0)s' (2, z0,x0) = 1, s(z,20,20) = p(x0) (2,20, 70) =
0. Since the base point will not play an important role we will just set it
equal to xp = 0 and write ¢(z,z) = ¢(z,z,0), s(z,z) = s(z,z,0).

In Section 3.6 we have introduced the monodromy matrix M(z) =
II(z, 29 4+ £, zp) and its eigenvalues, the Floquet multipliers,

pi(2) = AG) £ VAGE -1,  pi(ep () = 1. (5.100)
We will choose the branch of the square root such that |p4(z)| < 1. Here
the Floquet discriminant is given by

_ tr(M(z))  c(z,0) + p(0)s'(z,£)

A = 5.101
() = 2 4 , (5.101)
Moreover, we have found two solutions

us(z,x) = c(z,x) + me(z)s(z,x), (5.102)

the Floquet solutions, satisfying

(P(z)j;z&f,)fﬁ = r=(2) (p(g)iu(’f(g,)o)> = r£(2) <mﬁ:1(2’)> - (5.103)

pi(z)ic(zaf) 5(276)

mx(z) = P ) Ry po T pay ) (5.104)
are the Weyl m-functions. Note that at a point z with s(z,¢) = 0, the
functions m (z) and hence uy(z,x) is not well defined. This is due to our
normalization u(z,0) = 1 which is not possible if the first component of

the eigenvector of the monodromy matrix vanishes.

Here

The Wronskian of uy and u_ is given by

WU (=), s (2)) = mes (=) — m_(2) = QA((L)” (5.105)

and hence they are linearly independent if A(z) # +1. If A(z) = £1 both
functions are clearly equal.

The functions uL (z, x) are exponentially decaying as z — +o0 if [p4(2)] <
1, that is, |A(2)| > 1, and are bounded if |p4(z)| = 1, that is, |A(2)] < 1.
The stability set
E={ eR||AN)| <1} (5.106)
is also called the spectrum. Our goal is to understand the stability set. A
critical role is given by the points with A(\) = £1 which are precisely the
spectra of the periodic L, and antiperiodic L_ operators associated
with (5.41) and the following domains

D(Lx) = {f € C*([0,4],C)|f(€) = ££(0),p(¢) f'(£) = £p(0)f'(0)}. (5.107)
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Theorem 5.24. The spectrum of Ly is given by
o(Ly)={XeR|AN) ==£1} (5.108)

and consist of a sequence of real eigenvalues with no finite accumulation
point.

Proof. By definition of the boundary conditions for © (L. ) we see that z €
C is an eigenvalue of Ly if and only if £1 is an eigenvalue of the monodromy
matrix, that is, if and only if A(z) = £1. As in Section 5.4 one can show
that Ly is a symmetric operator with compact resolvent (Problem 5.27) and
hence the claim follows. ([

Note that an eigenvalue of L.y is simple if the monodromy matrix has
just one eigenvector and twice degenerate if the monodromy matrix has two
linearly independent eigenvectors.

First of all note, that there are no eigenvalue of L1 below some Ag.
Lemma 5.25. We have A(X\) > 1 for A < Ao, where

Ao = min @ (5.109)
z€(0,) r(z)

Proof. Let A < Ag. Then ¢—Ar > 0 and any solution u of (5.41) with z = A
satisfies (pu’)’ = ¢ — Ar > 0. Hence pu’ is increasing, that is, p(z)u/(z) >
p(0)u’(0) for > 0. Moreover, if p(0)u/(0) > 0, then w is also increasing,
that is, u(x) > w(0) for x > 0. In particular, ¢c(\,z) > ¢(X,0) = 1 and
p(z)s' (A, z) > p(0)s’(A,0) =1 for z > 0. O

To investigate the derivative of A(z) at a point where A(z) = £1 we
first derive a practical formula for A(z).
Lemma 5.26. We have
s(z,0)

l
Az) = — 2/0 ut(z,)u_(z,z)r(z)dr

1 l
5 [ (OG0 2 + (a0~ (OS2, )z, 2)elz,2)
0
—s(z,0)c(z, x)Q)r(x)dx, (5.110)
where the dot denotes a derivative with respect to z.

Proof. Let u(z,z), v(z,x) be two solutions of Tu = zu, which are smooth.
Then integrating (5.66) with u = u(zp) and v = v(z), dividing by 2o — z and
taking zg — z gives

l
Wi(u(z),v(z)) — Wo(u(z),v(2)) = /0 u(z, t)v(z, t)r(t)dt. (5.111)
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(Use constancy of the Wronskian Wy(u(z),v(z)) — Wp(u(z),v(z)) = 0 to
see that the left-hand side is in fact a differential quotient). Now choose
u(z) = us(z) and v(z) = u_(z) and evaluate the Wronskians

We(ig (2), u—(2)) = Wo(iy (2),v-(2)) = p1-(2)p- (2)W (u4(2), u—(2))
A(z)
= —WW(U—(ZLM(Z))
to obtain the first formula. The second follows using (5.102) plus constancy
of the Wronskian ¢(z, £)p(£)s'(z,£) — p(£) (z,€)s(z,£) = 1. O

Corollary 5.27. For A € ¥ we have
. WO
A = _“‘“’(2)/ lus O\, ) 2r(2)de, (5.112)
0
which is nonzero in the interior of X.

Proof. For A € ¥ we have p_(\) = p4 () and consequently also u_(\, z) =
ut (A, z). Moreover, if s(A,¢) = 0, then s(\,z) is a Floquet solution corre-
sponding to the real-valued multiplier s'(\,¢). Hence s(\, ) cannot vanish
in the interior of ¥ since both Floquet multipliers are non-real there. O

Lemma 5.28. At a point E € R with A(E) = +1 we have A(E) = 0 if
and only if s(E,£) = p(£)d(E,l) = 0, that is, if and only if M(E) = +I.
Moreover, in this case we have A(E)A(E) < 0.

Proof. We will not display z for notational convenience. Using ¢(£)p(£)s’(¢)—
p()d (£)s(z,0) = 1 we see

Az = (AOEPOSOY $'(€) + p(0)c ()s(2, )

= (C )2 +p(l )s(£).

Hence at a point z = F Wlth A(FE) = £+1 we have
(2O _ e 0ys(o)

Hence if s(E,£) = p(£)¢/(E,£) = 0, then (5.110) shows A(E) = 0.

Conversely, suppose A(E) = +1 and A(E) = 0 but s(E, ) # 0. Then
we can multiply (5.110) by s(E,¢) to obtain

0= /Of (s(f)c(m) + WS($))2r(m’)dw.

This implies that the integrand is 0 and since s(z) and c¢(x) are linearly inde-

pendent, we must have s(¢) = w = 0 contradicting our assumption.
Similarly, multiplying (5.110) by p(¢)c'(E, £) we see that p(¢)c(E,f) =

2
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Now differentiating (5.110) and evaluating at point z = E with M (E) =
=£I shows

.. £
A=y /O (PO (O)s(@)? + (e(0) = p(0)3 (D) s(w)e()

- S(Z)c(x)Q)r(x)dx.

Furthermore, choosing u = v = s in (5.111) shows

4
Wi, s) = /O 5(2)2r (2)dz (5.113)

and by s(¢) =0, s'(£) = £1 we have

Similarly, we obtain

L l
p(0)e (0) = $/0 c(x)*r(z)dz, &) = —p(0)s' (L) = i/o s(x)e(x)r(z)de.

Hence
Y4

AA = </0€s(x)c(x)r(x)daz)2 - </0€5(1;)2r(x)dx) (/0 c(gg)2r(:n)dm)

and since equality in the Cauchy—Schwarz inequality can only occur if ¢(x)
and s(x) were linearly dependent, the right-hand side is strictly negative. O

In summary, these results establish the following behaviour of A(z):
By Lemma 5.25 A(X) will first hit +1 at some point Ey. At this point
we must have A(E) < 0. In fact, A(E) = 0 would imply A(E) < 0 by
Lemma 5.28, contradicting the fact that we intersect the line 4+1 from above.
By Corollary 5.27 A()A) cannot turn around until it hits —1 at some point

E, > Ey. Now it can either cross (A(E1) < 0) or turn around (A(E;) = 0,
A(Ey) > 0). In the first case it will hit —1 again at some later point Fs,
in the latter case we can just set Fo = E; (in this case Ej = Ey is a twice
degenerate eigenvalue of L_). Since there is an infinite number of periodic
(antiperiodic) eigenvalues (Problem 5.27), this process can never stop and

we obtain:

Theorem 5.29. There is a sequence of real numbers
Fo<Ei1<Ey<E3<Ey--- (5114)

tending to co such that

o0

S = |J[Ean, Banyal. (5.115)

n=0
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Moreover,
U(L+)Z{E0<E3SE4<E7§E8<--'} (5.116)

and
O'(L,) :{El < By < Es<Eg< } (5117)
That is, the spectrum consist of an infinite sequence of bands, some
of which might touch. In fact, if ¢ = 0 we get A(z) = cos(y/z) and all
bands touch, so ¥ = [0,00). A prototypical discriminant is depicted below.

A@2)
15¢

There are even further connections with the spectra of the operators
associated with (5.41) and the domains

D(La) = {f € C*([0,4],C)| cos(a) f(0) — sin(a)p(0) f'(0) =
cos() f(£) —sin(a)p(d) f'(¢) = 0}.  (5.118)
As a preparation we show

Lemma 5.30. We have
+o0
my(z) = —/ us(z,z)?r(x)dz, z € C\X. (5.119)
0

Proof. Choose u = uy(2p), v = ug(z) in (5.66) and let ¢ = 0 respectively

d — Fo0:

+oo
—Wo(u+(z0),ux(20)) = (20 — z)/o u+ (20, x)us (2, z)r(z)de.

now divide by z — z,

Wo(ux(20), ux(2)) = Wo(ui(zz()) = Zi(Z)’ui(z))

+oo
= _/o ux (20, 2)us(z, z)r(r)de,

zZ0 — %

and let zg — z,
+oo
Wo (s (2),us(2)) = —/ ut(z,z)r(z)dz.
0

Now Wy (t4+(2),ut(2z)) = rma(z) finishes the proof.
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Theorem 5.31. Denote the spectrum of Ly, o € [0,7), by
0(La) = {o(a) <M(a) <}, a#0 (5.120)

and

o(Lo) = {A1(0) < A2(0) < --- }. (5.121)
Then there is a one-to-one correspondence between (—oo, Eo| and e (g x) Ao(c)
respectively [Eoj_1, Eoj] and UaE[O,Tr) Aj(a) for j € N with Eyj_1 < Eoj;. If
Esj_1 = Ey; we have \j(a) = Eqj_1 = Eyj for all a € [0, ).

Proof. First of all note that A € o(Ly) if and only if m4 (\) = cot(a) or
m_(A) = cot(a) since the corresponding eigenfunction will give rise to an
eigenvector of the monodromy matrix and vice versa.

Hence it suffices to show that m_(\) and m4()\) traverse all values
in RU {oco} when X runs from Ey;j_; to Ey;. Essentially this follows from
monotonicity of m4 (\) in these regions (Lemma 5.30) plus the fact that they
must be equal at the boundary points. While this looks like a contradiction
at first sight (if both start at the same point and one is increasing, one is
decreasing, they can never meet again), it turns out to be none since my
can (and will) have poles! In fact, by (5.113) we see that at a point z =
with s(u, x) = 0 we have

1 ¢ )
$(pee) = s [ sttt 0
3'(/% .%') 0
and thus m4 () has a simple pole at z = p € (Egj_1, Ea;).
The prototypical situation is depicted below.

20[

100 /

e y—

ol }

N

20 [ |
|

Our aim is to prove that the picture always look like this.

We start with A € (—oo, Ep). For A < \g the proof of Lemma 5.25 shows
that s(A,¢) > 0 and hence m_(\) < m4(A). Now as A increases, m_(\)
increases and my(\) decreases. Since they cannot cross before A = Ejy
(by linear independence of u4 (A, z) and u_ (A, z)), they will meet precisely
at A = Ep. To see that my(A\) — £oo as A — —oo one observes that
m4(A) = cot(6+(A,0)), where 64 (A, ) is the Priifer angle of ug (A, x). As
in the proof of Lemma 5.17 one shows that 64 ()\, x) converges to a multiple
of 7 and this finishes the case A € (—o0, Ep).
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If Eyj_1 = Es; all solutions are (anti)periodic and hence any solution
satisfying the boundary condition at 0, also satisfies the same boundary at
¢. In other words, \j(a) = Eqj_1 = Ey; for all a € [0, ).

If A\ € (Egj—1,Fy;) there are two cases, either m_(\) < mq(\) (if
s(A\,€) > 0) or m_(\) < my(A) (if s(A\,€) < 0). The case s(A\,¢) = 0
can always be avoided by moving A a little. We only do the first case
m_(\) < m4(\), since the second is completely analogous. As A increases,
m—(A) increases and m4 () decreases, and both will hit at Ey;. As X de-
creases, m_(\) decreases and m4 (\) increases. Now if there is no pole in
(E2j—1,A), they cannot meet at a finite value m_(Ey;j—1) = m4(Ea;j—1) and
thus m4 (Eaj—1) = 0o, that is s(Ea;j—1,¢) = 0. Otherwise there is a pole of
one of them (they cannot both have a pole since in such a case would give
rise to two linearly independent eigenfunctions of Ly, but the eigenvalues of
Ly are simple) and after this pole we have m_ > m_,. Since they cannot
cross, there cannot be another pole and they mast hit at some finite value
at Egj_l. O

As a simple consequence we obtain

Theorem 5.32. The lowest periodic eigenvalue Eq is simple and the corre-
sponding eigenfunction u(Ey,z) has no zeros. The antiperiodic eigenfunc-
tions w(Eyj—3,xz), u(E4j—2,x) have 2j — 1 zeros in [0,£) and the periodic
eigenfunctions w(Ey;—1,x), w(Eyj, x) have 2j zeros in [0, 7).

Proof. First of all note that a periodic eigenfunction must have an even
number of zeros and an antiperiodic eigenfunction must have an odd number
of zeros (why?). Moreover, by Theorem 5.19 the eigenfunction corresponding
to A;(0) has precisely j — 1 zeros.

Sturm’s comparison theorem (Theorem 5.15) implies that any solution
u(A, z) with X;(0) < XA < Xj11(0) has at least j — 1 and at most j zeros.
Since Aj(0) < Egj—1 < Ez; < Xj11(0) the claim on the number of zeros
follows.

If Ey is twice degenerate, we could take a linear combination of two
linearly independent eigenfunctions, to obtain an eigenfunction which van-
ishes at 0. By periodicity this function must also vanish at £. Hence it is an
eigenfunction of Lg implying A1 (0) = Ey contradicting Ey < E; < A(0). O

Problem 5.27 (Periodic and antiperiodic spectra).
(i) Show that Ly are symmetric.

(ii) Show that the corresponding Green function is given by

1 1
1xp.(2) > —\% + == u_(%, Y), <uw,
Gj:(Z, x, y) — { 1:Fp+gz) U+(Z .CU)U (Z y) 1:prsz)u (Z x)u.,.(z y) Y T

I;Ziz(z) UJF(Z’ .’L‘)U, (Z, y) + 1:,'0:;82(2) U— (27 x)qu(Z) y)7 Yy >
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Conclude that the periodic and antiperiodic eigenvalues form a se-
quence of real numbers which converge to co.

(iii) Show by example that the periodic, antiperiodic eigenvalues are not
necessarily simple. (Hint: r =p=1 and ¢ =0.)

Problem 5.28 (Reflection symmetry). Suppose q is periodic q(t+¢) = q(t)
and symmetric q(—x) = q(x) (and set r(x) = p(x) = 1). Prove

(i) c(z,—x) = c(z,2) and s(z,—x) = —s(z,x),

(i) c(z,x ££) = c(z,0)c(z,x) £ (2,0)s(z,x) and

s(zyx £ 0) = £s(2,0)c(z,x) + §'(2,0)s(z, x),

(iii) c(z,0) = $(z,0).
Problem 5.29. A simple quantum mechanical model for an electron in a
crystal leads to the investigation of

—u" + q(x)u = I, where q(x+1)=q(x).

The parameter A € R corresponds to the energy of the electron. Only energies
for which the equation is stable are allowed and hence the set ¥ = {\ €
R||A(N)| < 1} is called the spectrum of the crystal. Since A(X) is continuous
with respect to X\, the spectrum consists of bands with gaps in between.

Consider the explicit case
1 1
q(x) = q, O0<w<g, q(@) =0, ;<z<l

Show that there are no spectral bands below a certain value of A\. Show that
there is an infinite number of gaps if qo # 0. How many gaps are there for
qo = 07 (Hint: Set A\—qo — (a—¢)? and A — (a+¢)? in the expression for
A(N). If g9 — 0, where would you expect gaps to be? Choose these values
for a and look at the case a — 0.)
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Chapter 6

Dynamical systems

6.1. Dynamical systems

You can think of a dynamical system as the time evolution of some physical
system, such as the motion of a few planets under the influence of their
respective gravitational forces. Usually you want to know the fate of the
system for long times, for instance, will the planets eventually collide or will
the system persist for all times?

For some systems (e.g., just two planets) these questions are relatively
simple to answer since it turns out that the motion of the system is regular
and converges, for example, to an equilibrium.

However, many interesting systems are not that regular! In fact, it turns
out that for many systems even very close initial conditions might get spread
far apart in short times. For example, you probably have heard about the
motion of a butterfly which can produce a perturbance of the atmosphere
resulting in a thunderstorm a few weeks later.

We begin with the definition: A dynamical system is a semigroup GG
acting on a space M. That is, there is a map

T 2 nw o
such that
TyoTh =Tyon. (6.2)
If G is a group, we will speak of an invertible dynamical system.
We are mainly interested in discrete dynamical systems where
G=Ny or G=7Z (6.3)

159
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and in continuous dynamical systems where
G=R" or G=R. (6.4)

Of course this definition is quite abstract and so let us look at some examples
first.

Example. The prototypical example of a discrete dynamical system is an
iterated map. Let f map an interval I into itself and consider

T,=ft=fof"l=fo--.of, G = Ny. (6.5)
—_—
n times
Clearly, if f is invertible, so is the dynamical system if we extend this defi-
nition for n € Z in the usual way. You might suspect that such a system is
too simple to be of any interest. However, we will see that the contrary is

the case and that such simple systems bear a rich mathematical structure
with lots of unresolved problems. o

Example. The prototypical example of a continuous dynamical system is
the flow of an autonomous differential equation

T,=®, G=R, (6.6)

which we will consider in the following section. o

6.2. The flow of an autonomous equation

Now we will have a closer look at the solutions of an autonomous system
T = f(x), z(0) = xo. (6.7)

Throughout this section we will assume f € C*(M,R™), k > 1, where M is
an open subset of R"™.

Such a system can be regarded as a vector field on R"™. Solutions are
curves in M C R"™ which are tangent to this vector field at each point. Hence
to get a geometric idea of what the solutions look like, we can simply plot
the corresponding vector field.

Example. Using Mathematica the vector field of the mathematical pendu-
lum, f(z,y) = (y, —sin(z)), can be plotted as follows.

In[1]:= Needs[’VectorFieldPlots‘"|;

In[2]:= VectorFieldPlot[{y, —Sin[x|}, {x, —2m, 27}, {y, —5,5},
Frame — True,PlotPoints — 10|
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N e

out[2]= ° .

B e

— e e~

We will return to this example in Section 6.7. o

In particular, solutions of the IVP (6.7) are also called integral curves
or trajectories. We will say that ¢ is an integral curve at x if it satisfies

By Theorem 2.12 there is a (unique) maximal integral curve ¢, at
every point x, defined on a maximal interval I, = (T_(z), T} (x)).
Introducing the set
W= |JLx{z} CRxM (6.8)
zeM

we define the flow of our differential equation to be the map
oW — M, (t,x) — o(t,x), (6.9)

where ¢(t, x) is the maximal integral curve at . We will sometimes also use
O, (t) = (t,z) and Py(z) = O(t, x).

If ¢(.) is an integral curve at z, then ¢(. + s) is an integral curve at y =
¢(s). This defines a bijection between integral curves at x and y respectively.
Furthermore, it maps maximal integral curves to maximal integral curves
and we hence infer I, = s + I,. As a consequence, we note that for x € M
and s € I, we have

D(s+t,x) = P(t,P(s,x)) (6.10)

for all ¢ € Lp(&m) =1,—s.

Theorem 6.1. Suppose f € C*. For all x € M there exists an interval
I, C R containing 0 and a corresponding unique mazimal integral curve
®(.,x) € C¥(I,, M) at x. Moreover, the set W defined in (6.8) is open and
® € CF(W, M) is a (local) flow on M, that is,

®(0,2) = =,
D(s+t,x) = P, P(s,x)), x €M, s,t+sé€l,. (6.11)
Proof. It remains to show that T is open and ® € C*(W, M). Fix a point

(to,z0) € W (implying tg € I,) and set v = ®,, ([0, to]). By Theorem 2.10
there is an open neighborhood (—&(z),e(x)) x U(z) of (0,z) around each
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point € v such that ® is defined and C* on this neighborhood. Since ~ is
compact, finitely many of these neighborhoods cover {0} x v and hence we
can find an ¢ > 0 and an open neighborhood Uy of 7y such that @ is defined on
(—¢,€) x Up. Next, pick m € N so large that £ < ¢ such that K € C*(Up),
where K : Uy — M, K(z) = ®+. Furthermore, K/*1 € C¥(U;) for any
0 < j < m, where U; = K7(Upy) C Uy is open. Since z¢ = K*j(é(%to,xo))
we even have zg € Uj, that is, U; is nonempty. In particular,

O(t,z) = D(t — to, B(to, z)) = B(t — to, K™ ()

is defined and C* for all (¢,z) € (tg — &,to +¢€) X Up,. O

In particular, choosing s = —t respectively t = —s in (6.11) shows that
®y(.) = ®(t,.) is a local diffecomorphism with inverse ®_;(.). Note also that
if we replace f — —f, then ®(t,z) — ®(—t,x).

Example. Let M = R and f(x) = 2. Then W = {(¢,7)|2tz? < 1} and
O(t,x) = \/ﬁ T_(x) = —oo and Ty (z) = 1/(22?). o

A point z¢ with f(z¢) = 01is called a fixed point. Away from such points
all vector fields look locally the same.

Lemma 6.2 (Straightening out of vector fields). Suppose f(x¢) # 0. Then
there is a local coordinate transform y = o(x) such that & = f(x) is trans-
formed to

g =(1,0,...,0). (6.12)

Proof. It is no restriction to assume xy = 0. After a linear transformation
we see that it is also no restriction to assume f(0) = (1,0,...,0).

Consider all points starting on the plane 1 = 0. Then the trans-
form ¢ we are looking for should map the point ®(t, (0,z2,...,z,)) to
(0,29,...,2n) +t(1,0,...,0) = (t,z2,...,2y).

‘ O(t, (0,22))

X

(07-732) (t,l‘g)

Hence ¢ should be the inverse of

V((x1,. .. 2p)) = Pz, (0,22, ..., 2y)),
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which is well defined in a neighborhood of 0. The Jacobi determinant at 0
is given by

det

=0

o; 0® 09 0P
(2200 Oy g,
T ot 8952 8xn t=0,2=0 e in
since 0P /0x|i—0 40 = I, and 0P /0t|t—0r—0 = f(0) = (1,0,...,0) by as-
sumption. So by the inverse function theorem we can assume that v is
a local diffeomorphism and we can consider new coordinates y = 1 ~!(z).

Since 0v;/0x1 = fj(¢(x)), that is, (0¢;/0x;)01; = fj(¢(x)), our system

reads in the new coordinates
N AC AN o
Yi= (c’)xi )wfl(x)f’(x) = 014

which is the required form. O

[ sin(t)
P(t) = (sin(Zt))
be the solution of an autonomous system & = f(x)? (Hint: Plot the orbit.)
Can it be the solution of & = f(t,x)?

Problem 6.1. Can

Problem 6.2. Compute the flow for f(z) = x? defined on M = R.

Problem 6.3. Find a transformation which straightens out the flow & = x
defined on M = R.

Problem 6.4. Show that ®(t,z) = ¢'(1 + ) — 1 is a flow (i.e., it satisfies
(6.11)). Can you find an autonomous system corresponding to this flow?

Problem 6.5. Suppose ®(t,x) is differentiable and satisfies (6.11). Show
that ® is the flow of the vector field

f(z) =®(0, ).
6.3. Orbits and invariant sets

The orbit of x is defined as
v(z) = (I, x) C M. (6.13)

Note that y € y(z) implies y = ®(¢, ) and hence vy(z) = v(y) by (6.11). In
particular, different orbits are disjoint (i.e., we have the following equivalence
relation on M: x ~ y if y(x) = y(y)). If yv(x) = {z}, then z is called a fixed
point (also singular, stationary, or equilibrium point) of ®. Otherwise
x is called regular and ®(.,x) : I, < M is an immersion.

Similarly we introduce the forward and backward orbits

v+(2) = @((0, T (x)), ). (6.14)
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Clearly v(z) = v—(x) U{z} U~y(x). One says that x € M is a periodic
point of ® if there is some 7" > 0 such that (7, z) = x. The lower bound of
such T is called the period, T'(x) of z, that is, T'(x) = inf{T > 0|®(T, x) =
x}. By continuity of ® we have ®(T(z),x) = x and by the flow property
O(t+T(x),z) = ®(¢t,z). In particular, an orbit is called a periodic orbit
if one (and hence all) point of the orbit is periodic.

It is not hard to see (Problem 6.8) that x is periodic if and only if
v+ () Ny (x) # ) and hence periodic orbits are also called closed orbits.

Hence we may classify the orbits of f as follows:

(i) fixed orbits (corresponding to a periodic point with period zero)
(ii) regular periodic orbits (corresponding to a periodic point with
positive period)
(iii) non-closed orbits (not corresponding to a periodic point)
The quantity T4 (z) = supl, (resp. T_(x) = infI,) defined in the
previous section is called the positive (resp. negative) lifetime of x. A

point z € M is called o complete, o € {£}, if T,(z) = ococo and complete if
it is both 4+ and — complete (i.e., if I, = R).

Corollary 2.14 gives us a useful criterion when a point x € M is o
complete.

Lemma 6.3. Let x € M and suppose that the forward (resp. backward)
orbit lies in a compact subset C' of M. Then x is + (resp. —) complete.

Clearly a periodic point is complete. If all points are complete, the
vector field is called complete. Thus f being complete means that ® is
globally defined, that is, W =R x M.

A set U C M is called o invariant, o € {£}, if
Yo(x) C U, Vo e U, (6.15)

and invariant if it is both £ invariant, that is, if y(z) C U.

If C C M is a compact o invariant set, then Lemma 6.3 implies that all
points in C are o complete.

Lemma 6.4. Arbitrary intersections and unions of o invariant sets are o
invariant. Moreover, the closure of a o invariant set is again o invariant.

Proof. Only the last statement is nontrivial. Let U be ¢ invariant and
recall that € U implies the existence of a sequence x,, € U with =, — =.
Fix t € I,. Then (since W is open) for N sufficiently large we have t € I,
n > N, and ®(t,z) = lim,_,0 ®(t,z,) € U. O
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One of our main aims will be to describe the long-time asymptotics
of solutions. For this we next introduce the set where a orbit eventually
accumulates:

The w4-limit set of a point z € M, wy(x), is the set of those points
y € M for which there exists a sequence t,, — +oo with ®(t,,x) — y.

Clearly, w4 (z) is empty unless x is £ complete. Observe, that w4 (z) =
wi(y) if y € y(z) (if y = ®(¢, z) we have ®(t,,y) = (t,, (¢, z)) = O(¢, +
t,x)). Moreover,

Lemma 6.5. The set wy(x) is a closed invariant set.

Proof. To see that wy(x) is closed, let y be in its closure and choose y,, €
w4 () such that |y —y,| < (2n)~! and t,, — £oco such that [®(t,,x) — yu| <
(2n)~%. Then |®(t,,z) —y| < n~! and thus y € w (z).

The set w4 (x) is invariant since if ®(t,,x) — y we have ®(t, + ¢, x)

ol

(L, D(tn, x)) — (¢, y)-

Example. For the equation & = —z we have w, (z) = {0} for every = € R,
since every solution converges to 0 as t — oo. Moreover, w_(z) = () for
x # 0 and w_(0) = {0}. o

In particular, even for complete = the set wi(z) can be empty and we
need some further assumptions in order to guarantee that this does not
happen.

Lemma 6.6. If v,(x) is contained in a compact set C, then ws(x) is non-
empty, compact, and connected.

Proof. By Lemma 6.3, x is ¢ complete and we can choose a sequence
O (ty,,r) with ¢, — coo. By compactness we can extract a convergent sub-
sequence and hence w,(x) is nonempty and compact (since closed subsets
of compact sets are again compact). If w,(x) is disconnected, we can split
it up into two disjoint closed sets wi2. Let 6 > 0 be the minimal dis-
tance between w; and wo. Taking all points which are at most g away from
w1,2, we obtain two disjoint neighborhoods Uy 2 of wy 2, respectively. Now
choose a strictly monotone sequence t, — coo such that ®(to;,11,x) € U;
and ®(tom,z) € Uy. By connectedness of ®((tom,tom+1), ) we can find
O(t,, x) € C\(Uy U Us) with toy, <ty < tame1. Since C\(Uy U Us) is com-
pact, we can assume ®(f,,,r) — y € C\(U; UUs). But y must also be in
wy(x), a contradiction. O

Now let us consider an example which shows that the compactness re-
quirement is indeed necessary.
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Example. Let M = R? and consider the vector field
~ (cos(z1)?(sin(z1) — 22 cos(z1))
fla) = < sin(x1) + @2 cos(z1) ’ (6.16)

Since f is bounded it is complete by Theorem 2.16. The singularities are
given by (Zm,0). One further verifies that for x € (—7/2,7/2) x R we have

_ (arctan(re™® cos(7(t) + 6))
(¢, w) = ( re™® sin(7(t) + 6) ’ (6.17)

where (r,0) are the polar coordinates of (tan(xi),x2) and

1
7(t) = , 7(0)=0. (6.18)
V1 + 72270 cos(7(t))?
Clearly, 7 € C*°(R,R) is a diffeomorphism and hence w_(z) = (0,0) and
wy(z) ={£nr} xR if z # (0,0). Moreover,

O, (+5,72)) = (m;g: t) (6.19)

and hence w_(+7,0) = wy (£5,0) = 0.
Thus far @ is only given for x € [~7, §] x R. The remaining parts of the
plane can be investigated using the transformation (¢,z1,x2) — (—t,21 +

T, T2). o

A nonempty, compact, o invariant set C' is called minimal if it contains
no proper o invariant subset possessing these three properties. Note that
for such a minimal set we have C = wy(z) = w_(x) for every x € C.
One example of such a minimal set is a periodic orbit. In fact, in two
dimensions this is the only example (Corollary 7.12). However, in three or
more dimensions orbits can be dense on a compact hypersurface and in such
a case the hypersurface cannot be split into smaller closed invariant sets.

Lemma 6.7. Every nonempty, compact (o) invariant set C C M contains
a minimal (o) invariant set.

If in addition C' is homeomorphic to a closed m-dimensional disc (where
m is not necessarily the dimension of M), it contains a fixed point.

Proof. The first part is a standard argument from general topology (cf.,
e.g., [19]). Consider the family F of all compact (o) invariant subsets of C.
Every nest in F has a minimal member by the finite intersection property of
compact sets. So by the minimal principle there exists a minimal member
of F.

Now let C' be homeomorphic to a disc and fix 0 = + for simplicity. Pick
a sequence T; — 0. By Brouwer’s theorem ®(7j,.) : C' — C has a fixed
point x;. Since C' is compact, we can assume x; — = after maybe passing
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to a subsequence. Fix ¢t > 0 and pick n; € Ng such that 0 <t —n;T; < Tj.
Then

O(t,x) = ]lirgo O(n;T,xj) = ]lgrolo rj=2x

and z is fixed. O

Problem 6.6. Consider a first-order autonomous system in R'. Suppose
f(z) is differentiable, f(0) = f(1) =0, and f(z) > 0 for z € (0,1). Deter-
mine the orbit v(z) and wi(z) if x € [0,1].

Problem 6.7. Let ¢(t) be the solution of a first-order autonomous sys-
tem. Suppose limy_,oo ¢(t) = x € M. Show that x is a fized point and
limy_,o ¢(t) = 0.

Problem 6.8 (Periodic points). Let ® be the flow of some first-order au-
tonomous system.

(i) Show that if T satisfies ®(T,x) = x, the same is true for any
integer multiple of T. Moreover, show that we must have T =
nT(x) for some n € Z if T(x) # 0.

(ii) Show that a point x is fized if and only if T'(x) = 0.

(iii) Show that x is periodic if and only if v4(x) Ny_(x) # O in which
case Y4 (x) = v—(z) and ®(t + T(x),x) = ®(t,x) for allt € R. In
particular, the period is the same for all points in the same orbit.

Problem 6.9. A point x € M is called nonwandering if for every neigh-
borhood U of x there is a sequence of positive times t, — oo such that
O, (U)NU # 0 for all t,. The set of nonwandering points is denoted

by Q(f).

(1) Q(f) is a closed invariant set (Hint: show that it is the complement
of an open set).

(ii) Q(f) contains all periodic orbits (including all fized points).
(iil) wy(x) S Qf) for allz € M.
Find the set of nonwandering points Q(f) for the system f(z,y) = (y, —x).

Problem 6.10. Denote by d(x, A) = inf,c4 |x — y| the distance between a
point x € R™ and a set A C R"™. Show

In particular, z — d(x, A) is continuous.

Problem 6.11. Suppose v,(x) is contained in a compact set. Show that
limy oo d(P(t, 2), ws(x)) = 0.
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6.4. The Poincaré map

Recall the Poincaré map used successfully in Section 1.6 for differential equa-
tions & = f(t,z), where f is periodic with respect to ¢, say f(t + 1,z) =
f(t,x). To fit this equation into our current framework we consider the
corresponding autonomous equation

n=1 92 = fl(y17y27" . 7yn+1), cey Untl = fn(yhy?a"' ;yn—l-l)-

Then the idea was to look at the fate of an initial point after one period,
that is we start at some initial point y and ask when it hits the plane
Y = {y|ly1 = 1}. This intersection was precisely our Poincaré map

P(y) = o(1,y)
up to the fact that we dropped the first component P (y) = ®1(1,y) = y1+1
which carries no useful information and fixed y; = 0.

Our present goal is to generalize this concept for later use. To this end,
recall that a set ¥ C R” is called a submanifold of codimension one (i.e.,
its dimension is n — 1), if it can be written as

S = {z € UlS(z) = 0}, (6.20)

where U C R" is open, S € CK(U), and 9S/0z # 0 for all z € ¥. The
submanifold ¥ is said to be transversal to the vector field f if (05/0x) f(z) #
0 for all x € X.

Lemma 6.8. Suppose x € M and T € I,. Let ¥ be a submanifold of
codimension one transversal to f such that ®(T,z) € 3X. Then there exists
a neighborhood U of x and T € C*(U) such that 7(z) =T and

O(7(y),y) €X (6.21)
forally e U.

Proof. Consider the equation S(®(t,y)) = 0 which holds for (7', z). Since

0 oS
—S(® =—(® P
5@ (1)) = 5 (B(t,9) f(@(1,1)) #0
for (t,y) in a neighborhood I x U of (T,z) by transversality. So by the

implicit function theorem (maybe after restricting U), there exists a function
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T e Ck

(
(r(y).y

If x is periodic and T' = T'(z) is its period, then
Pu(y) = ¢(7(y),v) (6.22)

is called Poincaré map. It maps ¥ into itself and every fixed point corre-
sponds to a periodic orbit. It will turn out to be an important tool in the
investigation of periodic orbits.

U) such that for all y € U we have S(®(7(y),y)) = 0, that is,
)€ O

Problem 6.12. Which of the following equations determine a submanifold
of codimension one of R%?

(i) z=0.

(ii) 22 +y? = 1.

(iii) 22 —y% = 1.

(iv) 22+ 4% =0.
Which of them is transversal to f(x,y) = (x,—y), f(z,y) = (1,0), or
f(z,y) = (0,1), respectively.

Problem 6.13. At what points is ¥ = {(z,y) € R?|x2+y? = 1} transversal
to the vector field f(z,y) = (y, —2x)?

Problem 6.14. The vector field f(x,y) = (—y,x) has the periodic solution
(cos(t),sin(t)). Compute the Poincaré map corresponding to ¥ = {(z,y) €
R?|z >0, y = 0}

6.5. Stability of fixed points

As already mentioned earlier, one of the key questions is the long-time be-
havior of the dynamical system (6.7). In particular, one often wants to know
whether the solution is stable or not. But first we need to define what we
mean by stability. Usually one looks at a fixed point and wants to know what
happens if one starts close to it. Hence we make the following definition:

A fixed point zy of f(x) is called stable if for any given neighborhood
U(zo) there exists another neighborhood V(zg) C U(zp) such that any
solution starting in V' (z¢) remains in U(zg) for all ¢ > 0.

Similarly, a fixed point g of f(x) is called asymptotically stable if
it is stable and if there is a neighborhood U(x() such that

tli)m lp(t,x) —xo| =0 for all x € U(xy). (6.23)
Note that (6.23) does not automatically imply stability (Problem 6.15).

For example, consider # = az in R'. Then zy = 0 is stable if and only
if a < 0 and asymptotically stable if and only if ¢« < 0. More generally,
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suppose the equation # = f(x) in R! has a fixed point zg. Then it is not
hard to see (compare Section 1.5) that x¢ is stable if

f(@) = f(z0)

r — X

<0, x € U(zo)\{zo} (6.24)

for some neighborhood U(xg) and asymptotically stable if strict inequality
holds. In particular, if f’(zg) # 0 the stability can be read of from the
derivative of f at zg alone. However, if f/(zg) = 0, no information on the
stability of the nonlinear system can be read off from the linear one as can
be seen from the example

&= pad. (6.25)

In R™, n > 1, the equation & = f(x) cannot be solved explicitly in
general, and good criteria for stability are needed. This will be the topic of
the remainder of this chapter.

But before that, let me point out that it is also interesting to look at
the change of a differential equation with respect to a parameter u. By
Theorem 2.11 the flow depends smoothly on the parameter p (if f does).
Nevertheless very small changes in the parameters can produce large changes
in the qualitative behavior of solutions. The systematic study of these phe-
nomena is known as bifurcation theory. I do not want to go into further
details at this point but I will rather show you some prototypical examples.

The system
&= pxr — x> (6.26)

has one stable fixed point for ;4 < 0 which becomes unstable and splits off
two stable fixed points at u = 0. This is known as pitchfork bifurcation.
The system

&= px — * (6.27)

has two stable fixed point for p # 0 which collide and exchange stability at
u = 0. This is known as transcritical bifurcation. The system

&= p+ z? (6.28)

has one stable and one unstable fixed point for u < 0 which collide at p =0
and vanish. This is known as saddle-node bifurcation.

Observe that by the implicit function theorem, the number of fixed
points can locally only change at a point (zg,po) if f(xo,0) = 0 and

0,
%(mo’ ,U’O) =0.
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Problem 6.15. Consider the system

ro= x—y—x(w2+y2)+7xy
Va2
2
. x
gy = z4+y—ylz®+y?) - (6.29)

Va2 + y? .
Show that (1,0) is not stable even though it satisfies (6.23). (Hint: Show that
in polar coordinates the system is given by 1 = r(1 —r?), § = 2sin(0/2)%.)

Problem 6.16. Draw phase plots as a function of u for the three systems
from above and prove all statements made above.

6.6. Stability via Liapunov’s method

Pick a fixed point z¢ of f and an open neighborhood U(xg) of zy. A Lia-
punov function is a continuous function

L:U(xg) =R (6.30)
which is zero at xg, positive for x # xg, and satisfies

L(#(t0)) = L(6(t1)), to <ti,  &(t;) € Ulxo)\{zo}, (6.31)

for any solution ¢(t). It is called a strict Liapunov function if equality
in (6.31) never occurs. Note that U(xo)\{zo} can contain no periodic orbits
if L is strict (why?).

Since the function L is decreasing along integral curves, we expect the
level sets of L to be positively invariant. Let Ss be the connected component
of {z € U(xo)|L(z) < ¢} containing xg. Note that in general S5 might not
be closed since it can have a common boundary with U(xp). In such a case
orbits can escape through this part of the boundary and in order to avoid
this, we need to assume that Sy is closed.

Lemma 6.9. If S5 is closed, then it is positively invariant.

Proof. Suppose ¢(t) leaves S5 at to and let x = ¢(tp). Since Ss is closed,
x € S5 C U(wp) and there is a ball B,(z) C U(xg) such that ¢(tgp + ) €
B, (2)\Ss for small € > 0. But then L(¢(tg +¢)) > § = L(z) contradicting
(6.31). O

Moreover, Ss is a neighborhood of xg which shrinks to a point as § — 0.
Lemma 6.10. For every § > 0 there is an € > 0 such that
S: € Bs(xg) and Bg(z) C Ss. (6.32)
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Proof. Assume that the first claim in (6.32) is false. Then for every n € N,
there is an z,, € S, such that |z, — zo| > d. Since S}/, is connected, we
can even require |z, —xo| = ¢ and by compactness of the sphere we can pass
to a convergent subsequence z,, — y. By continuity of L we have L(y) =
lim, 00 L(2p,,) = 0 implying y = . This contradicts |y — zo| = > 0.

If the second claim in (6.32) were false, we could find a sequence x,, such
that |z, —xo| < 1/n and L(x,) > §. But then ¢ < lim,_,o L(x,) = L(zg) =
0, again a contradiction.

O

Hence, given any neighborhood V' (zg), we can find an ¢ such that S. C
V(o) is positively invariant. In other words, x¢ is stable.

Theorem 6.11 (Liapunov). Suppose xq is a fized point of f. If there is a
Liapunov function L, then xq is stable.

But we can say even more. For every x with ¢(t,z) € U(zg), t > 0, the
limit
lim L(¢(t,z)) = Lo(x) (6.33)
t—o0
exists by monotonicity. Moreover, for every y € wy(x) we have some se-
quence t,, — oo such that ¢(t,, z) — y and thus L(y) = lim,, o0 L(¢(tn, x)) =
Lo(x). Hence, if L is not constant on any orbit in U(zg)\{zo} we must have
wy(x) = {zo}. In particular, this holds for every x € S. and thus z¢ is
asymptotically stable.
In summary we have proven
Theorem 6.12 (Krasovskii-LaSalle principle). Suppose xq is a fized point
of f. If there is a Liapunov function L which is not constant on any orbit
lying entirely in U(xzo)\{zo}, then zq is asymptotically stable. This is for
example the case if L is a strict Liapunov function. Moreover, every orbit
lying entirely in U(xo) converges to xg.

The same proof also shows
Theorem 6.13. Let L : U — R be continuous. If for some solution ¢(t,x)
L(¢(to, z)) = L(o(t1,x)), to <t1, (6.34)

then L is constant on wy(z) NU.

Most Liapunov functions will in fact be differentiable. In this case (6.31)
holds if and only if
d .

S L(0(t,2)) = grad(L)(6(t, 2))¢(t, v) = grad(L)(¢(¢, 2)) f(4(t, 2)) < 0.

The expression
grad(L)(x) f(x) (6.36)
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appearing in the previous equation is known as the Lie derivative of L
along the vector field f. A function for which the Lie derivative vanishes is
constant on every orbit and is hence called a constant of motion.

Theorem 6.13 implies that all w.-limit sets are contained in the set where
the Lie derivative vanishes.
Problem 6.17. Show that L(x,y) = x> +y? is a Liapunov function for the
system
rT=y, Y=y -z,
where 1 > 0 and investigate the stability of (zo,yo) = (0,0).

Problem 6.18 (Gradient systems). A system of the type

&= f(x),  flz)=—gradV(z),
is called a gradient system. Investigate the stability of a fized point. (Hint:
Compute the Lie derivative of V'.)

Problem 6.19. Show Theorem 6.135.

6.7. Newton’s equation in one dimension

Finally, let us look at a specific example which will illustrate the results
from this chapter.

We have learned in the introduction, that a particle moving in one dimen-
sion under the external force field f(x) is described by Newton’s equation

i = f(x). (6.37)
Physicist usually refer to M = R? as the phase space, to (z, ) as a phase
point, and to a solution as a phase curve. Theorem 2.2 then says that
through every phase point there passes precisely one phase curve.

The kinetic energy is the quadratic form
.2

T(i) = % (6.38)
and the potential energy is the function
Ute) =~ [ 16 (6.39)
o

and is only determined up to a constant which can be chosen arbitrarily.
The sum of the kinetic and potential energies is called the total energy of
the system

E=T)+U(x). (6.40)
It is constant along solutions as can be seen from

d fn e
SE = i+ U'@)i = (5 — f(z)) = 0, (6.41)
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Hence, solving (6.40) for &, the solution corresponding to the initial condi-
tions x(0) = zg, ©(0) = 1 can be given implicitly as

212

E ==+ U(xo). (6.42)

. v d¢
sign(an) [ St
0 V2(E—U())

If 1 = 0 then sign(x;) has to be replaced by — sign(U’(x0)). Fixed points of
the equation of motion (6.37) are the solutions of & = 0, U'(z) = f(z) =0
and hence correspond to extremal points of the potential. Moreover, if U(x)
has a local minimum at zg, the energy (more precisely £ — U(xp)) can be
used as Liapunov function, implying that z( is stable if U(z) has a local
minimum at xg. In summary,

Theorem 6.14. Newton’s equation has o fixed point if and only if £ = 0
and U'(z) = 0 at this point. Moreover, a fixed point is stable if U(z) has a
local minimum there.

Note that a fixed point cannot be asymptotically stable (why?).

Now let us investigate some examples. We first look at the so called
mathematical pendulum given by

I = —sin(x). (6.43)

Here x describes the displacement angle from the position at rest (z = 0).
In particular, x should be understood modulo 27. The potential is given by
U(x) = 1—cos(z). To get a better understanding of this system we will look
at some solutions corresponding to various initial conditions. This is usually
referred to as phase portrait of the system. We will use Mathematica to plot
the solutions. The following code will do the computations for us.

In[3]:= PhasePlot[f_,ic_,tmax_,opts__]:=
Block[{i,n = Length[ic|, ff, ivp, sol, phaseplot},
ff =1/ {x—=xt],y > y[t]}
Off[ParametricPlot :: "ppcom”];
Do|
ivp — {x'[t] = ££([1]},'[¢] —— ££[2],
x[0] == 1cl[1, 1],y[0] == ic[li, 2]}
sol = NDSolve[ivp, {x[t], y[t]}, {t, —tmax, tmax}];
phaseplot[i] =
ParametricPlot[{x[t], y[t]}/.s0l, {t, —tmax, tmax}, ]
(1,0}
On[ParametricPlot :: "ppcom”];
Show[Table[phaseplot[i],{i, 1,n}], opts]

I;

Next, let us define the potential
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In[4]:= U[X,] =1- COS[X];
Plot[U[x], {x, —27, 27}, Ticks — False]

/ \ “
Out [4]= “/‘ \ “‘/ ‘\

and plot the phase portrait

In[5]:= PhasePlot[{y, —U'[x]}, {{0,0.2}, {0, 1}, {—27, 0.2}, {—27, 1},
{2m,0.2},{2m, 1},{0, 2}, {27, —2}, {27, 2}, {—2m, —2},
{—2m,2},{0,—2},{0,2.5}, {0, —2.5}, {0, 3}, {0, —3}},
2m,PlotRange — {{—2m,27},{—3,3}}, Ticks — False]

— —
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Out [5]=
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Now let us start with a rigorous investigation. We restrict our attention
to the interval x € (—m,n|. The fixed points are z = 0 and x = 7. Since
the potential has a minimum at x = 0, it is stable. Next, the level sets of
E(&,x) = const are invariant as noted earlier. For E' = 0 the corresponding
level set is the equilibrium position (4, z) = (0,0). For 0 < E < 2 the level
set is homeomorphic to a circle. Since this circle contains no fixed points,
it is a regular periodic orbit. Next, for ¥ = 2 the level set consists of the
fixed point 7 and two non-closed orbits connecting —7 and 7. It is usually
referred to as separatrix. For E > 2 the level sets are again closed orbits
(since we regard everything modulo 27).

In a neighborhood of the equilibrium position x = 0, the system is
approximated by its linearization sin(z) = x 4+ O(2?) given by
T=—u, (6.44)

which is called the harmonic oscillator. Since the energy is given by
-2 2
E = % + %, the phase portrait consists of circles centered at 0. More

generally, if
2

U'(zg) =0,  U"(x0) = % >0, (6.45)
our system should be approximated by

i = —wy, y(t) = x(t) — xo. (6.46)
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Clearly this equation can be transformed to (6.44) by scaling time according
to ¢t — %

Finally, let remark that one frequently uses the momentum p = & (we
have chosen units such that the mass is one) and the location ¢ = = as
coordinates. The energy is called the Hamiltonian

2

H(p,q) = % +U(q) (6.47)

and the equations of motion are written as (compare Problem 7.10)

. 0H(p,q) . 0H(p,q)
i=—p, + P=Tp (6.48)

This formalism is called Hamilton mechanics and it is also useful for
systems with more than one degree of freedom. We will return to this point
of view in Section 8.3.

Problem 6.20. Consider the mathematical pendulum. If E = 2 what is the
time it takes for the pendulum to get from x =0 tox =n?

2

Problem 6.21. Investigate the potential U(z) = 5 — 5.

w

x? x3

Inf6]:= Ulx ] = 5 E;Plot[U[x], {x,—1,2},Ticks — False]

— \ AN
Out [6]= . / \

Here are some interesting phase curves to get you started.
In[7]:= PhasePlot[{y, —U'[x]}, {{—1,0},{—0.7,0},{—0.5,0},{—0.3,0},

{1.05,0.05},{1.5,0},{2,0}},8,
PlotRange — {{—1,2.5},{—2,2}}, Ticks — False]
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Problem 6.22. Show that all solutions are periodic if lim,_,o U(z) = +oc.
Problem 6.23. The mathematical pendulum with friction is described by
& = —nz — sin(x), n > 0.

Is the energy still conserved in this case? Show that the energy can be used as
a Liapunov function and prove that the fized point (&,x) = (0,0) is (asymp-
totically) stable. How does the phase portrait change?

Problem 6.24. Consider a more general system with friction
i = —n(@)i — U'la), n(z) > 0.

(i) Use the energy to show that there are no reqular periodic solutions
(compare Problem 7.11).

(ii) Show that minima of U(x) are asymptotically stable.






Chapter 7

Planar dynamical
systems

7.1. Examples from ecology

In this section we want to consider a model from ecology. It describes two
populations, one predator species y and one prey species x. Suppose the
growth rate of the prey without predators is A (compare Problem 1.16). If
predators are present, we assume that the growth rate is reduced propor-
tional to the number of predators, that is,

& = (A — By)z, A,B > 0. (7.1)

Similarly, if there is no prey, the numbers of predators will decay at a rate
—D. If prey is present, we assume that this rate increases proportional to
the amount of prey, that is

y=(Cz—-D)y, C,D>0. (7.2)
Scaling z, y, and t we arrive at the system
t=(1—-yx
. , a > 0, 7.3
y=alz—1)y (73)

which are the predator-prey equations of Volterra and Lotka.
There are two fixed points. First of all, there is (0,0) and the lines x = 0
and y = 0 are invariant under the flow:
O(t,(0,y)) = (0,ye™),  ®(t,(,0)) = (ae',0). (7.4)
In particular, since no other solution can cross these lines, the first quadrant
Q = {(z,y)|z > 0,y > 0} is invariant. This is the region we are interested

179
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(=

Figure 7.1. Phase portrait of the Volterra—Lotka system.

in. The second fixed point is (1,1). The eigenvalues of the linearization are
purely imaginary and thus its stability cannot be obtained by linearization.

Hence let us try to eliminate ¢ from our differential equations to get a
single first-order equation for the orbits. Writing y = y(x), we infer from

the chain rule
dy dy (dm)l  (z—1)y (75)
dr  dt \ dt (1—y)x ’
This equation is separable and solving it shows that the orbits are given

implicitly by
L(z,y) = f(y) + af(x) = const, f(z) =2 —1—In(x). (7.6)

The function f cannot be inverted in terms of elementary functions. How-
ever, f(z) is convex with its global minimum at x = 1 and tends to oo as
x — 0 and z — oo. Hence the level sets are compact and each orbit is
periodic surrounding the fixed point (1,1).

Theorem 7.1. All orbits of the Volterra—Lotka equations (7.3) in Q are
closed and encircle the only fized point (1,1).

The phase portrait is depicted in Figure 7.1.

Next, let us refine this model by assuming limited grow for both species
(compare again Problem 1.16). The corresponding system is given by

t=(1—-y—A\v)z

y ) a? A? > 0’ 7-7
y=alr—1-pyy : (1)

Again the fixed point (0,0) is a hyperbolic saddle and the lines z = 0 and
y = 0 are invariant.

We first look at the case where A > 1 and hence where there is only
one additional fixed point in @, namely (A~!,0). It is a hyperbolic sink if
A > 1 and if A = 1, one eigenvalue is zero. Unfortunately, the equation for
the orbits is no longer separable and hence a more thorough investigation is
necessary to get a complete picture of the orbits.
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Figure 7.2. Phase portrait of a predator pray model with limiting growth.

The key idea now is to split @) into regions where & and g have definite
signs and then use the following elementary observation (Problem 7.1).

Lemma 7.2. Let ¢(t) = (x(t),y(t)) be the solution of a planar system.
Suppose U is open and U is compact. If z(t) and y(t) are strictly monotone
in U, then either ¢(t) hits the boundary at some finite time t = to or ¢(t)
converges to a fived point (zo,y0) € U.

Now let us see how this applies to our case. The regions where & and y
have definite signs are separated by the two lines

Ly =A{(@y)ly=1-Az},  Lo={(z,y)lpy=2—-1}.  (7.8)
A typical situation for « = u =1, A = 2 is depicted in Figure 7.2.

This picture seems to indicate that all trajectories converge to the fixed
point (A71,0). Now let us try to prove this. Denote the regions in @ enclosed
by these lines by (from left to right) @1, Q2, and Q3. Observe that the lines
Lo and L are transversal and thus can only be crossed in the direction from
Q3 — @2 and Q2 — @)1, respectively.

Suppose we start at a point (zg,y0) € Q3. Then, adding to Q3 the
constraint z < xg, we can apply Lemma 7.2 to conclude that the trajectory
enters Q2 through Lo or converges to a fixed point in Q3. The last case is
only possible if (A71,0) € Qs, that is, if A = 1. Similarly, starting in Qg the
trajectory will enter Q1 via L; or converge to (A~1,0). Finally, if we start
in Q1, the only possibility for the trajectory is to converge to (A~1,0).

In summary, we have proven that for A > 1 every trajectory in ) con-
verges to (A71,0).

Now consider the remaining case 0 < A < 1. Then (A~!,0) is a hyper-
bolic saddle and there is a second fixed point (11:H”)\, ﬁ), which is a sink.
A phase portrait fora=pu=1, A = % is shown in Figure 7.3.

Again it looks like all trajectories converge to the sink in the middle.
We will use the same strategy as before. Now the lines L1 and Lo split
Q@ into four regions @1, 2, @3, and Q4 (where Q4 is the new one). As
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Figure 7.3. Phase portrait of a predator pray model with limiting growth.

before we can show that trajectories pass through these sets according to
Qs — Q3 — Q2 — @1 — Q4 unless they get absorbed by one of the
fixed points. However, there is now a big difference to the previous case: A
trajectory starting in Q4 can return to Q4 and hence there could be periodic
orbits.

To exclude periodic orbits we will try to find a Liapunov function. In-
spired by (7.6) we will try to scale x and y such that the minimum is at the
fixed point (zg,yo) = (11:7“/\, ﬁ) We introduce

Yy T
L(z,y) ='Y1f(y*0)+a72f(;0)7 f() =z —1—1In(x), (7.9)
where the constants 1,72 > 0 are to be determined. Using

i=(-g—At)r, y=a(@—py)y, T=r-20,y=y—y (7.10)
we compute

. 0L  OL. Ava _ _ -
L=_—&+_9=—«a <w$2+my2+(w—%)xy> . (7.11)

Oz dy x Yo o Yo
The right-hand side will be negative if we choose 1 = yo and ~5 = x( such
that the third term vanishes. Hence we again see that all orbits starting in

@ converge to the fixed point (zg, yo).

Theorem 7.3. Suppose A > 1. Then there is no fived point of the equations
(7.7) in Q and all trajectories in Q converge to the point (\~1,0).

If 0 < A < 1 there is only one fixed point (11_:':/\, 11_;:;) in Q. It is

asymptotically stable and all trajectories in QQ converge to this point.

For our original model this means that the predators can only survive
if their growth rate is positive at the limiting population A~! of the prey
species.

Similarly on could consider systems of competing or cooperating species

T = OZ(ZE, y)l’, Y= 5(1:’ y)y (712)
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More precisely we will call two species cooperative if the growth of one
species increases the growth rate of the other and vice versa, that is,

0 0
— > — > 0. .
gy @) 20 and 5-f(z,9) 2 0 (7.13)

Similarly we will call two species competitive if the growth of one species
decreases the growth rate of the other and vice versa, that is,

0 0
—_— < — <0. .
8y04(9:, y) <0 and 8y6(fr,y) <0 (7.14)

It turns out that in this situation the analysis is much simpler.

Theorem 7.4. Suppose (7.12) is either competitive or cooperative. Then
all orbits converge either to a fized point or to co.

Proof. We restrict our attention to the first quadrant which is invariant
and assume that the system is cooperative.

We first note that if @#(t) > 0, y(¢) > 0 at some time ¢ = ¢, then this
remains true for all ¢ > ty. In fact, if we should have @(¢;) = 0, then

i — (aley) +022a(wy) ) s + 22 %a(m )5
= |alx,y xaxaaz,y T xf)yax’yy

is positive at such a point which yields a contradiction (if §(¢1) = 0 vanishes
as well, we already are at a fixed point). An analogous argument rules out
y(t1) = 0 and establishes the claim.

Similarly we see that if #(¢) < 0, g(t) < 0 at some time ¢ = t¢, then this
remains true for all ¢ > ¢y. Hence the sign of @(t) as well as g(t) can change
at most once and thus both components are eventually monotone. O

In particular, if we assume limited growth, that is, a(z,y) becomes
eventually negative as x — oo and S(x,y) becomes eventually negative as
1y — 00, then every solution converges to a fixed point.

Problem 7.1. Prove Lemma 7.2.

Problem 7.2 (Volterra principle). Show that for any orbit of the Volterra—
Lotka system (7.3), the time average over one period

I 17
— t)dt =1 — t)dt =1
CRECLEI Y 0

is independent of the orbit. (Hint: Integrate % In(z(t)) over one period.)

Problem 7.3. Show that the change of coordinates x = exp(q), y = exp(p)
transforms the Volterra—Lotka system (7.3) into a Hamiltonian system with
Hamiltonian H (p,q) = L(exp(q),exp(p)).
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Moreover, use the same change of coordinates to transform (7.7). Then
use Bendizson’s criterion (Problem 7.11) to show that there are no periodic
orbits.

Problem 7.4. Show that (7.7) has no periodic orbits in the case A < 1 if
uA > 1 as follows:

If there is a periodic orbit it must contain a point (xo,yo) on Ly which
satisfies

1+u 1
<z < T, =1— Azo. 7.15
1+ puh Zo \ Yo L0 ( )
The trajectory enters Q1 and satisfies x(t) < zo in Q1 since x(t) decreases
there. Hence we must have y(t) < y1 = xOTfl when it hits Ly. Now we

1—)\y1 when we hit L.

enter QQ2, where y(t) decreases implying x(t) < x1 =

x1—1
o

Proceeding like this we finally see y(t) > yo = when we return to L.

If y2 > yo, that is if
(14 p) (1 = pA) > (1= (u)*)ao, (7.16)
the trajectory is spiraling inwards and we get a contradiction to our assump-

tion that it is periodic. This is the case when pA > 1.

Problem 7.5 (Competing species). Suppose you have two species x and y
such that one inhibits the growth of the other. A simple model describing
such a situation would be
& =(A— By)x
y=(C—Dx)y’

Find out as much as possible about this system.

A, B,C,D > 0.

Problem 7.6 (Competing species with limited growth). Consider the same
setting as in the previous problem but now with limited growth. The equations
read
t=(1-y— )z
y=oal—z—pyly’
Again, find out as much as possible about this system.

a, A\, u > 0.

7.2. Examples from electrical engineering

In this section we want to come back to electrical circuits, which we already
considered in Section 3.3. We will again look at the case of one inductor,
one capacitor, and one resistor arranged in a loop. However, this time we
want to consider a resistor with arbitrary characteristic

Vr = R(IR). (7.17)

Since there is no potential difference if there is no current, we must have
R(0) = 0. For a classical resistor we have R(I) = R I, where the resistance R



7.2. Examples from electrical engineering 185

is a constant (Ohm’s law), but for sophisticated elements like semiconductors
the relation is more complicated. For example, the characteristic of a diode
is given by
kT I
V . In(1 + I ), (7.18)
where Iy, is the leakage current, ¢ the charge of an electron, k£ the Boltzmann
constant and T' the absolute temperature.

In the positive direction you need only a very small voltage to get a large
current whereas in the other direction you will get almost no current even
for fairly large voltages. Hence one says that a diode lets the current pass
in only one direction.

Kirchhoff’s laws yield Ir = I, = Ic and Vg + Vi, + Vo = 0. Using the
properties of our three elements and eliminating, say, I¢, Ir, Vi, Vg we
obtain the system

LI, = Vo — R(Ip)

CVC =1 ) R(O) =0, L,C>0. (7.19)

In addition, note that the change of energy in each element is given by I V.
By Kirchhoff’s laws we have

ItV + IcVe + IrRVR = 0, (7.20)
which can be rewritten as
d (L5 C_5\

That is, the energy dissipated in the resistor has to come from the inductor
and the capacitor.

Finally, scaling Vi and ¢ we end up with Liénard’s equation (compare
Problem 7.7)

&=y— f(z) _
PN . fl0)=0. (7.22)
Equation (7.21) now reads
d B a4y

This equation will be our topic for the rest of this section. First of all,
the only fixed point is (0,0). If zf(z) > 0 in a neighborhood of z = 0, then
W is a Liapunov function and hence (0, 0) is stable. Moreover, we even have

Theorem 7.5. Suppose xf(x) > 0 for all z € R and xf(x) > 0 for 0 <
|x| < €. Then every trajectory of Liénard’s equation (7.22) converges to

(0,0).
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Figure 7.4. Typical f for Liénard’s equation.

Proof. If W(z,y) is constant on an orbit, say W(z,y) = R%/2, then the

orbit must be a circle of radius R. Hence we must have W = —zf(z) =0
for 0 < |z| < R and the result follows from the Krasovskii-LaSalle principle
(Theorem 6.12). O

Conversely, note that (0,0) is unstable if zf(z) <0 for 0 < |z| < e.

We will now show that Liénard’s equation has periodic orbits if f is odd
and if z f(x) is negative for x small and positive for x large. More precisely,
we will need the following assumptions.

(i) fis odd, that is, f(—z) = —f(z).
(ii) f(x) <0for 0 <z < a (f(a) = 0 without restriction).

(iii) liminf, o f(2z) > 0 and in particular f(z) > 0 for x > 8 (f(8) =
0 without restriction).

(iv) f(x) is monotone increasing for x > « (i.e., « = ).

A prototypical f is depicted in Figure 7.4.

Furthermore, let us abbreviate Q+ = {(z,y)| £« > 0} and Ly =
{(z,y)|lxr = 0,£y > 0}. Our symmetry requirement (i) will allow us to
restrict our attention to Q)4 since the corresponding results for Q) will fol-
low via the transformation (z,y) — (—z, —y) which maps Q4 to Q_ and
leaves the differential equation (7.22) invariant if f is odd.

As a first observation we note that

Lemma 7.6. Every trajectory of Liénard’s equation (7.22) in Q4+ can cross
the graph of f at most once.

Proof. If f is differentiable, this is clear since the graph of f is transversal
to the vector field away from (0,0). In the general case we can argue as
follows:

Suppose a trajectory starts below the graph of f, that is yg < f(xg). We
need to show that it cannot get above again. Suppose at some time t; we
cross the graph of f. Then y(t1—9) < f(x(t1—9)) and y(t1+¢) > f(z(t14¢))
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S

(0, 0) /(@)

(07 P(:UO))

Figure 7.5. Definition of the Poincaré map P(yo) for Liénard’s equation.

for £,0 > 0 sufficiently small. Moreover, we must also have z(t; — ) > x(¢;)
and x(t1 +¢) > x(t1) by our differential equation. In particular, we can find
e and § such that z(t; — ) = x(t1 + ¢) implying

y(ti +¢) > fz(ti +¢)) = fz(ti — 0)) > y(t1 — 9).
This contradicts that y(t) is decreasing (since x(t) > 0). O

Next we show

Lemma 7.7. Suppose f satisfies the requirements (ii) and (iii). Then, every
trajectory starting in Q1 above the graph of f will eventually hit the graph at
a finite positive time. Similarly, every trajectory starting in Q4+ on or below
the graph of f will hit L_ at a finite positive time. Finally, every trajectory
starting on the graph will hit L4 at a finite negative time.

Proof. Suppose we start at some point (zg,yo) with g > 0. Choose some
C < min f(x) and R > 0 sufficiently large such that (z¢,yo) lies within the
disc 22+ (y—C)? < R2. Then, since the arc 2+ (y—C)? = R? is transversal
with the vector field pointing inwards, the trajectory must stay inside until
it hits the graph of f respectively L_ by Lemma 7.2 (we cannot converge
to the only fixed point (0,0) since it is repelling). This proves the first two
claims.

To see the last one, choose M > max,c[zo+e f(z) and consider the

region bounded by the graph of f, the vertical line y = yo + €, the circle
22+ (y — M)? = (yo + ¢)?, and L, and argue as before. O

Now suppose f satisfies (i)—(iii). Denote the first intersection point of the
trajectory starting at (x(0),y(0)) = (0,y0) € L4 with L_ by (=(T),y(T)) =
(0, P(yo)) (cf. Figure 7.5). Then, every periodic orbit orbit must encircle
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(0,0) and satisfy P(yo) = —yo. Hence every periodic orbit corresponds to a
zero of the function

T
A(yo) = W(0, P(yo)) = W(0,50) = —/0 z(t) f (x(t))dt. (7.24)

Now what can we say about this function? Clearly, for yo < o we have
A(yp) > 0. Hence it suffices to show that A(yp) becomes negative as yg —
00.

By the last part of Lemma 7.7 there is a number r > 0 such that the
trajectory starting at (0,r) intersects the graph of f at (3,0). So for yo > r
our trajectory intersects the line x = § at t; and to. Furthermore, since the
intersection with f can only be for t € (¢1,t2), we have y(t) > f(z(t)) for
0 <t <t and y(t) < f(z(t)) for ta <t <T. Now let us split A into three
parts by splitting the integral at t; and ¢5. For the first part we obtain

R N ) (GO
Mlw) = = [t~ [T

Since y(x) is increasing as yp increases (orbits cannot intersect), the absolute

value of the integrand in Aj(yp) decreases. In addition, since y(t;) — oo as
yo — oo we have limy; o, Aq(yo) = 0. The second part is

dx. (7.25)

to (tl)
As(yo) = — / 2(0)f (e(t))dt = — / fa(y))dy <0, (7.26)
Y

t1 (tg)
By (iii) this part cannot tend to 0. Finally, the absolute value of the inte-
grand in the last part

o [ ef)
Bal) = = [ aOs@o)ie = [ )

to
also decreases, with a similar argument as for A.

Moreover, I claim that A(yy) eventually becomes negative. If y(t2) —
—oo then As(yp) — 0 as in the case of A; and the claim holds. Otherwise,
if y(t2) — y2 < 0, then every orbit passing through (53,y) with y < yo must
stay below f for all negative times by Lemma 7.7. Consequently we must
have f(x) — oo (since it must stay above any such solution). But then
Ao (yo) — —oo (show this) and the claim again holds.

If in addition (iv) holds, it is no restriction to assume o = ( and we
have that A(yg) is monotone decreasing for yo > r. Since we must also have
a > 1, there is precisely one zero in this case. This proves

Theorem 7.8. Suppose f satisfies the requirements (i)—(iii). Then Liénard’s
equation (7.22) has at least one periodic orbit encircling (0,0).

If in addition (iv) holds, this periodic orbit is unique and every trajectory
(except (0,0)) converges to this orbit as t — oo.
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Figure 7.6. Phase portrait of the van der Pol equation.

Proof. It remains to show that all orbits except (0, 0) converge to the unique
periodic determined by y = P(¥y) orbit found above. Since any initial con-
dition reaches L by Lemma 7.7, we can restrict our attention to orbits
starting on Li. Set P(y) = —P(—y) for y < 0 and consider the sequence
of points y, = P"(yo) (i.e., yam+1 is the sequence of intersections with L_
and o, is the sequence of intersections with Ly ). Since A(y) is positive for
y < 7 and negative for 7 < y the sequence (—1)"y, is strictly decreasing for
yo > ¥ and strictly increasing for yg < ¥ and hence converges to the only
fixed point 3. By continuity of the flow the points on the orbit between y,
and y,4+1 must also converge to v(7). O

The classical application is van der Pol’s equation
i—p(l—azHi+z=0, pu>0, (7.28)

which models a triode circuit. By Problem 7.7 it is equivalent to Liénard’s
equation with f(z) = u(x—; — z). All requirements of Theorem 7.8 are
satisfied and hence van der Pol’s equation has a unique periodic orbit and

all trajectories converge to this orbit as ¢ — oc.
The phase portrait for p = 1 is shown in Figure 7.6.

It is also interesting to consider the family of Liénard’s equations with
fu(x) = 2 — px. For p < 0 it has a stable fixed point at (0,0) which is
globally attracting by Theorem 7.5. For g > 0 this fixed point becomes
unstable and a unique globally attracting periodic orbit emerges. This is
the prototypical example of a Poincaré—Andronov—Hopf bifurcation.

Problem 7.7. The equation
Z+gx)t+x=0
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is also often called Liénard’s equation. Show that it is equivalent to (7.22)
if we set y = i@ + f(x), where f(x) = [ g(t)dt.

Problem 7.8. Show that
t=z(p—(a+if)lz]}), peRa,B>0,

where z(t) = x(t) + iy(t), exhibits a Hopf bifurcation at u = 0. (Hint: Use
polar coordinates z = re'¥.)

7.3. The Poincaré—Bendixson theorem

In all our examples from the previous sections the solutions behaved quite
regular and would would either converge to a fixed point or to a periodic
orbit. It turns out that this behavior is typical and it is the purpose to
classify the possible omega limit sets for planar systems in this section.
What makes R? different from R”, n > 3, in this respect is the validity of the
Jordan Curve Theorem: Every Jordan curve J (i.e., a homeomorphic
image of the circle S') dissects R? into two connected regions. In particular,
R2\ J has two components.

By an arc ¥ C R? we mean a submanifold of dimension one given by
a smooth map ¢ — s(t) with § # 0. Using this map the points of 3 can
be ordered. Moreover, for each regular x € M (i.e., f(z) # 0), we can
find an arc ¥ containing x which is transversal to f (i.e., $1(t)fa(s(t)) —

$2(t)f1(s(t)) # 0).

Lemma 7.9. Let xg € M be a reqular point and 3 a transversal arc contain-
ing xo. Denote by x, = x(t,), n > 1, the (maybe finite) ordered (according
to tn) sequence of intersections of Yo (o) with X. Then x, is monotone
(with respect to the order of ).

Proof. We only consider ¢ = +. If xp = z1 we are done. Otherwise
consider the curve J from xy to x; along 74 (z¢) and back from z; to xg
along 3. This curve J is the image of a continuous bijection from S! to J.
Since S' is compact, it is a homeomorphism. Hence J is a Jordan curve and
M\J = M7 U Mos.

Now let 3 C X be the arc from zg to z; along X. Then f always points
either in the direction of M; or M, since it cannot change direction by
transversality of ¥. Hence either v4(z1) C My or y4(z1) C Ma. Moreover,
if xg < x1, then 74 (x1) must remain in the component containing all points
x €3, x1 <z, and if xy > 1, then 4 (x1) must remain in the component
containing all points x € X, 1 > z (compare Figure 7.7). Iterating this
procedure proves the claim. O
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Zo

Figure 7.7. Proof of Lemma 7.9

Next, observe that if y € X Nw, (), we can approximate y by a sequence
Tn € XN Ye(x). In fact, choose t, — ooo such that z, = ®(t,,z) — y.
Then, by Lemma 6.8 (with z = y and T' = 0), we can use t, = t, + 7(x,)
to obtain a sequence ®(f,,z) — y of the required type.

Corollary 7.10. Let ¥ be a transversal arc. Then w,(x) intersects X in at
most one point.

Proof. Suppose there are two points of intersections y; and y2. Then there
exist sequences 1 p, T2, € XN, (z) converging to y1, y2, respectively. But
this is not possible since both are subsequence of the monotone sequence x,,
from Lemma 7.9. U

Corollary 7.11. Suppose wy(z) Ny (x) # 0. Then x is periodic and hence
wi () = - (z) = (@),

Proof. By assumption there is some y € wy(x) Ny, (x). If y is fixed we
have 7,(x) = {y} and there is nothing to do. So we can assume that
y is not fixed and pick a transversal arc ¥ containing y plus a sequence
Tn € LN7s(x) € X Nwe(x) converging to y. By the previous corollary we
must have x,, = y and hence v(y) = y(z) is periodic. O

Corollary 7.12. A minimal compact o invariant set C is a periodic orbit.

Proof. Pick + € C. Then w,(z) = C by minimality and hence w,(z) N
Yo () # 0. Therefore x is periodic by the previous corollary. O

After this sequence of corollaries we proceed with our investigation of
w4+ limit sets.

Lemma 7.13. If w,(z) # 0 is compact and contains no fixed points, then
wy(x) is a regular periodic orbit.
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21
Y1 Ty

Y2
b))

Figure 7.8. Proof of Lemma 7.15

Proof. Let y € wy(z). Take z € wy(y) C wy(xz) which is not fixed by
assumption. Pick a transversal arc ¥ containing z and a sequence y, — 2
with ¥, € ¥ N,(y). Since XN, (y) € ¥ Nwy(x) = {z} by Corollary 7.10,
we conclude y, = z and hence w,(z) is a regular periodic orbit. ([

Lemma 7.14. Suppose w,(x) is connected and contains a reqular periodic
orbit y(y). Then wy(z) = v(y).

Proof. If w,(x)\7v(y) is nonempty, then, by connectedness, there is a point
7 € v(y) such that we can find a point z € w,(x)\7v(y) arbitrarily close to 3.
Pick a transversal arc ¥ containing §. By Lemma 6.8 we can find 7(z) such
that ®(7(z),z) € ¥. But then we even have ®(7(2),z) € ¥ Nw,(z) = {7}
(by Corollary 7.10) and hence z € v(y) contradicting our assumption. [

Lemma 7.15. Let z € M, o € {£}, and suppose wy(x) is compact. Let
T4 € wy(x) be distinct fizved points. Then there exists at most one orbit
Y(y) C wy(x) with wy(y) = x.

Proof. Suppose there are two orbits v(y1,2). Since limy 400 ®(t,y12) =
x4+, we can extend ®(f,y12) to continuous functions on R U {£oo} by
®(+00,y12) = x+. Hence the curve J from x_ to z; along v(y;) and
back from x4 to z_ along (y2) is a Jordan curve. Writing M\J = My U My
we can assume z € M (since z € J is prohibited by Corollary 7.11). Pick
two transversal arcs ¥ o containing y; 2 respectively (compare Figure 7.8).
Then v, (z) intersects ¥ 2 in some points 2 2 respectively. Without loss we
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can assume that there are no further intersections with 3; and Y9 of v(x)
between z; and zo. Now consider the Jordan curve from y; to z1 to z9 to yo
to x4 and back to y; (along X1, v,(2), 32, ¥(y2), ¥(y1)). It dissects M into
two parts INi, Ny such that 7,(21) or 7,(22) must remain in one of them,
say N2 (as in the proof of Lemma 7.9). But now v,(z) cannot return close
to points of v(y1,2) N Ny contradicting our assumption. O

These preparations now yield the following theorem.

Theorem 7.16 (Poincaré-Bendixson). Let M be an open subset of R? and
f e CYM,R?). Fizrx e M, o € {£}, and suppose wy(z) # 0 is compact,
connected, and contains only finitely many fized points. Then one of the
following cases holds:

(i) wo(x) is a fixed orbit.
(ii) we(x) is a regular periodic orbit.

(ili) we(x) consists of (finitely many) fized points {x;} and unique non-
closed orbits y(y) such that wi(y) € {z;}.

Proof. If w,(z) contains no fixed points it is a regular periodic orbit by
Lemma 7.13. If w,(x) contains at least one fixed point x; but no regular
points, we have w,(z) = {x1} since fixed points are isolated and w,(z) is
connected.

Suppose that wy(x) contains both fixed and regular points. Let y €
ws () be regular. We need to show that w4 (y) consists of one fixed point.
Therefore it suffices to show that it cannot contain regular points. Let
z € wt(y) be regular. Take a transversal arc ¥ containing z and a sequence
Yn = 2, Yn € ¥(y) NE. By Corollary 7.10 v(y) C wy(x) can intersect ¥ only
in y. Hence y, = z and 7(y) is regular periodic. Now Lemma 7.14 implies
v(y) = ws(x) which is impossible since w,(x) contains fixed points. O

Finally let me remark, that since the domain surrounded by a periodic
orbit is invariant, Lemma 6.7 implies

Lemma 7.17. The interior of every periodic orbit must contain a fixed
point.

Periodic orbits attracting other orbits are also called limit cycles and
Hilbert’s 16th problem asks for a bound on the number of limit cycles for a
planar system with polynomial coefficients.

Problem 7.9. Find and prove a ”Poincaré-Bendizson theorem” in RY.

Problem 7.10. Suppose divf = 0 in some simply connected domain. Show

that there is a function F(z) such that f1(z) = agx(:) and fo(z) = _8;0(;):).
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Show that every orbit v(x) satisfies F(y(x)) = const. Apply this to Newton’s
equation & = f(z) in R.

Problem 7.11 (Bendixson’s criterion). Suppose divf does not change sign
and does not vanish identically in a simply connected region U C M. Show
that there are no regular periodic orbits contained (entirely) inside U. (Hint:
Suppose there is one and consider the line integral of f along this curve.
Recall the Gauss theorem in R?.)

Use this to show that
&+ p(x)t + q(x) =0, z €R,
has no regular periodic solutions if p(z) > 0.
Problem 7.12 (Dulac’s criterion). Show the following generalization of
Bendizson’s criterion. Suppose there is a scalar function a(x) such that
div(af) does not change sign and does not vanish identically in a simply

connected region U C M, then there are no reqular periodic orbits contained
(entirely) inside U.

Problem 7.13. If the intersection wy(x) Nw_(x) # O contains a regular
point, then x is periodic.



Chapter 8

Higher dimensional
dynamical systems

8.1. Attracting sets

In most applications, the main interest is to understand the long-time be-
havior of the flow of a differential equation (which we assume o complete
from now on for simplicity). In this respect it is important to understand
the fate of all points starting in some set X. Hence we will extend some of
our previous definitions to sets first.

Given a set X C M we can always obtain a ¢ invariant set by considering

1= (X) = | et x) = [ (). (8.1)
+t>0 reX

Taking the closure 7, (X)) we even obtain a closed o invariant set by Lemma 6.4.
Moreover, the w4-limit set of X is the set w (X) of all points y € M for
which there exists sequences t,, — +o0o0 and z,, € X with ®(t,,x,) — y.

Note that we have
U wi (@) € wi(X) (8.2)
reX
but equality will not hold in general as the following example shows.

Example. Consider
i =x(1—2?), y=—y. (8.3)

The z-direction has two stable z = +1 and one unstable x = 0 fixed points.
Similarly, the y-direction has the only stable fixed point y = 0. Hence it is

195
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not hard to see that
wy(Br(0)) =[—1,1] x {0}, r > 0. (8.4)
On the other hand,

U wi(@) ={(-1,0),(0,0),(1,0)}. (8.5)

z€B(0)

In particular w; (B,(0)) contains the three fixed points plus their unstable
manifolds. That is, all orbits which lie entirely in B,(0). This is also true
in general as we will see in Theorem 8.3 below. o

The following two lemmas are the analogs of Lemma 6.5 and Lemma 6.6.

Lemma 8.1. The set w,(X) is a closed invariant set given by

wo(X)=[)2tWX) =) U 2@ X) (8.6)

ot>0 ot>00(s—t)>0

Proof. Since the intersection of closed invariant sets is again a closed in-
variant set by Lemma 6.4 it suffices to show (8.6).

We only prove the o0 = + case. First of all note that since ®(¢,.) is a
diffeomorphism we have

B(t, 7+ (X)) = Bt 7+ (X)) = | @(s. X).

s>t

To see (= P(t, 74+ (X)) € wi(X) choose some y € (,~o P(t, 74+(X)). Then,
for every n € N we can find some y, = ®(n + s,,2,) € ®(n,v4 (X)) such
that |y — yn| < % Setting ¢, = n + s, we have found a sequence t, — oo
and points z, € X such that ®(t,,z,) — y, that is, y € ws(X).

Conversely, to show w (X) C (5, P(t, 7+(X)) choose some y € wy (X).
Then there exists ¢, — oo and z,, € X such that y, = ®(t,,z,) — y. This
implies y, € ®(¢,v4(X)) for ¢, > t and thus y € P(t,74(X)) for every
t > 0. U

We will only consider the case 0 = + from now on for notational simplic-
ity. Since by the last equality in (8.6) the sets ®(t,7,(X)) are decreasing,
we see

wi(X) = () @675 0) = () B0, 7 (X)). (8.7)

t>to neN

So if v, (X) # 0 is compact, wy (X) is the intersection of countably many
nonempty compact nesting sets and thus it is also a nonempty compact set
by the finite intersection property of compact sets.
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Lemma 8.2. Suppose X is nonempty. If the set v,(X) is compact, then
wy (X)) is nonempty and compact. If v-(X) is in addition connected (e.g., if
X is connected), then so is wy(X).

Proof. It remains to show that A = w,; (X) is connected. Suppose it is not
and can be split into two disjoint closed sets, A = Ag U A1, none of which is
empty. Since R” is normal, there are disjoint open sets Uy and U; such that
Ao C Uy and Ay C U;. Moreover, the set V,, = ®(n,v+(X))\(Up UU;) is
compact. Hence V' =), V;, is either nonempty or V,, is eventually empty. In
the first case we must have V' C A which is impossible since VN (UyUU; ) = 0.
Otherwise, if V,, is eventually empty, then ¢(n, v (X)) must be eventually
in Up or in U; (since ¢(n, v+ (X)) is connected) implying A C Uy respectively
A C Uy. Again a contradiction. O

Theorem 8.3. The set wy(X) is the union over all complete orbits lying
entirely in vy, (X).

Proof. Let y(y) be such an orbit. Then v(y) C v4(X) and invariance of
v(y) implies y(y) € ®(¢,v4+(X)) for all ¢ and hence v(y) C wy(X). Con-
versely, let y € wy(X). Then invariance of 4 (X) implies v(y) C wy(X) C

Y+ (X). .
For a given set A C M the sets
WE(A) = {z € M| Jim d(®y(x),A) = 0} (8.8)

are the stable respectively unstable sets of A. Here d(z, A) = inf{|z —
y||y € A} denotes the distance between z and A C R™ (cf. Problem 6.10).

An invariant set A is called attracting if W (A) is a neighborhood of
of A. In this case the set W (A) is also called the domain or basin of
attraction for A. Moreover, for any positively invariant neighborhood U
we have

W) = 2u0). (8.9)

t<0
But how can we find such a set? Fortunately, using our considerations from
above, there is an easy way of doing so. An open connected set E whose

closure is compact is called a trapping region for the flow if ®,(F) C F,
t>0.

Lemma 8.4. Let E be a trapping region. Then

A=wy(E)= ()2t E) (8.10)
t>0

s a nonempty, compact, and connected attracting set.
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Proof. First of all note that by ®(t + ¢, E) C ®(¢, E) C ®(t, F) we have
ﬂ (I)(taE) = ﬂ q)(taﬁ) = ﬂ (I)(t>’7+(E)) = W+(E).

t>0 >0 >0

Furthermore that A is nonempty, compact, and connected follows from
Lemma 8.2.

To see that A is attracting suppose there were an x € E and a sequence
tn, — oo with d(®(t,,x),A) > ¢ > 0. Then, since ®(¢,, ) remains in the
compact set E, we can assume ®(t,, ) — y after passing to a subsequence.
But y € wi(z) C w4 (F) by (8.2), a contradiction. O

Unfortunately the definition of an attracting set is not always good
enough. In our example (8.3) any ball B,.(0) with radius » > 1 is a trapping
region. However, whereas only the two fixed points (1, 0) are really attract-
ing, the corresponding attracting set A also contains the repelling fixed point
(0,0) plus its unstable manifold. In particular, the domain of attraction of
the two attracting fixed points W+ ({(—1,0), (1,0)}) = {(z,y) € R?|z = 0}
is up to a set of measure zero the same as W+ (A) = R2.

In fact, an attracting set will always contain the unstable manifolds of
all its points.

Lemma 8.5. Let E be a trapping region. Then
W™ (x) Cwy(E), Vo € wy(E). (8.11)

Proof. Let y € W~ (), that is limy_, _ ®(¢t,y) = = € E. Since FE is open
there is some ¢y such v_(®(tp,y)) C E. Since E is positive invariant we
even obtain v(y) = v(®(to,y)) € F = 74 (F) and the claim follows from
Theorem 8.3. U

To exclude such situations, one has to ensure that an attracting set
cannot be split into smaller invariant sets. One such possibility is to define
an attractor to be an attracting set which is topologically transitive. Here
a closed invariant set A is called topologically transitive if for any two
open sets U,V C A there is some ¢t € R such that ®(t,U) NV # (. In
particular, an attractor cannot be split into smaller attracting sets. Note
that A is topologically transitive if it contains a dense orbit (Problem 8.1).

This implies that only the sets {(—1,0)} or {(1,0)} are attractors for the
above example. The domains of attraction are W+ ({(£1,0)}) = {(z,y) €
R2?| + z > 0}.

Example. As another example let us look at the Duffing equation

iP=—0k4+z—2a°, §>0, (8.12)
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&

Figure 8.1. Basin of attraction for the fixed point (—1,0) of Duffing’s equation.

\

from Problem 9.6. It has a sink at (—1,0), a hyperbolic saddle at (0,0), and
a sink at (1,0). The basin of attraction of the sink (—1,0) is bounded by
the stable manifold of the hyperbolic saddle (0,0). The situation for § = 0.3
is depicted in Figure 8.1. o

Example. For the van der Pol equation (7.28) the unique periodic orbit is
an attractor and its basin of attraction is R?\{0}. However, not all attractors
are fixed points or periodic orbits, as the example in our next section will
show. o

Problem 8.1. Show that a closed invariant set which has a dense orbit is
topologically transitive.

Problem 8.2. Suppose E is a trapping region and let A = wy(FE). Then
WHA) = {2 € Mlwy (2) C A, w (z) £ 0},
(Hint: Problem 6.11.)

8.2. The Lorenz equation

One of the most famous dynamical systems which exhibits chaotic behavior
is the Lorenz equation

T = —O'(:L’ - y)v
= rr—y-—uxz,
= xy— bz, (8.13)

where o,7,b > 0. Lorenz arrived at these equations when modelling a two-
dimensional fluid cell between two parallel plates which are at different tem-
peratures. The corresponding situation is described by a complicated system
of nonlinear partial differential equations. To simplify the problem, he ex-
panded the unknown functions into Fourier series with respect to the spacial
coordinates and set all coefficients except for three equal to zero. The result-
ing equation for the three time dependent coefficients is (8.13). The variable
x is proportional to the intensity of convective motion, ¥ is proportional to
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the temperature difference between ascending and descending currents, and
z is proportional to the distortion from linearity of the vertical temperature
profile.

So let us start with an investigation of this system. First of all observe
that the system is invariant under the transformation
(x,y,2) = (—x,—y, 2). (8.14)
Moreover, the z axis is an invariant manifold since
z(t) =0, yt)=0, z(t)=ze ™ (8.15)
is a solution of our system.

But now let us come to some deeper results. We first show that the
dynamic is quite simple if » < 1. If r < 1 there is only one fixed point of
the vector field, namely the origin. The linearization is given by

-0 O 0
r -1 0 (8.16)
0 0 -b

and the corresponding eigenvalues are

b, —é(1+ai\/(1+a)2+4(r—1)0). (8.17)
Hence the origin is asymptotically stable for » < 1. However, we can even
do better. To this end, let us make the ansatz
L(z,y,2) = ax® + By? + 722, a, B,y >0, (8.18)
for a Liapunov function. Then a straightforward computation shows
L = —2a02? + 2(ao + Br)zy — 2By* — 2v2% + 2(y — B)zyz. (8.19)

To eliminate the xyz term we choose v = 3. Since no choice of «, f > 0 will
make the zy disappear, we need to absorb it using 2zy = —(z —y)? +22+32,

L= —(ao — ﬁr)xz — (ao + Br)(z — y)2 —((2=r)B— aa)y2 — 2822 (8.20)

Hence we need to choose a, > 0 such that ac—fr > 0 and (2—7)5—ac >
0. For example oo = r and 8 = o such that the third term vanishes and the
first becomes 2(1 —r)o > 0 for 0 < r < 1. In summary, for

L(x,y,2) = ra® + oy? + 02 (8.21)
we have
L(z,y,2) = =20(r(z — y)* + (1 — r)y* + b2?) (8.22)
and the following lemma follows easily from Theorem 6.12 (Problem 8.3).

Lemma 8.6. Suppose r < 1. Then the Lorenz equation has only the origin
as fixed point and all solutions converge to the origin as t — oco.
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If r grows above 1, there are two new fixed points

(x,y,2) = (:l:\/b(r—l),:lz\/b(r—l),r—l), (8.23)

and the linearization is given by

—o o 0
1 -1 F/b(r—1) 1. (8.24)
+/b(r—1) +4/b(r—1) —b

One can again compute the eigenvalues but the result would almost fill one
page. Note however that by (8.14) the eigenvalues are the same for both
points. From (8.17) we can read off that one eigenvalue is now positive and
hence the origin is no longer stable. It can be shown that the two new fixed
points are asymptotically stable for 1 < r < 470/19 = 24.74.

Next, let us try to plot some solutions using Mathematica.

In[1]:= 0 = 10;r = 28;b = 8/3;
sol = NDSolve[{x'[t] == —o(x[t] — y[t]),
]

{x,y,2},{t,0,20}, MaxSteps — 5000];
ParametricPlot3D[Evaluate[{x[t], y[t], z[t]}/.s01], {t, 0,20},
PlotPoints — 2000, Axes — False,PlotRange — All];

We observe that all trajectories first move inwards and then encircle the
two fixed points in a pretty irregular way.

To get a better understanding, let us show that there exists an ellipsoid
E. which all trajectories eventually enter and never leave again. To do this,
let us consider a small modification of our Liapunov function from above,

L(z,y,2) = rz® 4+ oy® + o(z — 2r)2. (8.25)
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A quick computation shows

L(z,y,2) = —20(rz® + y* + b(z — 7)% — br?). (8.26)
Now let E be the ellipsoid defined by E = {(z,y,2)|L(z,y,z) > 0} and
let M = max, y .)ep L(7,y, 2). Define By = {(z,y, 2)|L(7,y,2) < M +1}.
Any point outside E; also lies outside E and hence L < —§ < 0 for such

points. That is, for € R3\ E; the value of L is strictly decreasing along its
trajectory and hence it must enter E after some finite time.

Moreover, F; is a trapping region for the Lorenz equation and there is
a corresponding attracting set

A =w (B), (8.27)

which is called the attractor of the Lorenz equation. In particular, we see
that solutions exist for all positive times. Note also that W+ (A) = R3. All
fixed points plus their unstable manifolds (if any) must also be contained in
A. Moreover, I even claim that A is of Lebesgue measure zero. To see this
we need a generalized version of Liouville’s formula (3.82).

Lemma 8.7. Let & = f(x) be a dynamical system on R™ with corresponding
flow ®(t,x). Let M be a bounded open subset of R™ and let V = [, dx be
its volume. Abbreviate M (t) = ®(t, M), respectively, V(t) = fM(t) dx. Then

V) = / div(f(x)) da. (8.28)
M(?)
Proof. By the change of variable formula we have

V) = /M(t) do = /M det (d; () d.

Since I1,(t) = d®,(x) satisfies the first variational equation,

I (t) = df (®4(2)) (1),
Liouville’s formula (3.82) for linear systems implies
det(d®(z)) = exp </0 div(f(@s(x)))ds>
(recall tr(df (z)) = div(f(z))). Thus
V() = [ Av(7(@i(a) det(d () do
M

and a second application of the change of variable formula finishes the proof.
O
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Applying this lemma to the Lorenz equation we obtain
V(t) = Ve (Fotb)t (8.29)

div(f) = —(1 + o + b). (8.30)

In particular, we see that the measure of ®(¢, E;) decreases exponentially,
and the measure of A must be zero. Note that this result also implies that
none of the three fixed points can be a source.

Our numerical experiments from above show that A seems to be a quite
complicated set. This is why it was called the strange attractor of the
Lorenz equation.

However, this is clearly no satisfying mathematical definition of a strange
attractor. One possibility is to call an attractor strange if the dynamical
system generated by the time-one map

A A (8.31)

is chaotic and if A is fractal. It is still unknown whether the Lorenz attractor
is strange in the sense of this definition. See the book by Sparrow [30] for a
survey of results.

I will not go into any further details at this point. We will see how these
terms are defined in Section 11.3 and Section 11.6, respectively. However,
I hope that this example shows that even simple systems in R? can exhibit
very complicated dynamics. I also hope that you can now better appreciate
the Poincaré-Bendixson which excludes such strange behavior in R2.

Problem 8.3. Prove Lemma 8.6.
Problem 8.4. Solve the Lorenz equation for the case o = 0.

Problem 8.5. Investigate the Lorenz equation for the case r = 0o as follows.
First introduce ¢ = r~'. Then use the change of coordinates (t,x,y, )
(1,6,1,C), where T = e, £ = ex, n = 0e?y, and ( = (%2 — ¢).
Show that the resulting system for e = 0 is given by
5, =1, 77, = _£C7 C, = 7]53

which has two conserved quantities

& -20=2a, P*+=4

Derive the single third order equation £" = — (362 — a)¢’. Integrate this
equation once and observe that the result is of Newton type (see Section 6.7).
Now what can you say about the solutions? (Hint: Problem 6.22.)
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8.3. Hamiltonian mechanics

In the previous sections we have seen that even simple looking dynamical
systems in three dimension can be extremely complicated. In the rest of this
chapter we want to show that it is still possible to get some further insight
if the system has a special structure. Hence we will look again at systems
arising in classical mechanics.

The point of departure in classical mechanics is usually the Hamilton
principle. Suppose a mechanical system has n degrees of freedom described
by coordinates ¢ € V' C R". Associated with such a system is a Lagrange
function

L(v,q), v = q, (8.32)

and an integral curve ¢(t) for which the action integral

0= [ " L) a0t (8.33)

0
subject to the boundary conditions ¢(t9) = qo, ¢(t1) = ¢1 is extremal.

If L is differentiable, extremal curves can be found by setting the Gateaux
derivative of I equal to zero. That is, setting

q=(t) = q(t) +er(t), (8.34)
we see that a necessary condition for ¢ to be extremal is that
d
—7 =0. 8.35
de () e=0 ( )

Using integration by parts this immediately yields (Problem 8.6) the corre-
sponding Euler—Lagrange equation
oL _doL _,
Oq dtov

In the situation of particles under the influence of some forces we have

(8.36)

L(v,q) = %UMU - U(q), (8.37)

where M is a positive diagonal matrix with the masses of the particles as
entries and U is the potential corresponding to the forces. The associated
Fuler-Lagrange equations are just Newton’s equations

MG = —gradU(q). (8.38)
If the momentum
oL
p(v,q) = 5 (v;49) (8.39)
is a diffeomorphism for fixed ¢, and hence
0L
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then we can consider the Legendre transform of L,

H(p,q) = pv— L(v,q), v=vuv(p,q), (8.41)

which is known as the Hamilton function of the system. The associated
variational principle is that the integral

200 = [ (p000) ~ Hip(o),a(0)) (8.42)

subject to the boundary conditions ¢(ty) = qo, q(t1) = ¢1 is extremal. The
corresponding Fuler—Lagrange equations are Hamilton’s equations

. 0H(p,q) . _0H(p,q)
op oq

This formalism is called Hamilton mechanics.

(8.43)

In the special case of some particles we have
r
p=Mv,  Hp,q)=5pM 'p+Ulq) (8.44)
and the Hamiltonian corresponds to the total energy of the system.
Introducing the symplectic matrix

(0 I a7
J—<_H o)’ Jl=JT=—J, (8.45)

Hamilton’s equation can also be written as

d (p
pr < q> = —grad,H (p, q), (8.46)

where grad, = —J grad is called the symplectic gradient.

A straightforward calculation shows that H is a constant of motion,
that is,

L roaty) O OH_OHOH _OHOH _
ar TP = P T T e 8 T Bg ap
More generally, for a differentiable function I(p,q) its change along a tra-
jectory is given by its Lie derivative (compare (6.36))

d

0. (847

1), a(t)) = {H(p(?),q(1)), 1(p(), a(1))}, (8.48)
where
(.0 2010 o1 B0

is called Poisson bracket. (This should be compared with the Heisenberg
equation of Problem 3.28.)
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A function I(p,q) is called a first integral if it is constant along tra-
jectories, that is, if
{H,I} =0. (8.50)
But how can we find first integrals? One source are symmetries.

Theorem 8.8 (Noether). Let ®(t,q) be the flow generated by f(q). If ®
leaves the Lagrangian invariant, then

1v,0) = 200 5 (8:51)

is a constant of motion.

Proof. Abbreviate ¢°(t) = ®(s,¢(t)). The invariance of L(v, q) implies

0 = Lram.cw|
— Sol0,a(0) 3 )0 + a0 ale)  (552)
and hence
GHa0a0) = (§50600) 10+ Sra %o
~ (G0 -5000) =0 )
by the Euler-Lagrange equation. ([

For example, if L(v, q) from (8.37) does not depend on the j'th coordi-
nate ¢; (for some fixed j), then it is clearly invariant under ®(s, q¢) = ¢+ sd;,
where 0; is the unit vector in the j’th direction. Hence the j'th momentum

9L(v,q)
= —0" 8.54
pj 8’[)]' ( )
is conserved in this case by Noether’s theorem. For another example see
Problem 8.12.

Another important property of Hamiltonian systems is that they are
volume preserving. This follows immediately form Lemma 8.7 since the
divergence of a Hamiltonian vector field is zero.

Theorem 8.9 (Liouville). The volume in phase space is preserved under a
Hamiltonian flow.

This property can often give important information concerning the mo-
tion via Poincaré’s recurrence theorem.

Theorem 8.10 (Poincaré). Suppose ® is a volume preserving bijection of a
bounded region D C R™. Then in any neighborhood U C D there is a point
x returning to U, that is, ®"(x) € U for some n € N.
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Proof. Consider the sequence ®"(U) C D. There are two numbers [, k such
that ®!(U)N®*(U) # (0 since otherwise their volume would be infinite. Hence
UN®*=YU) # . If y is a point in the intersection we have y = ®*~(x),
which proves the claim. O

Problem 8.6. Derive the Euler-Lagrange equation (8.36) for q € C2.

Problem 8.7. Consider the Lagrange functions L1(q,v) = |v| and L2(q,v) =
%|v|2 in R™. What is the corresponding action integral for L1¢ What are
the extremal curves for Ly and for Lo ? Show that Z;(q) < \/2(t1 — t0)Z2(q)
with equality if |¢| = 1 (Hint: Cauchy-Schwarz inequality).

Let M(q) be a positive definite matrixz for every q € R™. Consider
Li(g,v) = \/vM(q)v and La(q,v) = $vM(q)v. The action integral cor-
responding to L is called the length of the curve q and extremals are called
geodesics. Show that the length is independent of reparametrization.

Problem 8.8 (Legendre transform). Let F'(v) be such that

&*F
det W(U()) % 0.

Show that the function p(v) = %—f(v) is a local diffeomorphism near vy and
that the Legendre transform

G(p) = pv(p) — F(v(p))
is well defined. Show that

oF oG
D= %(U) < U= (er(p)

and conclude that the Legendre transformation is involutive.

Problem 8.9. Show that the Poisson bracket is a skew-symmetric bilinear
form on C*°(V) satisfying the Jacobi identity

{I[LAJ,K}} +{J{K,I}}+{K,{I[,J}} =0
and Leibniz’ rule
{I,JK}=J{I,K}+ K{I,J}.

Problem 8.10. Suppose that D is bounded and positively invariant under a
volume preserving flow. Then D belongs to the set of nonwandering points.
(Hint: Poincaré’s recurrence theorem and Problem 6.9.)

Problem 8.11 (Relativistic mechanics). Einstein’s equation says that
the kinetic energy of a relativistic particle is given by

02
T(v) = m(v)c?, m(v) =moy/ 1+ =L
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where ¢ is the speed of light and my is the (rest) mass of the particle. De-
rive the equation of motions from Hamilton’s principle using the Lagrangian
L(v,q) =T(v) —U(q). Derive the corresponding Hamilton equations.

Problem 8.12. Consider L(v,q) from (8.37) in R3 with M = ml3 and
suppose U(q) = U(|q|) is rotation invariant. Show that the angular mo-
mentum

l=xNAp

is conserved in this case. Here N\ denotes the cross product in R3.

8.4. Completely integrable Hamiltonian systems

Finally we want to show that there is also a canonical form for a Hamil-
ton system under certain circumstances. To do this we need to transform
our system in such a way that the Hamilton structure is preserved. More
precisely, if our transformation is given by

(P7 Q) = 90(]% Q)7 (p, Q) = Qﬁ(R Q)? (855)

we have

(g) =dy (5) = —dpJ grad H(p, q) = —(dpJde™) grad K(P,Q), (8.56)

where K = H oy is the transformed Hamiltonian. Hence, we need to require
that the Jacobian of ¢ is a symplectic matrix, that is,

dp € Sp(2n) = {M € Gl(2n)|MIMT = J}, (8.57)

where Sp(2n) is the symplectic group. Such a map is called a symplectic
map. In this case @ is also called a canonical transform. Alternatively
they can be characterized as those transformations which leave the sym-
plectic two form

w((p1,q1), (P2, @2)) = (p1, 01)J (P2, @2) = P1g2 — P21 (8.58)

invariant.

To find canonical transformations, recall that we have derived Hamil-
ton’s equations from the variational principle (8.42). Hence, our transform
will be canonical if the integrands of (8.42) and

~ t1 .
1P.Q) = [ PO - K(PO. Q) (8.59)
to
only differ by a total differential. By H(p,q) = K(P, Q) we are lead to
pdq — PdQ = dS, (8.60)

where dq has to be understood as dq(t) = ¢(t)dt for a given curve ¢(t).
The function S is called a generating function and could depend on all four
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variables p, ¢, P, and Q. However, since only two of them are independent
in general, it is more natural to express two of them by the others.

For example, we could use

S =51(¢,Q) (8.61)
and 08, . 08
pdg — PdQ = —1d + QldQ (8.62)
shows we have 58 Py
1 1
= — P = —— .

since the previous equation must hold for all curves ¢(t) and Q(t). Moreover,
if we require

851
8 q0Q

we can solve p = %Z’Q) locally for @ = Q(p,q) and hence our canonical
transformation is given by

£0, (8.64)

oS
(P.Q) = (55 (4 Qr.0), Qv 0)) (8.65)
Similarly we could choose
S = —PQ + S (P,q), (8.66)
where Py Py
pdq — PdQ = —QdP — PdQ + —QdP + 8—561@ (8.67)
implies
05 05:
== = — 8.68
Again, if we require
053
det 9P0g #0, (8.69)
we obtain a canonical transformation
oS
(P.Q) = (P(r.q). 55 (P(p:4).9)). (8.70)

The remaining two cases

S=qp+53(Q,p) and S =qp— PQ+ Si(P,p) (8.71)

are left as an exercise.

Now let us return to our canonical form. We will start with one dimen-
sion, that is, n = 1 with H(p,q) as in (6.47). Let go be a local minimum
of U(q) surrounded by periodic orbits v which are uniquely determined by
the energy E of a point on the orbit. The two intersection points of v with
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the ¢ axis to the left and right of gop will be denoted by ¢_(F) and ¢4+ (E),
respectively. In particular, note U(qs(F)) = E.

The integral over the momentum along such a periodic orbit

+(E)
1) =L / pdg=2 [ VAET@s 67)
YE

27 T Je(E
is called the action variable. Next, by (6.42)
1 [a+(B) d T(E
I'(E) = / d 1B (8.73)
mJo) V2AE-Ulg) 27

where T'(E) is the period of vg and thus we can express E as a function of
I, say E' = K(I). Hence if we take I as one of our new variables, the new
Hamiltonian K will depend on I only. To find a suitable second variable we

will look for a generating function S3(7,¢q). Since we want p = %ng we set

So(l,q) = / pdq = / VAED —Ul@)dg  (8.74)
q— (K (I)) q—(K(I))

and the second variable is

O @
or  Jo ) V2AE-U(q)) T(E)"

where ¢ is the time it takes from ¢_(E) to ¢ (compare again (6.42) and note

K'(I) = I'(E)~1Y). The variable 6 is called the angle variable and is only
defined modulo 27. The equation of motion read

oK

0

(8.75)

i oK
00 0,

. 0K

0 o = Q(I), (8.76)

where Q(I) = 2 /T(K(I)).

The main reason why we could find such a canonical transform to action-
angle variables is the existence of a first integral, namely the Hamiltonian.
In one dimension this single first integral suffices to decompose the surfaces
of constant energy into periodic orbits. In higher dimensions this is no longer
true unless one can find n first integrals L; which are functionally indepen-
dent and in involution, {L;, Ly} = 0. Such systems are called completely
integrable. If the system is integrable, the n first integrals can be used to
define the n-dimensional manifolds I'. = {(p,q)|L;(p,q) = ¢;, 1 < j < n}
which can be shown to be diffeomorphic to an n-dimensional torus (if they
are compact). Taking a basis of cycles {7;(c)}}_; on the torus I'c one can
define the action variables as before via

1
Ij(e) = 5 Lj(c)pdq (8.77)
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and the angle variables via a generating function Sa(I,q) = [ “pdg. 1do not
want to go into further details here but I refer to the excellent book by Arnold
[2]. However, I will at least illustrate the situation for the prototypical
example. Approximating the potential U(g) near a local minimum we obtain

Ula) = Ulao) + 3aWa + oflaP), (5.78)

where W is a positive matrix and U(qp) can be chosen zero. Neglecting the
higher order terms, the resulting model

H(p,q) = 5 (oMp+ aW o) (379

is known as harmonic oscillator. Let V' be the (real) orthogonal matrix
which transforms the symmetric matrix M~Y/2WM~1/2 to diagonal form
and let w? be the eigenvalues. Then the symplectic transform (P,Q) =

(VMY2p, V M~1/2¢) (Problem 8.14) gives the decoupled system

In particular,
- 1
K(PQ) =Y K, K= 5 (B +Q)), (8.81)
j=1

where the Kj’s are n first integrals in involution (check this). The corre-
sponding action-angle variables are given by (Problem 8.16)

1 P2 9 P;
I = 5((,7]] + w;Q3), 6; = arccotwjéj. (8.82)

For example, consider the following Hamiltonian
n

.
H(p,q) =) 55 +Uo(js1-0), @0=duy1 =0  (883)
j=1

which describes a lattice of n equal particles (with mass m) with nearest
neighbor interaction described by the potential Uy(x). The zeroth and n’th
particle are considered fixed and ¢; is the displacement of the j’th particle
from its equilibrium position. If we assume that the particles are coupled
by springs, the potential would be Uy(x) = %xQ, where k > 0 is the so called
spring constant, and we have a harmonic oscillator. The motion is decom-
posed into n modes corresponding to the eigenvectors of the Jacobian of the
potential. Physicists believed for a long time that a nonlinear perturbation
of the force will lead to thermalization. That is, if the system starts in a
certain mode of the linearized system, the energy will eventually be dis-
tributed equally over all modes. However, Fermi, Pasta, and Ulam showed
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with computer experiments that this is not true (Problem 8.17). This is
related to the existence of solitons, see for example [22].

Problem 8.13 (Symplectic group). Show that Sp(2n) is indeed a group.
Suppose M € Sp(2n), show that det(M)? =1 and xp(2) = 22" xp(271).

Problem 8.14. Show that the linear transformation (P, Q) = (Up, (U1 Tq),
where U is an arbitrary matrix, s canonical.

Problem 8.15. Show that the transformation generated by a function S is
canonical by directly proving that dy is symplectic. (Hint: Prove —Jdyp =
JdyT using

o _ s (oY
0Q  0Qoq 0q

and similar for the others.)

Problem 8.16. Consider the harmonic oscillator in one dimension
2

1 w
ff@Lq)==§p2+-7;q2

and show that S1(q,0) = 4¢* cot(#) generates a canonical transformation to
action-angle variables.

Problem 8.17 (Fermi-Pasta—Ulam experiment). Consider the Hamiltonian
(8.83) with the interaction potential Up(x) = %(22 +az®). Note that it is no
restriction to use m =k =1 (why?).

Compute the eigenvalues and the eigenvectors of the linearized system
a = 0. Choose an initial condition in an eigenspace and (numerically)
compute the time evolution. Investigate how the state is distributed with
respect to the eigenvectors as a function of t. (Choose N =32, a = 1/6.)

Problem 8.18 (Lax pair). Let L(p,q) and P(p,q) be n by n matrices. They
are said to form a Lax pair for a Hamiltonian system if the equations of
motion (8.43) are equivalent to the Lax equation
L=[PL].
Show that the quantities
tr(L7), 1<j<mn,

are first integrals (Hint: Compare Problem 3.28).

8.5. The Kepler problem

Finally, as an application of our results we will show how to solve equation
(1.11) from Section 1.1. In fact, we will even consider a slightly more general
case, the two body problem. Suppose we have two masses placed at
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r1 € R? and 2o € R3. They interact with a force F depending only on the
distance of the masses and lies on the line connecting both particles. The
kinetic energy is given by

T(z) = 7:t1 + 71'2 (8.84)
and the potential energy is
U(z) = U(|z1 — x2|). (8.85)
The Lagrangian is the difference of both
L(z,x) =T(z) — U(x). (8.86)

Clearly it is invariant under translations (21, x2) + (x1+sa, x2+sa), a € R3,
and so Theorem 8.8 tells us that all three components of the total momentum

mia1 + mado (8.87)

are first integrals. Hence we will choose new coordinates

mi1xy + moXxo
Q=—", q2 = T1 — T2 (8.88)
m1 + mg

in which our Lagrangian reads

L(¢,q) = quJr%qg—U(cn), M =my +my, p=

In particular, the system decouples and the solution of the first part is given
by ¢i(t) = q1(0) 4+ ¢1(0)t. To solve the second, observe that it is invariant
under rotations and, invoking again Theorem 8.8, we infer that the angular
momentum

mimsa

(8.89)

l'= g2 A qo (8.90)
is another first integral. Hence we have found three first integrals and we
suspect that our system is integrable. However, since

{li, 2} =13, {l,13} = =lo, {lo,l3} =1 (8.91)

they are not in involution. But using {, |I|*} = 0 it is not hard to see

Theorem 8.11. The two body problem is completely integrable. A full set of
first integrals which are functionally independent and in involution is given

by

P11, P12, P13, gp%+U(Q2)7 ‘”27 l3, (8-92)

where p1 = M¢, and pa = ugo.

Our next step would be to compute the action angle variables. But since
this is quite cumbersome, we will use a more direct approach to solve the
equation of motions. Since the motion is confined to the plane perpendicular
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to [ (once the initial condition has been chosen), it suggests itself to choose
polar coordinates (7, ¢) in this plane. The angular momentum now reads

lo = |l| = pur*¢ (8.93)
and conservation of energy implies
il + —lg +U(r)=E. (8.94)
2 /1«27"2

Hence, r(t) follows (implicitly) from

_ 2(E-U(r)) 12

7= \/ . e (8.95)
via separation of variables. In case of the Kepler problem (gravitational
force)

Ur)=—-= (8.96)

it is possible to compute the integral, but not to solve for r as a function of
t. However, if one is only interested in the shape of the orbit one can look
at r = r(p) which satisfies

1dr _ \/WE—U(T)) _ 1 (8.97)

r2dp 12 r

The solution is given by (Problem 8.19)

B p 3
= s p =

1 —ecos(p — o) T 1y
Thus the orbit is an ellipsis if € < 1, a parabola if € = 1, and a hyperbola if
e>1.

() (8.98)

Problem 8.19. Solve (8.97). (Hint: Use the transformation p = r~'.)

8.6. The KAM theorem

In the last section we were quite successful solving the two body problem.
However, if we want to investigate the motion of planets around the sun
under the influence of the gravitational force we need to consider the general
N-body problem where the kinetic energy is given by

N

. J .2
T(i)=> 5 (8.99)

j=1

and the potential energy is

U)= Y Upllz; —zx)). (8.100)
1<j<k<N



8.6. The KAM theorem 215

In case of the gravitational force one has

msmy

Ujk(lzj — zil) = ‘ (8.101)

T4 — xk| ’
However, whereas we could easily solve this problem for N = 2, this is no
longer possible for N > 3. In fact, despite of the efforts of many astronomers
and mathematicians, very little is known for this latter case.

The reason is of course that the N-body problem is no longer integrable
for N > 3. In fact, it can be even shown that a generic Hamiltonian system
(with more than one degree of freedom) is not integrable. So integrable
systems are the exception from the rule. However, many interesting physical
systems are nearly integrable systems. That is, they are small perturbations
of integrable systems. For example, if we neglect the forces between the
planets and only consider the attraction by the sun, the resulting system is
integrable. Moreover, since the mass of the sun is much larger than those of
the planets, the neglected term can be considered as a small perturbation.

This leads to the study of systems

H(p,q) = Ho(p,q) + < Hi(p, q), (8.102)

where Hj is completely integrable and ¢ is small. Since Hy is integrable, we
can choose corresponding action angle variables (1,6) and it hence suffices
to consider systems of the type

H(I,6) = Ho(I) + ¢ Hy(1,0), (8.103)

where I € R™ and all components of 6 have to be taken modulo 27, that is,
0 lives on the torus T".

By (8.76) the unperturbed motion for £ = 0 is given by
I(t) =1o,  6(t) =0+ Q(Io)t. (8.104)

Hence the solution curve is a line winding around the invariant torus I';, =
{Io} x T™. Such tori with a linear flow are called Kronecker tori. Two
cases can Occur.

If the frequencies (1) are nonresonant or rationally independent,
EQ(Ip) #0 for all k € Z"\{0}, (8.105)

then each orbit is dense. On the other hand, if the frequencies Q(Iy) are
resonant,

kQ(Ip) =0 for some k € Z"\{0}, (8.106)

the torus can be decomposed into smaller ones with the same property as
before.
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The corresponding solutions are called quasi-periodic. They will be
periodic if and only if all frequencies in Q(I) are rationally dependent, that
is,

Q(ly) = kw for some k € Z", w € R. (8.107)
In case of the solar system such quasi-periodic solutions correspond to a
stable motion (planets neither collide nor escape to infinity) and the question
is whether they persist for small perturbations or not. Hence this problem
is also known as “stability problem” for the solar system.

As noted by Kolmogorov most tori whose frequencies are nonresonant
survive under small perturbations. More precisely, let I € D C R™ and
denote by Q(D) the set of all possible frequencies for our system. Let (D)
be the set of frequencies {2 satisfying the following diophantine condition

kQ| > ﬁ for all k € Z™\{0}. (8.108)

Then the following famous result by Kolmogorov, Arnold, and Moser holds

Theorem 8.12 (KAM). Suppose Hy, H; are analytic on D x T™ and Hy
is nondegenerate, that is,

0Hy
det [ —— . 1
et<aj_>7é0 (8.109)
Then there exists a constant & > 0 such that for
le| < 6a? (8.110)

all Kronecker tori I'r of the unperturbed system with I € Qq(D) persist as
slightly deformed tori. They depend continuously on I and form a subset of
measure O(a) of the phase space D x T™.

The proof of this result involves what is know as “small divisor” prob-
lem and is beyond the scope of this book. However, we will at least consider
a simpler toy problem which illustrates some of the ideas and, in particular,
explains where the diophantine condition (8.108) comes from. See the books
by Arnold [2] or Moser [21] for further details and references.

But now we come to our toy problem. We begin with the system
iwq
T = Az, A= , wj €R, (8.111)
1w,
where the solution is quasi-periodic and given by
zi(t) = (eMe); = cjeit. (8.112)
Next we perturb this system according to

&= Az + g(x), (8.113)
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where g(x) has a convergent power series
g(x) = Z gr, k e Ng, (8.114)
[k|>2
where k = (ki,...,kn), |k| = k1 + -+ + ky, and 2% = x]fl -..zkn For the

solution of the perturbed system we can make the ansatz

z(t) = ) cpett? (8.115)

|k[>1
or equivalently
z(t) = u(e?e), (8.116)
where
u() =z + Y upr’. (8.117)
|k[>2

Inserting this ansatz into (8.113) gives
ou

5, (AT = Au(z) + g(u(x)), (8.118)

that is,

D (wk = Awpa® = gz + Y upa®). (8.119)

|k|>2 |k|>2
Comparing coefficients of z* shows that
(iwk — A)uy, = terms involving wu, for |¢| < |k|. (8.120)
Hence the coefficients u; can be determined recursively provided
wk —wj # 0 forall [k] >2,1<j<n. (8.121)

Next one needs to show that the corresponding series converges and it is
clear that this will only be the case if the divisors wk — w; do not tend to
zero too fast. In fact, it can be shown that this is the case if there are
positive constants d, 7 such that

lwk — w;| > UjT (8.122)
holds. Moreover, it can be shown that the set of frequencies w satisfying
(8.122) for some constants is dense and of full Lebesgue measure in R™.

An example which shows that the system is unstable if the frequencies
are resonant is given in Problem 8.20.

Problem 8.20. Consider

ki+1 ko
g(x) = <$1 0332 > ) wik1 + waks = 0,

and show that the associated system is unstable. (Hint: Bernoulli equation.)






Chapter 9

Local behavior near
fixed points

9.1. Stability of linear systems

Our aim in this chapter is to show that a lot of information of the stability
of a flow near a fixed point can be read off by linearizing the system around
the fixed point. As a preparation we recall the stability discussion for linear
system

&= Aw (9.1)

from Section 3.2. Clearly, our definition of stability in Section 6.5 is invariant
under a linear change of coordinates. Hence it will be no restriction to
assume that the matrix A is in Jordan canonical form.

Moreover, recall that, by virtue of the explicit form (3.37) of exp(tJ)
for a Jordan block J, it follows that the long-time behavior of the system
is determined by the real part of the eigenvalues. In general it depends on
the initial condition and there are two linear manifolds E*(eA) and £~ (eA),
such that if we start in ET(e4) (resp. E~(e?)), then 2(t) — 0 as t — oo
(resp. t — —00).

The linear manifold E*(e4) (resp. E~(e?)) is called stable (resp. un-
stable) manifold and is spanned by the generalized eigenvectors corre-
sponding to eigenvalues with negative (resp. positive) real part,

Ef(e)= P Ker(d—ay)". (9.2)
+Re(a;)<0

Similarly one can define the center manifold E°(e?) corresponding to
the eigenvalues with zero real part. However, since the center manifold is

219
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generally not stable under small perturbations, one often assumes that it is
empty. Hence we will give a system where all eigenvalues have nonzero real
part a special name. They are called hyperbolic systems.

If all eigenvalues have negative real part we have the following result
from which summarizes Corollary 3.5 and Corollary 3.6.

Theorem 9.1. Denote the eigenvalues of A by a;j, 1 < j < m, and the cor-
responding algebraic and geometric multiplicities by a; and gj, respectively.
The system & = Ax is globally stable if and only if Re(a;) < 0 and
a; = g; whenever Re(o;) = 0.
The system © = Az is globally asymptotically stable if and only if we
have Re(cj) < 0 for all j. Moreover, in this case there is a constant C for
every a < min{—Re(a;)}72; such that

|exp(tA)| < Ce ', (9.3)

Finally, let us look at the hyperbolic case. In addition, our previous
theorem together with the fact that the stable and unstable manifolds are
invariant with respect to A (and thus with respect to exp(tA4)) immediately
give the following result.

Theorem 9.2. The linear stable and unstable manifolds E* are invariant
under the flow and every point starting in E* converges exponentially to 0
as t — +oo. In fact, we have

|exp(tA)zs| < CeTlzy|, +t>0, zie€ BT (9.4)

for any o < min{|Re(a;)||a; € o(A),£Re(a;) < 0} and some C > 0
depending on a.

Proof. As before we can assume that A is in Jordan canonical form. To
see the estimate (9.4) consider the + case and let ¢ = min{|Re(a;)||a; €
o(A),Re(ej) < 0} —a > 0. Then for any eigenvalue «; with Re(aj) < 0
there is a corresponding Jordan block of size n and the largest entry can be
estimated by
‘tneajt‘ < |tnefst} e ot < (ﬁ)ne,at'
e€

The rest is straightforward. O

For our further investigations, it is also useful to introduce the space
spanned by all generalized eigenvectors of A corresponding to eigenvalues
with real part less/bigger than Fa,

E=2et = P Ker(d- ;)% = EE(e**). (9.5)
FRe(aj)>a
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Equivalently,
E5%e?) = {z| lim e|exp(tA)z| = 0}, (9.6)
t—+oo

is the space spanned by all initial conditions which converge to 0 with some
given exponential rate a > 0. Note that E? is piecewise constant and will
jump at those values of « which are equal to the real part of some eigenvalue
of A.

Problem 9.1. For the matrices in Problem 3.9. Determine the stability of
the origin and, if the system is hyperbolic, find the corresponding stable and
unstable manifolds.

Problem 9.2. Let A be a two by two matriz and let
xa(z) =22 -T2+ D =0, T =tr(A), D = det(A),

be its characteristic polynomial. Show that A is hyperbolic if TD # 0. More-
over, A is asymptotically stable if and only if D > 0 and T < 0. (Hint:
T=oa+as, D=ajas.)
Let A be a three by three matriz and let
xa(z) =22 —T22+ Mz2—D =0

be its characteristic polynomial. Show that A is hyperbolic if (TM — D)D #
0. Moreover, A is asymptotically stable if and only if D < 0, T < 0 and
TM < D. (Hint: T = ag+as+as, M = ajaz+agag+asas, D = ajasas,
and TM — D = (Oz1 + 042)((11 + 043)(042 + 043).)

Problem 9.3. Suppose all eigenvalues of A satisfy Re(a;) < 0. Show that
every solution of (3.40) satisfies

tlggo z(t) = 0.

if imy—so0 |g(t)| = 0 (Hint: (3.41).) What if limy—00 g(t) = go?

9.2. Stable and unstable manifolds

In this section we want to transfer some of our results of the previous section
to nonlinear equations. We define the stable, unstable set of a fixed point
xo as the set of all points converging to xg for t — oo, t = —o0, that is,

WE(x0) = {z € M| Jim [@(t,) — zo| = 0} (9.7)

Both sets are obviously invariant under the flow. Our goal in this section is
to find these sets.

Any function f € C! vanishing at 29 = 0 can be decomposed as

f(z) =Ax+ g(x), (9.8)
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Figure 9.1. Phase portrait for a planar system with a hyperbolic fixed
point (1, 1) together with the stable/unstable manifold (thick) and their
linear counterparts (dashed).

where A is the Jacobian of f at 0 and g(z) = o(]z|). Clearly, for small z we
expect the solutions to be described by the solutions of the linear equation.
This is true for small ¢ by Theorem 2.8, but what about [t| — c0? In
Section 6.5 we saw that for n = 1 stability can be read off from A = f/(0)
alone as long as f’(0) # 0. In this section we will generalize this result to
higher dimensions.

We will call the fixed point x¢ hyperbolic if the linearized system is,
that is, if none of the eigenvalues of A has zero real part.

Since our result is of a local nature we fix a neighborhood U(zg) of xg
and define

M*E%(xq) = {z|y+(z) C U(zo) and sup eT|®(t,z) — xo| < 00}, (9.9)
+t>0

to be the set of all points which converge to xy with some exponential rate
« > 0. This is the counterpart of E+?, the space spanned by all eigenvectors
of A corresponding to eigenvalues with real part less/bigger than Fa. Now
we define the local stable respectively unstable manifolds of a fixed point
xo to be the set of all points which converge exponentially to xy as t — oo
respectively ¢ — —oo, that is,

M*(20) = | M*(x0). (9.10)
a>0
Both sets are + invariant under the flow by construction.

In the linear case we clearly have M*(0) = E*. Our goal is to show, as
a generalization of Theorem 9.2, that the sets M*(z() are indeed manifolds
(smooth) and that ET is tangent to M ™ (x) at 0, as illustrated in Figure 9.1,
Finally, we will show that M*(xq) = W*(z0) in the hyperbolic case.
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We will assume that zg = 0 is a hyperbolic fixed point. The key idea
is again to formulate our problem as an integral equation which can then
be solved by iteration. Since we understand the behavior of the solutions
to the linear system we can use the variation of constants formula (3.88) to
rewrite our equation as

z(t) = ez(0) + /0 A (z(r))dr. (9.11)

Now denote by P* the projectors onto the stable, unstable subspaces E*
of exp(A). Moreover, abbreviate o = P*z(0) and g4 (z) = PTg(z).

What we need is a condition on z(0) = x4 + z_ such that z(t) remains
bounded. Clearly, if g(z) = 0, this condition is z_— = 0. In the general
case, we might still try to express x_ = h™ (2 ). For this we project out the
unstable part of our integral equation and solve for z_

r_=e My _(t)— te_TA_xr T, .
: 0= [ g (alr)a 9.12)

Here x4 (t) = P*x(t). If we suppose that |z(t)| is bounded for ¢ > 0, we can
let t — o0,

o= — /000 e g _(x(r))dr, (9.13)

where the integral converges absolutely since the integrand decays exponen-
tially. Plugging this back into our equation we see

t o]

x(t) = eay +/ Ay ((r))dr —/ g (x(r))dr.  (9.14)
0 t

Introducing P(t) = P*, t > 0, respectively P(t) = —P~, t <0, this can be

written more compactly as

o0
z(t) = K(z)(t), K(z)(t) =y + / AP — r)g(x(r))dr. (9.15)
0

In summary, if A is hyperbolic, then every bounded solution solves (9.15) and
we can establish existence of solutions using similar fixed point techniques
as in Section 2.1. This will prove existence of a stable manifold which is
tangent to its linear counterpart for a hyperbolic fixed point. The unstable
manifold can be obtained by reversing time ¢t — —t.

In fact, we can do even a little better.

Theorem 9.3. Suppose f € C* has a fized point xo with corresponding
Jacobian A. Then, if a« > 0 and A+ al is hyperbolic, there is a neighborhood
U(zo) = 20 + U and a function ht* € CF(ET*NU, E~%) such that

M (z20) NU(x0) = {z0 +a+hT*(a)la € EV*NU}. (9.16)
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Both h™% and its Jacobian vanish at 0, that is, M%(xg) is tangent to its
linear counterpart BT at x.

We have M2 (zg) C M T (z9) for ag < as and M2 (zg) = M T (z0)
whenever EH%2 = Fo1,

Proof. We suppose o = 0 and begin by assuming that A is hyperbolic
such that we can choose @ = 0. Our underlying Banach space will be
C([0,00),R™) equipped with the sup norm

]| = sup |(t)].
>0

To solve (9.15) by iteration, suppose |z(t)| < . Then, since the Jacobian of
g at 0 vanishes, we have

lg(x(t)) — g(y()] < elz(t) —y(®)], (9.17)
where € can be made arbitrarily small by choosing 4 sufficiently small. More-
over, for a < min{|Re(a)||o € 6(A)} we have

el P( — 1)) < Gl
by (9.4). Combining this with (9.17) we obtain

/ h AP — 1) (g(x(r) — gly(r)))dr

0

1K (z) — K(y)ll =

<C /0 el g(a(r)) — gly(r)|dr

20
< Cellz — gl sup / eeltlgr = 29C 1 1.
t>0 Jo o

Hence, for ¢ < a/(2C) existence of a unique solution (t,z4) can be es-
tablished by the contraction principle (Theorem 2.1). However, by Theo-
rem 9.19 (see Section 9.4 below) we even get (¢, z) is C* with respect to
xy if f is.

Clearly we have 1(t,0) = 0. Introducing the function h*(a) = P~1(0,a)
we obtain a good candidate {a+h™(a)|a € EYNU(0)} for the stable manifold
of the nonlinear system in a neighborhood U (0) of 0.

Moreover, I claim that M is tangent to ET at 0. From the proof of
Theorem 9.19 it follows that p(t,z4) = %q/)(t, x4 ) satisfies

p(t o) = PT + / AP p)g ()l e )dr (9.18)
0

Evaluating this equation at (t,z4) = (0,0) we see ¢(0,0) = P+ which is
equivalent to

9. 4
%h (a)

=0, 9.19
o (9.19)
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that is, our candidate is tangent to the linear stable manifold E* at 0.

To see the general case, make the change of coordinates Z(t) = exp(at)z(t),
transforming A to A = A + ol and g(z) to §(t, &) = exp(at)g(exp(—at)F).
Since A and § satisfy the same assumptions we conclude, since sups |Z(t)| <
§, that sup,sq |z(t)| < 6 exp(—at). By uniqueness of the solution of our in-
tegral equation in a sufficiently small neighborhood of o we obtain (9.16).

For the last claim let © € MT2(xg) € M (xg), then z = zo + a +
ht%2(a) = 29 + a + hH*(a) for @ € EH* = EH%2 implies h™%2(a) =
hte1(a). 0

As first consequence we obtain existence of stable and unstable manifolds
even in the non hyperbolic case, since Mt (zg) = M1¢(xg) for € > 0 small
such that ET = ET°,

Theorem 9.4 (Stable manifold). Suppose f € C* has a fized point xo with
corresponding Jacobian A. Then, there is a neighborhood U(xy) = xo + U
and functions h* € C*(E* NU, ET) such that

M*(20) NU(x) = {20 + a + h*(a)la € EENU}. (9.20)

Both h* and their Jacobians vanish at xg, that is, M*(xzo) are tangent to
their respective linear counterpart E* at xo. Moreover,

|®(t, ) — x| < CeTl® +t > 0,0 € M* (9.21)
for any o < min{|Re(e;)||a; € 0(A),Re(a;) # 0} and some C > 0 depend-

mg on .

It can be shown that even a nonlinear counterpart of the center sub-
space E° exists. However, such a center manifold might not be unique
(Problem 9.10).

In the hyperbolic case we can even say a little more.
Theorem 9.5. Suppose f € C* has a hyperbolic fized point . Then there

is a neighborhood U (o) such that v+ (x) C Ul(xg) if and only if x € M7 (xq).
In particular,

WE(zo) = {®(t, )|z € M*(x0), £t > 0}. (9.22)
Proof. This follows since we have shown that any solution staying suffi-
ciently close to xg solves (9.14). Hence uniqueness of the solution (in a

sufficiently small neighborhood of zp) implies that the initial value must lie
in M7 (xg). O

Example. Consider the vector field

f(z) = (—x1 + 20 + 323). (9.23)
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Figure 9.2. Phase portrait for a planar system with a hyperbolic fixed
point (0, 0) together with the stable/unstable manifold (thick) and their
linear counterparts (dashed).

Then it is not hard to check (start with the second equation) that its flow
is given by

O(t,x) = (z1e”" + o sinh(t) + 235(e* — ™), z9eh). (9.24)

Moreover, there is only one fixed point g = 0 and the corresponding stable
and unstable manifolds are given by

WH(0) = {a|za =0},  W(0) = {z|z; = % — 22} (9.25)

A= (‘01 D (9.26)

and both are tangent to their linear counterparts

The linearization is given by

Et = {2z =0}, E = {z|z; = %}. (9.27)

The system is depicted in Figure 9.2. o

It can happen that an orbit starting in the unstable manifold of one fixed
point xg ends up in the stable manifold of another fixed point z;. Such an
orbit is called heteroclinic orbit if 2o # x; and homoclinic orbit if
xg = x1. See the problems for examples.

Moreover, as another consequence we obtain
Corollary 9.6. Suppose f € C*, f(xq) = 0, and let all eigenvalues of the

Jacobian of f at x¢ have negative real part. Then the point xq is asymptot-
ically stable.

It also follows that, if the fixed point zg of f is hyperbolic and A has at
least one eigenvalue with positive real part, then x is unstable (why?).
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Finally, it is also possible to include the case where f depends on a
parameter A € A. If z( is a hyperbolic fixed point for f(z,0) then, by
the implicit function theorem, there is a fixed point z¢(A) (which is again
hyperbolic) for A sufficiently small. In particular we have

f(.CL‘, /\) = A()‘)(x - .’Eo()\)) + g(:r, )‘)7 (9'28)

where A()) is the Jacobian of f(.,\) at xg(\). By Problem 3.46, the pro-
jectors PT(\) = P*(A()\)) vary smoothly with respect to A and we can
proceed as before to obtain (compare Problem 9.13)

Theorem 9.7. Suppose f € C* and let z(\) be as above. Then, there is a
neighborhood U(xq) = xo+ U and functions ht € C*(E*NU x A, ET) such
that

ME(zo(N) NU(z0) = {z(A\) + PE(Na + h¥(a,N)|a € EENU}.  (9.29)
Problem 9.4. Find E&“ for

1 0 0
A=10 -1 0
0 0 -2

Compute P*.
Problem 9.5. Find the linearization of

f(z) = (2, —sin(z1)).
and determine the stability of © = 0 if possible.

Problem 9.6 (Duffing equation). Investigate the Duffing equation
i:—&i:—i-a:—:c?’, 6 >0.
Determine the stability of the fixed points by linearization. Find the stable

and unstable manifolds of the origin in the case 6 = 0.

Problem 9.7. Consider the system
f(@) = (=21, 22 + a7).
Find the flow (Hint: Start with the equation for xi.). Next, find the sta-

ble and unstable manifolds. Plot the phase portrait and compare it to the
linearization.

Problem 9.8 (Heteroclinic orbit). Determine the stability of the fized points
of the pendulum (6.43) by linearization. Find the stable and unstable mani-
folds. Find a heteroclinic orbit.

Problem 9.9 (Homoclinic orbit). Determine the stability of the fized points
of the system in Problem 6.21 by linearization. Find the stable and unstable
manifolds. Find a homoclinic orbit.
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Problem 9.10. Consider
T = -, y = y2'

Find all invariant smooth manifolds of the form {(h(a),a)|a € R} which are
tangent to E.

Problem 9.11. Consider the system
f(a) = (—w1 — a3, 22 +a?)

and find an approximation to the stable manifold by computing a few itera-
tions of (9.14). Plot the phase portrait (numerically) and compare it to the
linearization.

Problem 9.12. Classify the fixed points of the Lorenz equation
f(x) = (v — x1, 771 — T2 — X173, T2 — T3), 1 >0,

according to stability. At what value of r does the number of fixed points
change?

Problem 9.13. Suppose A(\) is a matriz which is C* with respect to \ in
some compact set. Suppose there is an 0 < oy < min{|Re(a)||a € a(A(N))}.
Then

I (;;) AN PO < Cp(1 + [t[Me @l n < k.

(Hint: Start with the case where A(N) is a scalar. In the general case use
the power series for the exponential to find the derivative. The problem is
that A(X\) and its derivatives might not commute. However, once you take
the norm ...)

9.3. The Hartman—Grobman theorem

The result of the previous section only tells us something about the orbits
in the stable and unstable manifold. In this section we want to prove a
stronger result, which shows that the orbits near a hyperbolic fixed point
are locally just continuously deformed versions of their linear counterparts.
This is illustrated in Figure 9.3.

If we assume that A has no eigenvalues on the unit circle, we can use
R" = E~(A) ® ET(A) to split it into a contracting and expanding part
A=A_@ A;, where AL = A‘Ei(A)‘ By construction, all eigenvalues of
A4 are inside the unit circle and all eigenvalues of A_ are outside the unit
circle. Hence, by Problem 3.45 we can find a norm such that ||A4| < 1.

We begin with a lemma for maps.
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Figure 9.3. Phase portrait for a planar system with a hyperbolic fixed
point (1, 1) together with the phase portrait of its linearization.

Lemma 9.8. Suppose A is an invertible matriz with no eigenvalues on the
unit circle and choose a norm such that a = max(|A~Y|,||AL]|) < 1. Then
for every bounded g satisfying

11—«

9(@) =gl <elz—yl,  e<——, (9-30)
there is a unique continuous map ¢(x) = x + h(x) with h bounded such that
poA=foq, f=A+g. (9.31)

If f is invertible (e.g. if €| A7|| < 1), then ¢ is a homeomorphism and if
in addition g(0) = 0 then ¢(0) = 0.

Proof. The condition (9.31) is equivalent to

h(Ax) — Ah(z) = g(z + h(z)). (9.32)

We will investigate this equation in the Banach space of continuous functions
C(R"™,R"™) with the sup norm. First of all note that the linear operator
U:CR"R") - C(R",R") given by (Uh)(z) = h(Ax) is invertible (since
A is) and norm preserving. Clearly we can also regard A as a linear operator
A: C(R™R") — C(R™,R"™) given by (Ah)(zx) = Ah(x).

Introducing L = U — A we can write (9.32) as Lh(x) = g(z + h(x)). To
obtain a fixed point equation we need to invert L. By splitting C'(R", R"™) =
C(R™, E—(e4)) @ C(R™, E*(e)) we obtain corresponding splittings A =
A_@A+, U:U_@U+, and L:L_EBL+.

By L. = —A (I - A”'U_) we see that L~! = —(I — AZ'U_)"TA~!,
where (I — A~'U_) is invertible with inverse given by the Neumann series
(Problem 9.14)

I—-A"'U )yt = i(A:lU,)"

n=0
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since ||[AT'U_|| < . In particular, [|[L7Y| < L. Similarly, L;l =T-
Ut A )t with LY < 2.
In summary, L' = (U_—A_) '@ (U, —A,) ' exists and | L7 < 2.
Hence it remains to solve the fixed point equation
h(z) = L g(x + h(x)).
Since the operator on the right is a contraction,

IL™ (2 + ha(z)) — L™ g(@ + ha(z))l|

< ol + (@) — gl + ha(a)]

2e
11—«

|1 — hal|,

the contraction principle (Theorem 2.1) guarantees existence of a unique
solution.

Now suppose f is invertible. Then there is a map J(x) = = + k(x) such
that Aot = o f. In fact, defining L as before but with U(k)(z) = k(f(z))
we see that this last equation is equivalent to L(k)(z) = —g(z) and since
the same argument as above shows that that L is invertible, we obtain
k(z) = =L (g)(z). Hence Aodop =dofoyp =19opoA and thus
Yo =1 by the uniqueness part of our result (in the case g = 0). Similarly,
A lopor) = oo Al implies p o = I and thus ¢ is a homeomorphism.

To show ¢(0) = 0 evaluate Ap~!(z) = ¢~ (f(x)) at & = 0 which shows
Ap~1(0) = ¢~1(0). But this equation has only the solution o ~1(0) =0. O

Corollary 9.9. Let A be as in the previous lemma and f arbitrary. Suppose
there is a homeomorphism ¢(x) = x + h(x) with h bounded such that

po A= fop, (9.33)

then ¢ is unique.

Proof. Suppose there are two such maps ¢; and o and note that the
inverses cpjfl are of the same type (Problem 9.15). Then f = gplAgofl =
2 Ay implies A(p]  pa) = (¢ ')A which shows that ¢ ‘¢ = I by our
above lemma in the case g = 0. O

Now we are able to prove the anticipated result.

Theorem 9.10 (Hartman—Grobman). Suppose f is a differentiable vector
field with 0 as a hyperbolic fized point. Denote by ®(t,x) the corresponding
flow and by A = dfy the Jacobian of f at 0. Then there is a homeomorphism
o(x) =z + h(z) with h bounded such that

poet =d 00 (9.34)
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in a sufficiently small neighborhood of 0.

Proof. Our strategy is to apply Lemma 9.8 to find a ¢ which works for one
fixed t, say t = 1, and then verify that it works in fact for all ¢.

First of all we will need to control

II(t,z) = 2<I>(t,;1c).

ox
From
d(t,z) = f(D(t, x)), ®(0,z) ==,
we obtain
I(t, ) = gi(@(t,x))ﬂ(t,x), (0, z) =1, (9.35)
and, setting x = 0,
I1(t,0) = e

Thus

®y(x) = ez + G(z),
where (9.30) holds at least when we are sufficiently close to our fixed point.
To make sure it always holds we will modify f.

Let ¢ : [0,00) — R be a smooth bump function such that ¢(z) = 0 for
0 <z <1and ¢(z) =1 for z > 2. Replacing f(z) = Az + g(z) by the
function f(z) = Az + (1 — ¢(|x|/J))g(x), it is no restriction to consider the
global problem with f = A for |z| > 20. Note that (show this!)
99 99

() ()

< C sup 3
x

] <26

can be made arbitrarily small by choosing § small. Moreover, note that
G(x) will be 0 for |x| sufficiently large (e.g., for |x| > 2Je®, where « is some
non-negative number which satisfies & > —Re(c;) for all eigenvalues «; of

A). We will use f from now on and drop the tilde for notational simplicity.

To be able to apply Lemma 9.8 we need to show that z(1, z), defined by
(t,z) = e + 2(t, z),

can be made arbitrarily small by choosing ¢ small. Plugging this into (9.35)
we obtain

to to
2(t,x) = ; %(@(s, z))e*Ads + /0 a—i(@(s, x))z(s, x)ds
and the claim follows from Gronwall’s inequality using that % can be made

arbitrarily small by choosing J small as noted above.

Hence, there is a ¢ such that (9.34) holds at least for ¢ = 1. Furthermore,
the map ¢, = @5 0 p 0 e~ also satisfies (9.34) for ¢t = 1:

psoet =0, 0p0etoe™ A =D, 0P 0poe =Py 0,
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Figure 9.4. Phase portrait for a planar system with a hyperbolic fixed
point (0,0) together with the phase portrait of its linearization.

Hence, if we can show that ¢;(z) = x + hy(z) with h; bounded, then Corol-
lary 9.9 will tell us ¢ = ¢ which is precisely (9.34). Now observe
hy = @tocpoe_m—]l: (P, —etA)oe_tA—l—(I)tohoe_tA,

where the first term is bounded since ®;(x) = e!4z for sufficiently large
(say |z| > 25e!* as pointed out before) and the second is since h is. O

Example. Consider again the vector field
f(z) = (—x1 + 29 + 323). (9.36)
Then one can verify that its flow (9.24) is maped to its linear counterpart

ot — <e0t Sin}%”) (9.37)

e

by virtue of
o(x) = (v1 — x5, 22). (9.38)
The system together with its linearization is depicted in Figure 9.4. o

Two systems with vector fields f, g and respective flows @, ®, are said
to be topologically conjugate if there is a homeomorphism ¢ such that

po®s =Py 00. (9.39)
Note that topological conjugacy of flows is an equivalence relation.

The Hartman—Grobman theorem hence states that f is locally conju-
gate to its linearization A at a hyperbolic fixed point. In fact, there is an
even stronger results which says that two vector fields are locally conjugate
near hyperbolic fixed points if and only if the dimensions of the stable and
unstable subspaces coincide.

To show this, it suffices to show this result for linear systems. The rest
then follows from transitivity of the equivalence relations and the Hartman—
Grobman theorem.
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Theorem 9.11. Suppose A and B are two matrices with no eigenvalues
on the tmaginary axis. If the dimensions of their respective stable and un-
stable subspaces for their flows are equal, then their flows are topologically
conjugate.

Proof. First of all, it is no restriction to assume that R” = R® @ RY, where
R* and R" are the stable and unstable subspaces for both flows (in fact, we
could even assume that both matrices are in Jordan canonical form using a
linear conjugation). Treating both parts separately, it suffices to prove the
two cases s = n and u = n. Moreover, it even suflices to prove the case
s = n, since the other one follows by considering A=!, B~1.

So let us assume s = n, that is, all eigenvalues have negative real part.
Hence there is a norm such that |exp(tA)x|a < exp(—ta)|x|a for all ¢ > 0
and some small & > 0 (Problem 3.45). Replacing t — —t and  — exp(tA)z
we also obtain |exp(tA)z|a > exp(—ta)|x|a for all ¢ < 0. Thus

d Jexp(sA)a(t)]a — |2(t)
la(t)]a = lim S
< lim M\x(ﬂm = —alz(t)|a

s—0 S

for ¢t > 0 and there is a unique time 74(x) > 0 such that | exp(7(z)A)z|4 =1
for [z(¢)|a > 1. Similarly, &|z(t)|a > —alz(t)|a for t <0 and there is also
a unique time 74(z) < 0 such that |exp(7(z)A)x|a = 1 for 0 < |z(t)|a <
1. Moreover, the unit sphere |z|4 = 1 is transversal and hence 74 is a
smooth function by Lemma 6.8. Note 74(exp(tA)z) = 74(z) — t. Similar
considerations can be made for B.

Then the function hap(z) = x/|z|p maps the unit sphere for A contin-
uously to the one for B. Moreover, since the inverse is given by hpa(x) =
x/|z|a it is a homeomorphism. Now consider the map

h(z) = exp(—7a(z)B)hap(exp(Ta(z)A)x), x # 0,
which is a homeomorphism from R™\{0} to itself. In fact its inverse is given
by
h=(z) = exp(—71p(2)A)hpalexp(rp(z)B)z), x # 0,
which follows since 75(y) = 7a(z) if y = h(x). Furthermore, since 7(z) —

—oo as ¢ — 0 we have |h(x)| < ¢||exp(—7a(z)B)|| — 0 as x — 0. Thus we
can extend h to a homeomorphism from R" to itself by setting h(0) = 0.

Finally, h is a topological conjugation since

h(exp(tA)x) = exp((t — Ta(x))B)hap(exp((Ta(x) — t)A) exp(tA)z)
= exp(tB)h(x),

where we have used 74(exp(tA)z) = 74(x) — t. O
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Problem 9.14. Let X be a Banach space and let A : X — X be a linear
operator. Set

IAll = sup [[Az].
lell=1

Show that this defines a norm. Moreover, show that
IAB]| < [[A[l]| B

and that T+ A is invertible if || A|| < 1, with inverse given by the Neumann
series

I—A4)t= i A",
n=0

Furthermore, ||[(I — A)~Y| < (1 —||4])~*.

Problem 9.15. Let ¢ : R™ — R™ be a homeomorphism of the form p(z) =
x + h(x) with bounded h. Show that ¢! (x) = x + k(z), where k(x) is again
bounded (with the same bound).

Problem 9.16. Let

A:(:g _Ba> B:<_01 _01), a> 0.

Ezxplicitly compute the conjugacy found in the proof of Theorem 9.11.

9.4. Appendix: Integral equations

I hope that, after the previous sections, you are by now convinced that
integral equations are an important tool in the investigation of differential
equations. The results are somewhat technical and can be omitted on first
reading.

The main ingredient will again be fixed point theorems. But now we need
the case where our fixed point equation depends on additional parameters
A € A, where A is a subset of some Banach space.

Theorem 9.12 (Uniform contraction principle). Let C' be a (nonempty)
closed subset of a Banach space X and A a subset of another Banach space.
Suppose Ky : C — C is a uniform contraction, that is,

1K) — Ka@)| < Olle —yl,  myeC0<0<LA€A,  (9.40)

and Ky(z) is continuous with respect to A € A for every x € C. Then the
unique fized point T(N) is continuous with respect to \.

Moreover, if A\, — X, then

Tpt+l = K,\n (.’L’n) — f()\) (9.41)
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Proof. We first show that Z(\) is continuous. By the triangle inequality we
have

[Z(A) —=z()[| = [EA(T(A) — Ky(z(n))]
<O0Z(N) —z)[| + [[Kx(@(n)) — Ky ()|l

and hence
[Z(A) = z(n)| < fieHKA(f(n)) — Ky(@(n))||-

Since the right-hand side converges to zero as A — 7 so does the left-hand
side and thus Z()\) is continuous.
Abbreviate Ay, = ||z, — T(N)||, en = [|Z(An) — ZT(N\)]| and observe
A1 < [[ent = ZAn) ||+ [[2(An) = Z(VI < Ollzn —T(An)[| + &n
<OA, + (14 0)e,.

Hence
Ap <O Ao+ (1460)> 6" Te; 4
j=1
which converges to 0 since €, does (show this). O

There is also a uniform version of Theorem 2.4.

Theorem 9.13. Let C be a (nonempty) closed subset of a Banach space X
and A a subset of another Banach space. Suppose Ky : C — C' is continuous
with respect to A € A for every x € C and satisfies

[ Ky, 000 Ky (2) = Ky, 000 Ky ()| S Onllz—yll, 2,y eC A €A,

(9.42)
with Y02 1 0y, < 0o. Then the unique fized point T(X\) is continuous with
respect to .

Moreover, if A, — A, then

Tptl = K)\n (acn) — f()\) (9.43)

Proof. We first show that Ky = Ky, o---0 Ky, A = (A1,...,\y), is con-
tinuous with respect to A € A™ for fixed z € C'. The claim holds for n = 1
by assumption. It remains to show it holds for n provided it holds for n — 1.
But this follows from

1K, 0 Kx(x) — Ky, o Ky(2)||
< [[Kx, 0 Kx(2) = K, o Ky(2)[| + [|Kx, o Ky(z) — Ky, o Ky(2)]]
< 01| Ka(z) = Ky(2)]| + [| K, © Ky(x) = Ky, o Ky(x)],

where A = (A1,...,Ap—1) and n = (91,...,0n—1).
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Now observe that for n sufficiently large we have 6,, < 1 and hence K is
a uniform contraction to which we can apply Theorem 9.12. In particular,
choosing A; = (Aj, ..., Ajtn—1) we have that 1)1 = Ky, (nj41) con-
verges to the unique fixed point of K, . ) which is precisely T(A). Hence
lim; o0 Znjpr = T(A) for every 0 <1 < n—1implying lim; ,o z; = Z(X). O

Now we are ready to apply these results to integral equations. However,
the proofs require some results from integration theory which I state first.
We will consider functions f : U C R™ — R” and by an integrable func-
tion we will mean a Riemann (or Lebesgue) integrable function for which

[ |f(z)|dz is finite.

Theorem 9.14 (Dominated convergence). Suppose f,(x) is a sequence of
integrable functions converging pointwise to an integrable function f(x). If
there is a dominating function g(z), that is, g(x) is integrable and satisfies

|fn(2)] < g(2), (9.44)
then
lim [ fp(z)de = / f(z)dz. (9.45)

n—o0

For a proof see any book on real analysis or measure theory.

This result has two immediate consequences which we will need below.

Corollary 9.15. Suppose f,(z) — f(x) pointwise and df,(x) — g(z) point-
wise. If there is (locally) a dominating function for df,(z), then f(z) is
differentiable and df (z) = g(x).

Proof. It suffices to prove the case where f is one dimensional. Using
x
Fulo) = fulan) + | fuerie
o
the result follows after taking the limit on both sides. O

Corollary 9.16. Suppose f(x, ) is integrable with respect to x for any A
and continuously differentiable with respect to \ for any x. If there is a
dominating function g(x) such that

of
- < 4
L@ )] < g(w), (9.46)
then the function
PO = / F(@ N)da (9.47)
is continuously differentiable with derivative given by
oF af
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Proof. Again it suffices to consider one dimension. Since

1
f(x,)\—i-e)—f(x,/\):a/o (@, A+ et)dt

F()\+€)_F()\) _//1f,<x7)\—|—€t)dtd$-
0

£
Moreover, by |f'(z, A+ et)| < g(z) we have

we have

1
. / gl
?_)r]% ; i, A+ et)dt = f'(z, \)

by the dominated convergence theorem. Applying dominated convergence
again, note ]fol I (x, A+ et)dt] < g(z), the claim follows. O

Now let us turn to integral equations. As in Section 2.2 we will equip the
set of continuous functions C(U,R™) (where U C R™) with the sup norm
| fll = sup,ep | f(x)], which will turn C(U,R"™) into a Banach space.

Suppose U is an open subset of R” and consider the following (nonlinear)
Volterra integral equation

t
Ka@)(t) = (e ) + [ K(s,(5), s, (9.49)
0
where

keC(IxA\U), KeC(IxUxAR"Y), (9.50)
with I = [-T,T] and A C R"™ compact. We will require that there is a

constant L (independent of ¢ and \) such that
|K(t,z,\) — K(t,y,\)| < L|z — y|, z,y e U. (9.51)

By Theorem 9.12 we know that there is a unique solution Z(t, A) which
is continuous with respect to A. The following result shows that it is even
differentiable if k£ and K are.

Theorem 9.17. Let K satisfy the requirements (9.50)—(9.51) from above
and let Ty = min(T, %), where § > 0 is such that
Cs = {Bs(k(t, \) (1, ) € [T,T] x A} C U (9.52)

and

M = sup | K (t, k(t, A) + z, \)|. (9.53)
(t,z,\)€[-T,T]xBs(0)x A

Then the integral equation Ky(x) = x has a unique solution T(t,\) €
C([-To, To] x A, U) satisfying

To
1Z(t, \) — k(t,\)| < 0 Sup/ | K (s, k(s,\), \)|ds. (9.54)
AEA J Ty
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Moreover, if in addition all partial derivatives of order up to r with
respect to A and x of k(t,\) and K(t,z,\) are continuous, then all partial
derivatives of order up to r with respect to X\ of T(t,\) are continuous as
well.

Proof. First observe that it is no restriction to assume k(t, A) = 0 by chang-
ing K (t,x,\) and U. Then existence and the bound follows as in the previous
section from Theorem 2.4. By the dominated convergence theorem K)(z)
is continuous with respect to A for fixed z(¢). Hence the second term in

‘f(u )‘) - f(& 77)’ < |f(t7 )‘> - f(‘S? )‘)| + ‘E(& )‘) - f(& 77)’

converges to zero as (t,\) — (s,n) and so does the first since
t
0.3) = (5,0 < | [ K00 | < 2l — s

Now let us turn to the second claim. Suppose that f(t,):) € C'. Then
y(t,\) = %E(t, A) is a solution of the fixed point equation K (Z(A),y) = y.
Here

f()\(x,y)(t):/o KA(S,x(s),A)ds—i—/O K. (s,2z(s),\)y(s)ds, (9.55)

where the subscripts denote partial derivatives. This integral operator is
linear with respect to y and by the mean value theorem and (9.51) we have

[ K (t, 2, A)|| < L.

Hence the first part implies existence of a continuous solution (¢, A) of
K\(T(\),y) = y. It remains to show that this is indeed the derivative of
T(A).

Fix A. Starting with (zo(¢), yo(t)) = (0, 0) we get a sequence (Tp41, Yn+1) =
(Kx(2n), Kx(€n,yn)) such that y, (t) = %IL‘n(t). Since Ky is continuous with
respect to x (Problem 9.18), Theorem 9.13 implies (xy,,yn) — (T(A),T(A)).
Moreover, since (z,, yy) is uniformly bounded with respect to A, we conclude
by Corollary 9.15 that 7(\) is indeed the derivative of Z(\).

This settles the r = 1 case. Now suppose the claim holds for r — 1.
Since the equation for y is of the same type as the one for =z and since
kx, Ky, K, € C"! we can conclude y € C"~! and hence z € C". O

Corollary 9.18. If, in addition to the requirements from Theorem 9.17,
EeC"(IxAV)and K € C"(I xV x A,R"), then T(t,\) € C"(I x A, V).

Proof. The case » = 0 follows from the above theorem. Now let » = 1.
Differentiating the fixed point equation with respect to ¢ we see that

Z(t,\) = k(t, \) + K(t,T(t, \), \)
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is continuous. Hence, together with the result from above, all partial deriva-
tives exist and are continuous, implying € C''. The case for general r now
follows by induction as in the proof of the above theorem. O

Next we turn to the following Hammerstein integral equation which
we encountered in Section 9.2,

Ky(z)(t) = k(t,\) + /000 k(s —t, \)K(s,x(s), \)ds, (9.56)

where
k,k € C([0,00) x A,R™), K € C([0,00) x U x A,R"™), (9.57)

with A C R™ compact. Now we are going to show the analog of Theorem 9.17
for this equation, which we used in Section 9.2.

We assume that for every compact set C C U, k and K are uniformly
continuous and bounded

bt <m, Ko <M, (6,0) € 0,00 x Cx A, (9.58)
and that there is a dominating function «a(s) such that

k(s +t,A)| <a(s) for [t|<e. (9.59)

In addition, suppose

K(s,2,0) = K(s,y N < Lle—yl,  @yel,  (9.60)
where L is independent of A\, and that
L/ (s, \)|ds < 6 < 1. (9.61)

Theorem 9.19. Let K satisfy the requirements (9.57)—(9.61) from above.
Then the fized point equation Ky(x) = x has a unique solution T(t,\) €
C([0,00) x A, U).

Assume in addition that all partial derivatives of order up to r with re-
spect to A and x of k(t,\), k(s,A), and K(s,z,\) are continuous. Further-
more, for all partial derivatives of order up to r with respect to A of k(s, \)
there are dominating functions as in (9.59) and all partial derivatives of or-
der up to r with respect to A and x of K(s,z,\) are uniformly continuous
and bounded when x is restricted to compacts as in (9.58). Then all partial
derivatives of order up to r with respect to X of T(t,\) are continuous.

Proof. Asin Theorem 9.17 it is no restriction to assume k(t, A) = 0. Choose

5= (1—0)"" K0,
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then ||z|| < ¢ implies

[ K\ (2)]] s/ooom(s —t, V(K (5,0, A)| + | K(s,2(s), A) — K(s,0,\)|)ds
< KA O)]| + 0|z <6

and hence K maps C([0,00), B5(0)) into itself. Moreover, by assumption
K, is a contraction with contraction constant 6 implying that there is a
unique solution T(\, t).

Next, we want to show that K (z) is continuous with respect to A,

[EA(@)(t) = Ky (2)(t)] <

/000 |k(s —t, \)| | K(s,2(s),\) — K(s,z(s),n)|ds
Awm@—uAy—MS—umuK@@@%mu&

By uniform continuity of K, for every £ > 0 we have |K (s, z, \)—K(s,z,n)| <
e provided |\ — 7| is sufficiently small and hence

[K@)(®) = Kyf)O T+ 0 [ Inls = .3) = (s = )]s,

—00

Since the right-hand side can be made arbitrarily small by choosing |\ — 7|
small (dominated convergence), the claim follows.

Now we can show that T is continuous. By our previous consideration,
the first term in

converges to zero as (t,\) — (s,n) and so does the second since
[z(t,m) —7(s,m)|
< [ = ton) = (e = s | ). )

<M/ k(r —t,n) — k(r — s,n)|dr.

Hence the case r = 0 is finished.

Now let us turn to the second claim. Suppose that Z(t,A) € C". 1. Then
y(t,\) = a)\$(t ) is a solution of the fixed point equation Ky(Z(\),y) = y.
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Here

B y)(t) = /OOO k(s — £ VK (5, 2(s), \)ds
+ /000 k(s —t, \)Kx(s,z(s), \)ds

n /0 " s — £ \) K (s, 2(s), A)y(s)ds,

where the subscripts denote partial derivatives. The rest follows as in the
proof of the Theorem 9.17. To show that K)(x,y) depends continuously on
x you need to use uniform continuity of K and its derivatives. O

Problem 9.17. Suppose K : C' C X — C' is a contraction and
Tn+1 :K(xn)+yn7 HynH < an‘i‘ﬁnuxnuv
with limy, o o = limy, o0 B = 0. Then lim,, o ©, = T.

Problem 9.18. Suppose K(t,z,y) is a continuous function. Show that the

map
/ K(s,2(s), y(s))ds

is continuous with respect to x € C(I,R™). Conclude that (9.55) is contin-
uous with respect to x € C(I,R™). (Hint: Use the dominated convergence
theorem. )
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Chapter 10

Discrete dynamical
systems

10.1. The logistic equation

This chapter gives a brief introduction to discrete dynamical systems. Most
of the results are similar to the ones obtained for continuous dynamical
systems. Moreover, they won’t be needed until Chapter 12. We begin with
a simple example.

Let N(t) be the size of a certain species at time ¢t whose growth rate is
proportional to the present amount, that is,

N(t) = kN(t). (10.1)

The solution of this equation is clearly given by N(t) = Nypexp(xt). Hence
the population grows exponentially if x > 0 and decreases exponentially if
k < 0. Similarly, we could model this situation by a difference equation

N(n+1)— N(n)=kN(n) (10.2)
or equivalently
Nn+1)=(1+k)N(n), (10.3)

where N(n) is now the population after n time intervals (say years). The
solution is given by N(n) = Ny(1 + k)" and we have again exponential
growth respectively decay according to the sign of & > —1. In particular,
there is no big difference between the continuous and the discrete case and
we even get the same results at ¢t = n if we set x = In(1 + k).

245
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However, this result can be quite misleading as the following example
shows. A refined version of the above growth model is given by

N(t) = kN (t)(L — N(t)), (10.4)

where the population is limited by a maximum L. We have seen in Sec-
tion 1.5, that for any positive initial population Ny, the species will eventu-
ally tend to the limiting population L. The discrete version reads

N(n+1)—=N(n)=kN(n)(L — N(n)) (10.5)
or equivalently
~ ~ 1
N(n+1)=kN@)(L=N(®), L=L+. (10.6)
Introducing x, = N(n)/L, u = kL we see that it suffices to consider
Tnt1 = prn(l — xp), (10.7)

which is known as the logistic equation. Introducing the quadratic func-
tion

L,(x) = px(l —x) (10.8)
we can write the solution as the n’th iterate of this map, x,, = Ljj(zo). But
if you try to work out a closed expression for these iterates, you will soon
find out that this is not as easy as in the continuous case. Moreover, the
above difference equation leads to very complicated dynamics and is still
not completely understood.

To get a first impression of this structure let us do some numerical
experiments. We will consider 0 < p < 4 in which case the interval [0, 1] is
mapped into itself under f.

First of all, we will use the following Mathematica code

In[1]:= ShowWeb[f_, xstart_,nmax_| :=
Block[{x,xmin, xmax, graph, web},
x[0] := xstart;
x[n ] := x[n] = f[x[n — 1]];
web = Flatten|Table[{{x[n], x[n]}, {x[n], x[n + 1]}},
{n, 0,nmax}|, 1];
xmax = Max[web|; xmin = Min|web];
graph = Plot[{f[x],x}, {x, xmin, xmax},
DisplayFunction — Identity];
Show|graph, Graphics[Line[web]],
DisplayFunction — $DisplayFunction]
Ji

to visualize nmax iterations of a function f(z) starting at xstart. If u is
small, say p =1,



10.1. The logistic equation 247

In[2]:= ShowWeb[1#(1 — #)&, 0.4, 20];

0.4
0.35
0.3
0.25
0.2
0.15

0.05 0.15 0.2 0.25 0.3 0.35 0.4
.05

we see that all initial conditions in (0, 1) eventually converge to 0 which is
one solution of the fixed point equation z = L, (). If v increases beyond 1,
it turns out that all initial conditions converge to the second solution 1 — i
of the fixed point equation.

In[3]:= ShowWeb[2#(1 — #)&, 0.2, 20];
0.5

0.4
0.35

0.3
0.25

0.25 0.3 0.35 0.4 0.45 0.5

At p = 3 the behavior changes again and all initial conditions eventually
jump back and forth between the two solutions of the equation Li(m) ==z
which are not solutions of L, (z) = x.

In[4]:= ShowWeb[3.1#(1 — #)&, 0.4, 20];

0.75 NS
0.7
0. 65
0.6
0.55
0.5
0. 45

0.45 0.5 0.55 0.6 0.65 0.7 0.75

Clearly this method of investigating the system gets quite cumbersome. We
will return to this problem in Section 11.1.

Problem 10.1. If the iteration converges, will the limit always be a fixed
point?

Problem 10.2. Consider an m’th order difference equation
Tptm = F(n, T, .. Tynpm—1)- (10.9)

Show that it can be reduced to the iteration of a single map.
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10.2. Fixed and periodic points

Now let us introduce some notation for later use. To set the stage, let M
be a metric space and let f : M — M be continuous. We are interested in
investigating the dynamical system corresponding to the iterates

@) = PN @), ) = (10.10)
In most cases M will just be a subset of R". However, the more abstract

setting chosen here will turn out useful later on.

A point p € M satisfying

fp)=p (10.11)

is called a fixed point of f. The set of fixed points of f is denoted by
Fix(f). Similarly, a fixed point of f™,

f"(p) = p, (10.12)

is called a periodic point of period n. We will usually assume that n is
the prime period of p, that is, we have f™(p) # p for all 1 <m < n. The
set of periodic points of f is denoted by Per(f).

The forward orbit of x is defined as

74 (z) = {f"(#)In € No}. (10.13)
It is clearly (positively) invariant. Here a set U C M is called (positively)
invariant, if f(U) C U. An orbit for = is a set of points

v(x) = {zy|n € Z such that z¢g = z, xpt1 = f(zn)}. (10.14)

It is important to observe that the points x_,,, n € N, are not uniquely
defined unless f is one-to-one. Moreover, there might be no such points at
all (if f~1(z) = 0 for some x,,). An orbit is invariant, that is, f(v(z)) = ().
The points x,, € y(x), n < 0, are also called a past history of z.

If p is periodic with period n, then 4 (p) is finite and consists of precisely
n points

v+ () = {p. fP),-- -, D)} (10.15)

The converse is not true since a point might be eventually periodic (fixed),
that is, it might be that f¥(z) is periodic (fixed) for some k.

Example. If M = R and f = 0, then p = 0 is the only fixed point and
every other point is eventually fixed. o

A point x € M is called forward asymptotic to a periodic point p of
period n if
lim f™*(x) = p. (10.16)

k—00
The stable set W™ (p) is the set of all z € M for which (10.16) holds.
Clearly, if p1, po are distinct periodic points, their stable sets are disjoint.
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In fact, if z € W (p)NW(p2) we would have limg_,o0 f™"2F(2) = p1 = po,
a contradiction. We call p attracting if there is an open neighborhood U
of p such that U C W (p). The set W (v(p)) = Uyeq ) W (@) is clearly
positively invariant (it is even invariant f(W™(v(p))) = W (y(p)) if f is
invertible).

Similarly, a point x € M is called backward asymptotic to a pe-
riodic point p of period n if there is a past history zp of x such that
limg 00 Z_ni(z) = p. The unstable set W~ (p) is the set of all z € M for
which this condition holds. Again unstable sets of distinct periodic points

are disjoint. We call p repelling if there is an open neighborhood U of p
such that U C W~ (p).

Note that if p is repelling, every x € U will eventually leave U under
iterations. Nevertheless,  can still return to U (Problem 10.5).

Furthermore, note that if one point in the orbit 4 (p) of a periodic point
p is attracting (repelling), so are all the others (show this).

Now let us look at the logistic map L, (z) = pa(1 — x) with M = [0, 1].
We have already seen that if u = 0, then the only fixed point is 0 with
W*(0) = [0,1] and all points in (0, 1] are eventually periodic.

So let us next turn to the case 0 < u < 1. Then we have L,(z) < px
and hence Ljj(z) < p"z shows that every point converges exponentially to
0. In particular, we have W+ (0) = [0, 1].

Note that locally this follows since L;,(0) = p < 1. Hence L, is con-
tracting in a neighborhood of the fixed point and so all points in this neigh-
borhood converge to the fixed point.

This result can be easily generalized to differentiable maps f € C1(U,U),
where U C R".

Theorem 10.1. Suppose f € CY(U,U), U C R™. Then a periodic point
p with period n is attracting if all eigenvalues of d(f™), are inside the unit
circle and repelling if all eigenvalues are outside.

Proof. In the first case there is a suitable norm such that [|d(f"),| <
0 < 1 for any fixed € which is larger than the modulus of all eigenvalues
(Problem 3.45). Moreover, since the norm is continuous, there is an open
ball B around p such that we have ||d(f"),| < 6 for all z € B. Hence we
have | f"(x) — p| = |f™(z) — f™"(p)| < 0]z — p| and the first claim follows.

The second case can now be reduced to the first by considering the local
inverse of f near p. O

If none of the eigenvalues of d(f™) at a periodic point p lies on the
unit circle, then p is called hyperbolic. Note that by the chain rule the
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derivative is given by

d(fp) = [ dfe = dfpn-1) - df sy fy. (10.17)

z€v+(p)

Finally, stability of a periodic point can be defined as in the case of
differential equations. A periodic orbit v, (p) of f(x) is called stable if
for any given neighborhood U(vy4(p)) there exists another neighborhood
V(v+(p)) € U(v+(p)) such that any point in V(v (p)) remains in U(v+(p))
under all iterations. Note that this is equivalent to the fact that for any
given neighborhood U (p) there exists another neighborhood V' (p) C U(p)
such that any point in x € V(p) satisfies f"(x) € U(p) for all m € Ny.

Similarly, a periodic orbit v4 (p) of f(x) is called asymptotically stable
if it is stable and attracting.

Pick a periodic point p of f, f™*(p) = p, and an open neighborhood U (p)
of p. A Liapunov function is a continuous function

L:U(p) =R (10.18)
which is zero at p, positive for x # p, and satisfies
L(z) > L(f"(x)), =, f"(x) € Up)\{p}- (10.19)

It is called a strict Liapunov function if equality in (10.19) never occurs.

As in the case of differential equations we have the following analog of
Liapunov’s theorem (Problem 10.6).

Theorem 10.2. Suppose p is a periodic point of f. If there is a Liapunov
function L, then p is stable. If, in addition, L is strict, then p is asymptot-
ically stable.

Problem 10.3. Consider the logistic map L,(x), x € R, for p = 1. Show
that W+(0) = [0,1].

Problem 10.4. Determine the stability of all fixed points of the logistic map
L,(x), x €[0,1], via linearization for 0 < p < 4.

Problem 10.5. Consider the logistic map L, for p = 4. show that 0 is
a repelling fixed point. Find an orbit which is both forward and backward
asymptotic to 0.

Problem 10.6. Prove Theorem 10.2.

Problem 10.7. Define the set of recurrent points Rec(f) := {x € M | for
every neighborhood U(x) there is some n > 0 with f™(x) € U(x)} and the
set of nonwandering points Nwa(f) := {z € M | for every neighborhood
U(x) there are n >0 and y € U(zx) with f*(y) € U(x)}.

Show:
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(i) Per(f) €
(ii) Per(f)
(iii) Rec(f) = {x € M | there is a sequence ny with f™(z) — x}.
(iv) Nwa(f) is closed.

(See also Problem 11.8.)

Rec(f) € Nwa(f).
, Rec(f), and Nwa(f) are (positively) invariant.

10.3. Linear difference equations

As in the case of differential equations, the behavior of nonlinear maps near
fixed (periodic) points can be investigated by looking at the linearization.
We begin with the study of the homogeneous linear first-order difference
equations
x(m+1) = A(m)z(m), x(mg) = xo, (10.20)
where A(m) € R" x R™. Clearly, the solution corresponding to z(mg) = xo
is given by
x(m, mo, o) = II(m, mo)xo, (10.21)

where II(m,mg) is the principal matrix solution given by

I1(m, mg) H A(j), m > mo. (10.22)
Jj=mo
In particular, linear combinations of solutions are again solutions and the
set of all solutions forms an n-dimensional vector space.

The principal matrix solution solves the matrix valued initial value prob-
lem

II(m + 1,mg) = A(m)II(m,mp), II(mg, mp) =1 (10.23)
and satisfies
II(m, mq)II(mq, mo) = II(m, my). (10.24)
Moreover, if A(m) is invertible for all m, we can set

-1
mo—1

I(m,mo) = | [] AG)| » m<mg (10.25)
In this case, II(m, mg) is an isomorphism with inverse given by IT(m, mg) ™ =
I1(mg, m) and all formulas from above hold for all m.

The analog of Liouville’s formula is just the usual product rule for de-
terminants

det(TI(m,mo)) = [] det(A())). (10.26)
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Finally, let us turn to the inhomogeneous system
x(m+1) = A(m)x(m) + g(m), x(mg) = xo, (10.27)

where A(m) € R" x R™ and g(m) € R™. Since the difference of two solutions
of the inhomogeneous system (10.27) satisfies the corresponding homoge-
neous system (10.20), it suffices to find one particular solution. In fact, it is
straight forward to verify that the solution is given by the following formula.

Theorem 10.3. The solution of the inhomogeneous initial value problem is
given by

m—1
z(m) =T(m,mo)zo + Y _ T(m,j)g(j), (10.28)

Jj=mo
where TI(m, mg) is the principal matriz solution of the corresponding homo-
geneous system.

If A(m) is invertible, the above formula also holds for m < mg if we set

mo

x(m) = I(m, mo)zo — Z II(m,j)g(j), m < mg. (10.29)

j=m—1
Problem 10.8. Find an explicit formula for the Fibonacci numbers de-
fined via

z(m)=x(m—1) +z(m — 2), z(1) =x(2) = 1.

10.4. Local behavior near fixed points

In this section we want to investigate the local behavior of a differentiable
map f : R” — R"™ near a fixed point p. We will assume p = 0 without
restriction and write

f(z) = Az + g(z), (10.30)
where A = dfy. The analogous results for periodic points are easily obtained
by replacing f with f”.

First we show the Hartman—Grobman theorem for maps (compare The-
orem 9.10).

Theorem 10.4 (Hartman—Grobman). Suppose f is a local diffeomorphism
with hyperbolic fixed point 0. Then there is a homeomorphism ¢(x) = x +
h(zx), with bounded h, such that

poA=foyp,  A=df, (10.31)
in a sufficiently small neighborhood of 0.



10.4. Local behavior near fixed points 253

Proof. Let ¢s be a smooth bump function such that ¢5(z) = 0 for |z| < J
and ¢s(z) = 1 for |z| > 2. Then the function g5 = (1 — ¢5)(f — A) satisfies
the assumptions of Lemma 9.8 (show this) for § sufficiently small. Since f

and fj5 coincide for |z| < § the homeomorphism for fs is also the right one
for f for z in the neighborhood ¢~ ({z||z| < d}). O

Let me emphasize that the homeomorphism ¢ is in general not differen-
tiable! In particular, this shows that the stable and unstable sets W (0) and
W~(0) (defined in Section 10.2) are given (locally) by homeomorphic images
of the corresponding linear ones ET(A) and E~(A), respectively. In fact,
it can even be shown that (in contradistinction to ¢) they are differentiable
manifolds as we will see in a moment.

We will assume that f is a local diffeomorphism for the rest of this
section.

We define the stable respectively unstable manifolds of a fixed point p
to be the set of all points which converge exponentially to p under iterations
of f respectively f~1, that is,

M=*(p) ={z € M| sup oF™|f™(z) —p| < oo for some o € (0,1)}.

+meNg
(10.32)

Both sets are obviously invariant under the flow and are called the stable
and unstable manifold of p.

It is no restriction to assume that p = 0. In the linear case we clearly
have M*(0) = E*(A).
Our goal is to show, the sets M*(zg) are indeed manifolds (smooth)

tangent to E*(A). As in the continuous case, the key idea is to formulate
our problem as a fixed point equation which can then be solved by iteration.

Now writing
f(z) = Az + g(x) (10.33)
our difference equation can be rephrased as

m—1
z(m) = Ao + > A" g(x(4)) (10.34)
j=0

by Theorem 10.3.

Next denote by P* the projectors onto the stable, unstable subspaces
E*(A). Moreover, abbreviate 4+ = P*2y and g+ (z) = PTg(x).

What we need is a condition on zg = x4 + z_ such that z(m) remains
bounded. If we project out the unstable part of our summation equation

t_=A""x_(m) — Z Alg_(x(4)). (10.35)

-1
J=0



254 10. Discrete dynamical systems

and suppose |z(m)| bounded for m > 0, we can let m — oo,
o0
v == A (a()), (10.36)
=0

where the sum converges since the summand decays exponentially. Plugging
this back into our equation and introducing P(m) = P, m > 0, respectively
P(m)=—P~, m <0, we arrive at

z(m) = K(z)(m), K(z)(m)=A"z,+> A" P(m—j)g(x(j)). (10.37)
7=0

To solve this equation by iteration, suppose |z(m)| < ¢. Then, since the
Jacobian of g at 0 vanishes, we have

sup lg(z(m)) — g(Z(m))| < e sup lz(m) — Z(m)], (10.38)

where € can be made arbitrarily small by choosing § sufficiently small. Since
we have

|A™ T P(m — j)|| < Cal™l o <1. (10.39)
existence of a solution follows by Theorem 2.1. Proceeding as in the case of
differential equations we obtain

Theorem 10.5 (Stable manifold). Suppose f € C* has a fived point p with
corresponding invertible Jacobian A. Then, there is a neighborhood U (p)
and functions h* € C*(E*(A), ET(A)) such that

ME(p)NU(p) ={p+a+h*(a)|ac EXNU}. (10.40)

Both h* and their Jacobians vanish at p, that is, M*(p) are tangent to their
respective linear counterpart Ei(A) at p. Moreover,

|fE™(x) — p| < Ca™, m € No,z € M*(p) (10.41)

for any a < min{|a||a € o(Ay) Ua(A-)"t} and some C > 0 depending on
.

Proof. The proof is similar to the case of differential equations. The details
are left to the reader. O

In the hyperbolic case we can even say a little more.

Theorem 10.6. Suppose f € C* has a hyperbolic fixed point p with invert-
ible Jacobian. Then there is a neighborhood U(p) such that v+ (z) C U(p) if
and only if x € M*(p). In particular,

W*(p) = M*(p). (10.42)

Proof. The proof again follows as in the case of differential equations. [J
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It happens that an orbit starting in the unstable manifold of one fixed
point pg ends up in the stable manifold of another fixed point p;. Such
an orbit is called heteroclinic orbit if pg # p; and homoclinic orbit if
Po = Pp1.

Note that the same considerations apply to fixed points if we replace f
by f™.






Chapter 11

Discrete dynamical
systems in one
dimension

11.1. Period doubling

We now return to the logistic equation and the numerical investigation
started in Section 10.1. Let us try to get a more complete picture by it-
erating one given initial condition for different values of u. Since we are
only interested in the asymptotic behavior we first iterate 200 times and
then plot the next 100 iterations.

In[1]:= BifurcationList[f_,x0_, {p_, u0_, ul1_}, opts__] :=
Block[{Nmin, Nmax, Steps},
Nmin, Nmax, Steps = {Nmin, Nmax, Steps} /. {opts} /.
{Nmin — 200, Nmax — 300, Steps — 300};
Flatten|
Table[Module[{x},
x = Nest[f, x0, Nmin];
Map[{u, #}&, NestList[f, x, Nmax — Nmin]]],
]{]u, (0, p11, (u1 — u0) /Steps}],
1j);

The result is shown below.

257
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In[2]:= ListPlot]
BifurcationList|[u#(1 — #)&,0.4,{u,2.95,4}],
PlotStyle — {PointSize[0.002]},PlotRange — All,
Axes — False];

So we see that at certain point the attracting set just doubles its size and gets
more and more complicated. I do not want to say more about this picture
right now, however, I hope that you are convinced that the dynamics of this
simple system is indeed quite complicated. Feel free to experiment with the
above code and try to plot some parts of the above diagram in more detail.

In particular we see that there are certain points p where there is a
qualitative change in the dynamics of a dynamical system. Such a point is
called a bifurcation point of the system.

The first point was u = 1, where a second fixed point entered our interval

[0,1]. Now when can such a situation happen? First of all, fixed points are
zeros of the function

g(z) = f(z) — . (11.1)

If f is differentiable, so is g and by the implicit function theorem the number
of zeros can only change locally if ¢'(x) = 0 at a zero of g. In our case of
the logistic equation this yields the following system

L,(x) = z=px(l-2x),
L(z) = 1=p(l-2z), (11.2)

which has the only solution x = 0 and ¢ = 1. So what precisely happens
at the value = 1?7 Obviously a second fixed point p = 1 — 1/u enters our
interval. The fixed point 0 is no longer attracting since L/, (0) = > 1 but
pis for 1 < pu < 3 since Lj,(p) = 2 — p. Moreover, I claim W*(0) = {0,1}
and W#(p) = (0,1) for 1 < p < 3. To show this first observe that we have

Lu(ﬂ”) —D

=1— pa. 11.
pra—” px (11.3)
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If 1 < o < 2 the right-hand side is in (=1, 1) for « € (0,1). Hence z € (0,1)
converges to p. If 2 < p < 3 the right-hand side is in (—1,1) only for
x € (0, %) If = stays in this region for all iterations, it will converge to p.

Otherwise, we have = € [%, 1] after some iterations. After the next iteration
we are in [0,2 — %] and in particular below p. Next, we stay below p until

we reach [i, p]. For this case consider the second iterate which satisfies

Li()—p

B TP (4 (1 - plua). (11.4)
r—=p

For x € (i,p) the right-hand side is in (—1,1) implying LZ”(:U) — p. Thus

we also have L2"!(z) — L, (p) = p and hence L}(x) — p for all z € (0,1).

Now what happens for u > 3?7 Since we have LL(p) =2—pu< —1 for
1 > 3 the fixed point p is no longer attracting. Moreover, a look at our
numeric investigation shows that there should be a periodic orbit of period
two. And indeed, solving the equation

Li(z) == (11.5)
shows that, in addition to the fixed points, there is a periodic orbit

It pEV e+ —3) (11.6)
24 ’

P+

for > 3. Moreover, we have (L2) (p+) = L}, (p4)L,(p-) = 4+ 2u — p?
which is in (—1,1) for 3 < p < 1+ /6. Hence, the attracting fixed point
p is replaced by the attracting periodic orbit py, p_. This phenomenon is
known as period doubling. Our numerical bifurcation diagram shows that
this process continues. The attracting period two orbit is replaced by an
attracting period four orbit at p = 1 4 v/6 (period doubling bifurcation in
f?) and so forth. Clearly it is no longer possible to analytically compute all
these points since the degrees of the arising polynomial equations get too
high.

So let us try to better understand the period doubling bifurcation. Sup-
pose we have a map f : I — I depending on a parameter p. Suppose that
at o the number of zeros of f?(x) — x changes locally at p, that is, suppose
there are two new zeros p (u) such that pi(uo) = p and f(p+(p)) = px(p).

By continuity of f we must have f([p—(u),p+(u)]) 2 [p—(u),p+(1)] and
hence there must be a fixed point p(u) € [p— (1), p+()]. So the fixed point

p persists. That should only happen if f/(p) # 1. But since we must have
(f*)(p) = f'(p)* = 1 this implies f'(p) = —1.

In summary, orbits of period two will appear in general only at fixed
points where f'(p) = —1.
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Note that in the above argument we have shown that existence of an
orbit of period two implies existence of an orbit of period one. In fact, a
much stronger result is true which will be presented in the next section.

Problem 11.1. Show that for p = 2 we have

- % (1 (1—220)%").

11.2. Sarkovskii’s theorem

In this section we want to show that certain periods imply others for con-
tinuous maps f : I — I, where I C R is some compact interval. As our first
result we will show that period three implies all others.

Lemma 11.1. Suppose f : I — I is continuous and has an orbit of period
three. Then it also has orbits with (prime) period n for all n € N.

Proof. The proof is based on the following two elementary facts (Prob-
lem 11.2):

(i) If I, J are two compact intervals satisfying f(J) D I, then there is
a subinterval Jy of J such that f(Jy) = I.

(ii) If f(J) D J, there is a fixed point in J.

Let a < b < ¢ be the period three orbit. And suppose f(a) = b, f(b) =
(the case f(a) = ¢, f(b) = a is similar). Abbreviate Iy = [a,b], [ = [b,c
and observe f(Ip) 2 I1, f(I1) 2 IoU I.

Set Jo = Iy and recall f(Jo) = f(I1) 2 I1 = Jy. By (i) we can find a
subinterval J; C Jy such that f(J;) = Jy. Moreover, since f(J1) = Jo 2 Ji
we can iterate this procedure to obtain a sequence of nesting sets J, k =
0,...,n, such that f(Jx) = Jrx—_1. In particular, we have f"(J,) = Jyp 2 J,
and thus f™ has a fixed point in J, by (ii). The only problem is, is the
prime period of this point n? Unfortunately, since all iterations stay in Iy,
we might always get the same fixed point of f. To ensure that this does not
happen we need to refine our analysis by going to Iy in the (n — 1)’th step
and then back to I.

So let n > 1 and define Jy O --- D J,_o as before. Now observe
Y (Jn2) = f(f"2(Ju_2)) = f(I1) 2 Iy. Hence we can choose a subinter-
val J,_1 C J,_9 such that fn_l(Jnfl) = Ip and thus fn(g]nfl) = f(.[o) o 1.
Again there is a subinterval J,, C J,—1 such that f"(J,) = I;. Hence there
is a fixed point x € J, of f™ such that fi(z) € I for j # n — 1 and
f"1(z) € Iy. Moreover, note that z really leaves I; in the (n — 1)-th step
since f"Y(x) € IpNI; = {b} contradicts a = f"*!(z) = f(z) € I;. Con-
sequently the prime period of z cannot be n — 1 since f*~!(z) € [a,b) and
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if it were smaller than n — 1, all iterates would stay in the interior of I3, a
contradiction. So the prime period is n and we are done. O

So when does the first period three orbit appear for the logistic map L7
For 1 = 4 the equation Li(m) = x can be solved using Mathematica showing
that there are two period three orbits. One of them is given by

1
B
the other one is slightly more complicated. Since there are no period three
orbits for 0 < p < 3, there must be a local change in the zero set of Li(l‘) —.
Hence we need to search for a solution of the system of equations Li(:ﬂ) =

(1+¢),1—c4c%(1 -2}, c:cos(g), (11.7)

x, (Li)’ () = 1. Plugging this equation into Mathematica gives a rather
complicated solution for the orbit, but a simple one for y = 1+2v/2 = 3.828.
Since this is the only solution for ¢ € R other than z = 0,4 = 1 we know
that the logistic equation has orbits of all periods for x> 1 4 2v/2.

In fact, this result is only a special case of a much more general theorem
due to Sarkovskii. We first introduce a quite unusual ordering of the natural
numbers as follows. First note that all integers can be written as 2 (2n+1)
with m,n € Ng. Now for all m € Ny and n € N we first arrange them
by m and then, for equal m, by n in increasing order. Finally we add all
powers of two (n = 0) in decreasing order. That is, denoting the Sarkovskii
ordering by > we have

3-5>->2:3>25%>--->=2"2n+1)>--->=22=2>1 (11.8)
With this notation the following claim holds.

Theorem 11.2 (Sarkovskii). Suppose f : I — I is continuous and has an
orbit of period m. Then it also has orbits with prime period n for all m = n.

The proof is in spirit similar to that of Lemma 11.1 but quite tedious.
Hence we omit it here. It can be found (e.g.) in [25].

Problem 11.2. Show items (i) and (ii) from the proof of Lemma 11.1.

11.3. On the definition of chaos

In this section we want to define when we consider a discrete dynamical
system to be chaotic. We return to our abstract setting and consider a
continuous map f : M — M on a metric space M.

It is quite clear from the outset, that defining chaos is a difficult task.
Hence it will not surprise you that different authors use different definitions.
But before giving you a definition, let us reflect on the problem for a moment.

First of all, you will certainly agree that a chaotic system should exhibit
sensitive dependence on initial conditions. That is, there should be
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a 0 > 0 such that for any x € M and any € > 0 there is a y € M and an
n € N such that d(z,y) < e and d(f"(x), f"(y)) > 9.

However, the example
M=(0,00), f(@)=(1+mz p>0, (11.9)

exhibits sensitive dependence on initial conditions but should definitely not
be considered chaotic since all iterates in the above example converge to
infinity. To rule out such a situation we introduce another condition.

A map f as above is called topologically transitive if for any given
open sets U,V C M there is an n € N such that f*(U) NV # (. Observe
that a system is transitive if it contains a dense orbit (Problem 11.3).

A system having both properties is called chaotic in the book by Robin-
son [25]. However, we will still consider another definition since this one
has one draw back. It involves the metric structure of M and hence is not
preserved under topological equivalence. Two dynamical systems (M;, f;),
j = 1,2, are called topological equivalent if there is a homeomorphism
@ : M1 — My such that the following diagram commutes.

M, o
vl Lo (11.10)
My, -

Clearly pa = ¢(p1) is a periodic point of period n for fo if and only if p; is for
f1- Moreover, we have W*(ps) = o(W?#(p1)) and all topological properties
(e.g., transitivity) hold for one system if and only if they hold for the other.

On the other hand, properties involving the metric structure might not
be preserved. For example, take ¢ = z~!'. Then the above example is
mapped to the system

M = (0,00), f(x)=04ptz, pn>0, (11.11)

which no longer exhibits sensitive dependence on initial conditions. (Note
that the problem here is that M is not compact. If M is compact, f is
uniformly continuous and sensitive dependence on initial conditions is pre-
served.)

Hence we will use the following definition for chaos due to Devaney [7].
A discrete dynamical system (M, f) with continuous f and infinite M as
above is called chaotic if it is transitive and if the periodic orbits are dense.
If M is finite and transitive it is not hard to see that it consists of one single
periodic orbit.

The following lemma shows that chaotic dynamical systems exhibit sen-
sitive dependence on initial conditions.
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Lemma 11.3. Suppose f : M — M is chaotic. Then it exhibits sensitive
dependence on initial conditions.

Proof. First observe that there is a number 8§ such that for all x € M there
exists a periodic point ¢ € M whose orbit is of distance at least 46 from =x.
In fact, since M is not finite we can pick two periodic points ¢; and ¢o with
disjoint orbits. Let 8§ be the distance between the two orbits. Then, by the
triangle inequality the distance from at least one orbit to x must be larger
than 46.

Fix x € M and € > 0 and let ¢ be a periodic orbit with distance at least
49. Without restriction we assume € < §. Since periodic orbits are dense,
there is a periodic point p € B.(x) of period n.

Now the idea is as follows. By transitivity there is a y close to x which
gets close to ¢ after k iterations. Now iterate another j times such that k+ j
is a multiple of n. Since 0 < j < n is small, f**7(y) is still close to the
orbit of ¢. Hence f¥7(y) is far away from 2 and f*+7(p) = p is close to
x. Since f¥J(z) cannot be close to both, we have sensitive dependence on
initial conditions.

Now to the boring details. Let V = ﬂ?z_ol “(Bs(f(q)) (ie., z €V
implies that f'(z) € Bs(f'(q)) for 0 < ¢ < n). By transitivity there is a
y € B.(z) such that f¥(y) € V and hence f¥7(y) € Bs(f’(q)). Now by the
triangle inequality and f¥*7(p) = p we have

d(f" (p), M (y) = d(z, f1(q)) — d(f(q), " (y)) — d(p, x)
> 46— 5 — 6 = 26.

Thus either d(f*+7(y), fEH7(z)) > § or d(f*(p), f**9(x)) > 6 and we are
done. O

Now we have defined what a chaotic dynamical system is, but we haven’t
seen one yet! Well, in fact we have, I claim that the logistic map is chaotic
for p =4.

To show this we will take a detour via the tent map

M =[0,1], n@g:%a—px—u) (11.12)

using topological equivalence. The tent map 75 is equivalent to the logistic
map Ly by virtue of the homeomorphism ¢(z) = sin(%%)? (Problem 11.4).
Hence it follows that L, is chaotic once we have shown that T5 is.

The main advantage of T» is that the iterates are easy to compute. Using

2x 0<z<1i
T = ’ -T2 11.13
Q(x) {2_2]:, %SIESL ( )
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it is not hard to verify that

) { 2y —2j, H<r<HH } (1114
2 +1) — 2"z, HE<a<HPf

Moreover, each of the intervals I, ; = [zj—n, j;}] is mapped to [0,1] under
T3. Hence each of the intervals I, ; contains (precisely) one solution of
T3 (x) = x implying that periodic points are dense. For given x € [0,1] and
e > 0 we can find n, j such that I, ; C B.(z). Hence T3 (B:(z)) = [0,1],
which shows that T5 is transitive. Hence the system is chaotic. It is also not
hard to show directly that T has sensitive dependence on initial conditions

(exercise).

Suppose f(0) = f(1) =0, f(%) = 1, and suppose f is monotone increas-
ing, decreasing on [0, %], [%, 1]. Does any such map have similar properties?
Is such a map always chaotic?

Problem 11.3. Show that a closed invariant set which has a dense orbit is
topologically transitive.

Problem 11.4. Show that T and L4 are topologically equivalent via the
map ¢(z) = sin(ZE)? (i.e., show that ¢ : [0,1] — [0,1] is a homeomorphism
and that p o Ty = Lyo p).

11.4. Cantor sets and the tent map

Now let us further investigate the tent map 7}, for > 2. Unfortunately, in
this case T}, does no longer map [0, 1] into itself. Hence we must consider it
as a map on R,

M=R, T,(z)= g(l— 22 — 1) (11.15)

It is not hard to show that T} () — —oo if z € R\[0, 1]. Hence most points
will escape to —oo. However, there are still some points in [0, 1] which stay
in [0, 1] for all iterations (e.g., 0 and 1). But how can we find these points?

Let Ag = [0,1]. Then the points which are mapped to Ag under one
iteration are given by (iAo) u(l- %Ao). Denote this set by

1 1
A =1[0,-]U[l—=1]. (11.16)
u [
All points in R\A; escape to —oo since the points in (%, 1- i) are mapped
to R\[0, 1] after one iteration.

Similarly, the points which are mapped to A; under one iteration are
given by (%Al) u(l- %Al). Hence the corresponding set

1 1 1 1 1 1 1
02

Az = [0, ?] —;+E]u[1—?1] (11.17)
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has the property that points starting in this set stay in [0,1] during two
iterations. Proceeding inductively we obtain sets A, = (%An_l) U@l -
iAn,l) having the property that points starting in A, stay in [0, 1] for at
least n iterations. Moreover, each set A, consists of 2" closed subintervals
of length p=".

Now if we want to stay in [0, 1] we have to take the intersection of all
these sets, that is, we define

A=()A,C01]. (11.18)
neN

Since the sets A, form a nesting sequence of compact sets, the set A is also
compact and nonempty. By construction the set A is invariant since we have

T,(A) = A (11.19)

and all points in the open set R\A converge to —oc.

Moreover, since the endpoints of the subintervals of A,, are just given by
f7"({0,1}), we see that these points are in A. Now the set A has two more
interesting properties. First of all it is totally disconnected, that is, it
contains no open subintervals. In fact, this easily follows since its Lebesgue
measure |A| < limy,_yo0 [An| = limy,,00(2/p)™ = 0 vanishes. Secondly, it is
perfect, that is, every point is an accumulation point. This is also not hard
to see, since x € A implies that z must lie in some subinterval of A,, for
every n. Since the endpoints of these subintervals are in A (as noted earlier)
and converge to x, the point x is an accumulation point.

Compact sets which are totally disconnected and perfect are called Can-
tor sets. Hence we have proven,

Lemma 11.4. The set A is a Cantor set.

This result is also not surprising since the construction very much re-
assembles the construction of the Cantor middle-thirds set you know from
your calculus course. Moreover, we obtain precisely the Cantor middle-
thirds set if we choose p = 3. Maybe you also recall, that this case can
be conveniently described if one writes x in the base three number system.
Hence fix ;1 = 3 and let us write

Tn
r=>)_ 3 z, € {0,1,2}. (11.20)

n )
neN

Recall that this expansion is not unique since we have, for example, % =
0.1 = 0.02 0or 2 =0.2--- = 0.12---. Here the T implies that the corre-
sponding digit repeats infinitely many times. It will be convenient for us to
exclude the expansions which end in 1 or 12. Then we have A, = {z|z; #
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1, 1 <j <n} (Problem 11.6) and hence
A= {z|z; #1,j € N}. (11.21)
Moreover, the action of T3 can also be transparently described using this
notation .
n+1
11=0 = T3(x) =) ey 5
r1=1 = T3(x)¢][0,1] , (11.22)
z,,
T = 2 = T3<af) = ZnEN ?;1

where ], = 2—z; (ie., 0/ = 2,1 =1,2' = 0). Unfortunately this description
still has a few draw backs. First of all, it is not possible to tell if two points
x, y are close by looking at the first n digits and the fact that T3 does not
simply shift the sequence x,, is a little annoying. Finally, it only works for
w=3.

So let us return to arbitrary g > 2 and let us see whether we can do
better. Let Yo = {0, 1} be the set of sequences taking only the values 0
and 1.

1

Set Ip = [0, %], Iy = [1 = -, 1] and define the itinerary map

w: A = Xy
r o= xp, = if T (x) €l (11.23)
Then ¢ is well defined and T}, acts on x, just by a simple shift. That is,
if we introduce the shift map o : Yo — X9, (29, 21,...) — (21,22,...),
we have 0 o ¢ = ¢ oT), and it looks like we have a topological equivalence
between (A,T),) and (X2,0). But before we can show this, we need some

further definitions first.

First of all we need to make sure that (X9,0) is a dynamical system.
Hence we need a metric on 3. We will take the following one

dz,y) =Y W (11.24)

nENg
(prove that this is indeed a metric). Moreover, we need to make sure that
o is continuous. But since
d(o(x),0(y)) < 2d(z,y) (11.25)
it is immediate that o is even uniformly continuous.
So it remains to show that ¢ is a homeomorphism.

We start by returning to the construction of A,,. If we set I = [0, 1] we
have seen that A; consists of two subintervals Iy = 17 and I; = 1 — 11.
Proceeding inductively we see that the set A, consist of 2" subintervals
Iy, sn_1, 85 € {0,1}, defined recursively via Ig ... s, = ils
Lo sn = 1 — %Iso;-wn- Note that T),(Is.... s,) = Ls; ...

0, s and

sSn*
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By construction we have = € I, ... 5, if and only if ¢(z); = s; for 0 <
1 < n. Now pick a sequence s € Yo and consider the intersection of nesting
intervals
Io= () Tegomon- (11.26)
n€eNp
By the finite intersection property of compact sets it is a nonempty interval,
hence ¢ is onto. By |I,.. s,| = p~ ! its length is zero and thus it can
contain only one point, that is, ¢ is injective.

If x and y are close so are T),(x)™ and T),(y)" by continuity of T},. Hence,
for y sufficiently close to x the first n iterates will stay sufficiently close such
that z; = y; for 0 < j < n. But this implies that ¢(z) and ¢(y) are close
and hence ¢ is continuous. Similarly, ¢(z) and ¢(y) close implies that the
first n terms are equal. Hence x,y € Iy ... 4, = Iy,,... y, are close, implying
that ¢! is continuous.

n

In summary,

Theorem 11.5. The two dynamical systems (A, T,), p > 2, and (X2,0) are
topologically equivalent via the homeomorphism ¢ : A — Y.

Hence in order to understand the tent map for p > 2, all we have to do
is to study the shift map o on ¥y. In fact, we will show that (X9,0), and
hence (A,T),), i > 2, is chaotic in the next section.

Problem 11.5. Show that two different ternary expansions define the same
number, Y NTn3™" = D cnUnd3", if and only if there is some ng € N
such that x; = y; forn < ng, xj = y; £1 for n = ng, and x; = y; ¥ 2 for
n > ng. Show that every x € [0,1] has a unique expansions if the expansions
which end in 1 or 12 are excluded.

Problem 11.6. Show that for p = 3 we have A, = {x|z; #1, 1 < j < n},
where x;j are the digits in the ternary expansion as in the previous problem.

11.5. Symbolic dynamics

The considerations of the previous section have shown that the shift map on
a sequence space of finitely many symbols is hidden in the tent map. This
turns out to be true for other systems as well. Hence it deserves a thorough
investigation which will be done now.

Let N € N\{1} and define the space on N symbols
Yy ={0,1,...,N —1}Mo (11.27)

to be the set of sequences taking only the values 0,..., N — 1. Note that
Y is not countable (why?).
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Defining
In — Yn
d(z,y) =) [7n = yn RT 5 (11.28)
n€ENg

> n becomes a metric space. Observe that two points = and y are close if
and only if their first n values coincide. More precisely,

Lemma 11.6. We have d(z,y) < N™" if x; = y; for all j < n and we have
d(z,y) > N~" if xj # y; for at least one j < n.

Proof. Suppose x; = y; for all j < n. Then

) — yjl 1 N-1 1
d(z,y) = Z Ni = N+l Ni  Nn
j>n J20

Conversely, if x; # y; for at least one j < n, we have

|z —y| 1 1
d(xay):ZTZm_W-
keN

O

We first show that X is a Cantor set, that is, it is compact, perfect,
and totally disconnected. Here a topological space M is called totally
disconnected if for any two points x and y there are disjoint respective
open neighborhoods U and V such that UUV = M. I leave it as an exercise
to prove that this is equivalent to our previous definition for subsets of the
real line (Problem 11.7).

Lemma 11.7. The set X is a Cantor set.

Proof. We first prove that Xy is compact. We need to show that every
sequence z” contains a convergent subsequence. Given z", we can find a
subsequence %" such that azg’" is the same for all n. Proceeding inductively,
we obtain subsequences ™" such that :cin = 2" is the same for all n if
0 <k <j < m. Now observe that ™" is a subsequence which converges
since x?’n = x;ﬁ’m for all 7 < min(m,n).

To see that Xy is perfect, fix z and define z™ such that Ty = x; for
0<j<nandzx;, | # Tpy1. Then x # 2™ and 2" converges to x.

To see that X is totally disconnected, observe that the map 6;, : ¥y —
{0,...,N — 1}, & — =z, is continuous. Hence the set U = {z|z;, = ¢} =
5;01(0) for fixed jo and c is open and so is V = {z|z;, # c}. Now let
x,y € X, if x # y there is a jg such that z;, # y;,. Now take ¢ = z;, then
U and V from above are disjoint open sets whose union is X5 and which

contain z and y respectively. U



11.5. Symbolic dynamics 269

On X n we have the shift map

o EN —>2N

, 11.29
(zo,21,...) = (21,22,...) ( )
which is uniformly continuous since we have

d(o(x),0(y)) < Nd(z, ). (11.30)

Furthermore, it is chaotic as we will prove now. Observe that a point x is
periodic for ¢ if and only if it is a periodic sequence.

Lemma 11.8. The shift map has a countable number of periodic points
which are dense.

Proof. Since a sequence satisfying 0" (x) = z is uniquely determined by
its first n coeflicients, there are precisely N™ solutions to this equation.
Hence there are countably many periodic orbits. Moreover, if x is given,
we can define " by taking the first n coefficients of & and then repeating
them periodically. Then x™ is a sequence of periodic points converging to x.
Hence the periodic points are dense. O

Lemma 11.9. The shift map has a dense orbit.

Proof. Construct an orbit as follows. Start with the values 0,..., N —1 as
first coefficients. Now add all N? two digit combinations of 0,...,N — 1.
Next add all N2 three digit combinations. Proceeding inductively we obtain
a sequence x. For example for N = 2 we have to take 0,1;00,01,10,11;...,
that is, x = (0,1,0,0,0,1,1,0,1,1,...). I claim that the orbit of = is dense.
In fact, let y be given. The first n coefficients of y appear as a block some-
where in x by construction. Hence shifting x k times until this block reaches
the start, we have d(y,o"(z)) < N~™. Hence the orbit is dense. O

Combining the two lemmas we see that (X, o) is chaotic. I leave it
as an exercise to show that ¢ has sensitive dependence on initial conditions
directly.

It turns out that, as we have already seen in the previous section, many
dynamical systems (or at least some subsystem) can be shown to be topo-
logically equivalent to the shift map. Hence it is the prototypical example
of a chaotic map.

However sometimes it is also necessary to consider only certain subsets
of 3 since it might turn out that only certain transitions are admissible in
a given problem. For example, consider the situation in the previous section.
There we had Y9 and, for x € Yo, x, told us whether the n’th iterate is in
Iy or I;. Now for a different system it could be that a point starting in Iy
could never return to I; once it enters Iy. In other words, a zero can never
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be followed by a one. Such a situation can be conveniently described by
introducing a transition matrix.

A transition matrix A is an N x N matrix all whose entries are zero
or one. Suppose the ordered pair j, k may only appear as adjacent entries
in the sequence x if A = 1. Then the corresponding subset is denoted by

>4 ={z € Xn|As, 2,,, =1 for all n € Ng}. (11.31)

Tn+1

Clearly o maps Eﬁ into itself and the dynamical system (ZA ,0) is called a
subshift of finite type. It is not hard to see that Eﬁ is a closed subset of
¥y and thus compact. Moreover, ¢ is continuous on Zﬁ as the restriction
of a continuous map. We will denote this restriction by o4.

Now let us return to our example. Here we have

A= G 2) (11.32)

A quick reflection shows that the only sequences which are admissible are
those which contain finitely many ones first (maybe none) and then only
zeroes. In particular, all points except = (1,1,1,...) are eventually fixed
and converge to the fixed point x = (0,0,0,...). So the system is definitely
not chaotic. The same is true for all other possibilities except

A= G 1) (11.33)

in which case we have ¥4 = 5. Hence we need an additional condition to
ensure that the subshift is chaotic.

A transition matrix is called transitive if there is an integer [ € N such
that (A");, #0forall 0 < j k<N —1.

Let A be a transition matrix. We will call (z1,...,2;) an admissible
block of length k if Ay, ;. ., =1 for 1 < j <k — 1. The following lemma
explains the importance of A'.

Lemma 11.10. The (j, k) entry of Al is equal to the number of admissible
blocks (zg, ..., x;) of length | + 1 with xy = j and x; = k.

In particular, the number of periodic orbits of length | is equal to tr(A').

Proof. Just observe that the (j, k) entry of A’ is given by

l
(A )j,k = E : Aj,xlArhl? T Axl—Q@l—lAml—lvk

Z1,--T1—1

and that the above products are 1 if and only if the block (4, z1,...,x;_1, k)
is admissible. O
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In particular, for A transitive we obtain the following simple consequence
which is the key ingredient for our proof that transitive subshifts are chaotic.

Corollary 11.11. If A is transitive and [ is as above, there is an admissible
block (x1,...,x1—1) such that (j,x1,...,21_1,k) is admissible for all 0 <
j k<N —1.

This lemma ensures that, if A is transitive, there is an admissible block
of length [ — 1 such that we can glue admissible blocks to both ends in such
a way that the resulting block is again admissible!

As first application we prove

Lemma 11.12. Suppose A is transitive. Then E]"\‘, is a Cantor set.

Proof. Asnoted earlier, Eﬁ is compact. Moreover, as the subset of a totally
disconnected set it is totally disconnected. Now let z € Eﬁ be given. To
show that there are points arbitrarily close to x start by taking the first n
coeflicients and add an admissible block of length [ —1 from Corollary 11.11
to the end. Next add a single coefficient to the end such that the resulting
block is different from the corresponding one of z. Finally, add an admissible
block of length [ — 1 recursively to fill up the sequence. The constructed
point can be made arbitrarily close to x by choosing n large and so we are
done. O

As second application we show that (X4, o) is chaotic.

Lemma 11.13. Suppose A is transitive. Then the shift map on Zﬁ has a
countable number of periodic points which are dense.

Proof. The proof is similar to the last part of the previous proof. We first
show that the periodic points are dense. Let x be given and take the first n
coefficients and add our admissible block of length [ —1 from Corollary 11.11
to the end. Now take this entire block and repeat it periodically. The rest
is straightforward. O

Lemma 11.14. Suppose A is transitive. Then the shift map on Zﬁ has a
dense orbit.

Proof. The proofis as in the case of the full shift. Take all admissible blocks
of length 1,2,3,... and glue them together using our admissible block of
length | — 1 from Corollary 11.11. U

Finally, let me remark that similar results hold if we replace Ny by Z.
Let N € N\{1} and define the

Yy ={0,1,...,N -1} (11.34)
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to be the set of doubly infinite sequences taking only the values 0,..., N —1.
Defining

1 ’xn_yn|+‘x—n_y—n‘
n€Ng
¥ n becomes a metric space. Again we have

Lemma 11.15. We have d(xz,y) < N™" if x; = y; for all |j| < n and we
have d(x,y) > N™" if x; # y; for at least one |j| < n.

The shift map o is defined as before. However, note that o is invertible
in this case. All other results hold with no further modifications. The details
are left to the reader.

Problem 11.7. Show that the definition of a totally disconnected set given
in this section agrees with the one given in the previous section for subsets
of R. (Hint: If z,y € M C R and M contains no open interval, then there
is a z & M between x and y).

Problem 11.8. Show that for the shift on two symbols (cf. Problem 10.7):
All points are nonwandering, Nwa(c) = a. There are recurrent points
which are not periodic and there are monwandering points which are not
recurrent.

Problem 11.9. The (Artin-Mazur) zeta function of a discrete dynamical
system f: M — M 1is defined to be

00 o .

(5(2) = exp (Z ZJris(s >|) ,
n=1

where |Fix(f™)| is the cardinality of the set of fixed points of f™ (provided

this number is finite for every n). Equivalently, |Fix(f™)| is the number of

periodic orbits of period n.

Show that )

S S— All.
i <4

Coa(2)
(Hint: (3.21).)

11.6. Strange attractors/repellors and fractal sets

A compact invariant set A, f(A) = A, is called attracting if there is a
neighborhood U of A such that d(f"(z),A) — 0 as n — oo for all z € U.
A compact invariant set A, f(A) = A, is called repelling if there is a
neighborhood U of A such that for all x € U\A there is an n such that
() ¢ U.

For example, let f(x) = 2%. Then {0} is an attracting set and [—1,1]
is an repelling set. To exclude sets like [—1,1] in the above example we
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will introduce another condition. An attracting respectively repelling set is
called an attractor respectively repellor if it is topologically transitive.

If f is differentiable, there is a simple criterion when an invariant set is
attracting respectively repelling.

Theorem 11.16. Suppose [ : I — I is continuously differentiable and A is
a compact invariant set. If there is an ng € N such that |d(f™),| < 1 for
all z € A, then A is attracting. Similarly, if there is an ng € N such that
|[d(f™) | > 1 for all z € A, then A is repelling.

Proof. We only prove the first claim, the second is similar. Choose a such
that maxyen |d(f"0)z] < o < 1. For every y in A there is a (nonempty)
open interval I, containing y such that |d(f"),| < « for all z € I,. Now
let U be the union of all those intervals. Fix x € U and let y € A be such
that d(x,A) = |z — y|. Then, by the mean value theorem, d(f™ (x),A) <
|fo(x) — f"(y)| < alz —y| = ad(x,A). Hence d(f™"™(x),A) — 0 and by
continuity of f and invariance of A we also have d(f™"*7(z),A) — 0 for
0 < j < ng. Thus the claim is proven. O

Repelling, attracting sets as above are called hyperbolic repelling,
attracting sets, respectively.

An attractor, repellor A is called strange if the dynamical system (A, f)
is chaotic and if A is fractal.

We have already learned what the first condition means, but you might
not know what fractal means. The short answer is that a set is called fractal
if its Hausdorff dimension is not an integer. However, since you might also
not know what the Hausdorff dimension is, let me give you the long answer
as well.

I will first explain what the Hausdorff measure is, omitting all technical
details (which can be found e.g. in [27]).

Recall that the diameter of a (nonempty) subset U of R" is defined
by d(U) = sup, yep |z — y[- A cover {V;} of U is called a d-cover if it is
countable and if d(V};) < 6 for all j.

For U a subset of R™ and o > 0, § > 0 we define

hg(U) = inf { >~ d(V;)°

{V;} is a d-cover of U} € [0, o0]. (11.36)

As ¢ decreases the number of admissible covers decreases and hence h§(U)
is increasing as a function of . Thus the limit

h*(U) =lim h§(U) = sup h§(U) (11.37)
510 §>0
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exists. Moreover, it is not hard to show that h*(U) < h*(V) if U C V and
that for countable unions we have

r(Juy) <> rewy). (11.38)

Hence h® is an outer measure and the resulting measure on the Borel
o-algebra is called the o dimensional Hausdorff measure. As any measure
it satisfies

he () = 0,
h"‘(u U;) = Zh“(Uj), (11.39)

for any countable union of disjoint sets Uj.

For example, consider the case & = 0. Suppose U = {x,y} consists of
two points. Then hQ(U) =1 for § > |z — y| and hY(U) = 2 for § < |z — y|.
In particular, h°(U) = 2. Similarly, it is not hard to see that h°(U) is
just the number of points in U. On the other extreme, it can be shown
that h"(U) = ¢,/2"|U|, where |U| denotes the Lebesgue measure of U and
cn =72 /T'(n/2 + 1) is the volume of the unit ball in R".

Using the fact that for A > 0 the map A : z — Az gives rise to a
bijection between d-covers and (&/\)-covers, we easily obtain the following
scaling property of Hausdorff measures.

Lemma 11.17. Let A > 0 and U be a Borel set of R™. Then
h*(ANU) = AX*h*(U). (11.40)

Moreover, Hausdorff measures also behave nicely under uniformly Holder
continuous maps.

Lemma 11.18. Suppose f : U — R" is uniformly Hélder continuous with
exponent v > 0, that is,

lf(x) = fy)| <cz—y|” foralzyel, (11.41)

then
h(f(U)) < c*h*(U). (11.42)

Proof. A simple consequence of the fact that for every J-cover {V;} of a
Borel set U, the set {f(UNV;)}is a (c67)-cover for the Borel set f(U). O

Now we are ready to define the Hausdorff dimension. First of all note
that h§ is non increasing with respect to o for 6 < 1 and hence the same is
true for h®. Moreover, for a < 3 we have > d(V;)P < §8—« >_;d(V;)* and
hence

W3 (U) < 6P~ hg(U) < 67~ h(U). (11.43)
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Thus if h%(U) is finite, then h®(U) = 0 for every 3 > a. Hence there must
be one value of o where the Hausdorff measure of a set jumps from oo to 0.
This value is called the Hausdorff dimension

dimg (U) = inf{a|h®*(U) = 0} = sup{a|h*(U) = oo}. (11.44)

It can be shown that the Hausdorfl dimension of an m dimensional subman-
ifold of R™ is again m. Moreover, it is also not hard to see that we have
dimg(U) <n (Problem 11.11).

The following observations are useful when computing Hausdorff dimen-
sions. First of all the Hausdorff dimension is monotone, that is, for U C V'
we have dimg (U) < dimpy (V). Furthermore, if U; is a (countable) sequence
of Borel sets we have dimpy ({J; U;) = sup; dimpy (U;) (prove this).

Using Lemma 11.18 it is also straightforward to show

Lemma 11.19. Suppose f : U — R” is uniformly Hélder continuous with
exponent v > 0, that is,

[f(@) = fW)| < clz—y” forallx,y €U, (11.45)
then
dimy (F(U)) < idimH(U). (11.46)
Similarly, if f is bi-Lipschitz, that is,
alz — 4| < f(2) — f@)| <bla—y| forall z,y €U, (11.47)
then
dimy (f(U)) = dimg (U). (11.48)

We end this section by computing the Hausdorff dimension of the repellor
A of the tent map.

Theorem 11.20. The Hausdorff dimension of the repellor A of the tent
map T}, is

dimy(A) = 1128)) 0> 2. (11.49)

In particular, it is a strange repellor.

Proof. Let § = p=". Using the é-cover Iy, . s, , we see h§(A) < (H%)”
Hence for a = d = In(2)/In(u) we have h¢(A) < 1 implying dimy(A) < d.

The reverse inequality is a little harder. Let {V;} be a cover. We suppose
p > 2 (since for = 2 we just have A = [0,1]) and § < 1—2u~t. Tt is clearly
no restriction to assume that all V; are open intervals. Moreover, finitely
many of these sets cover A by compactness. Drop all others and fix j.
Furthermore, increase each interval V; by at most ¢
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For Vj there is a k such that

1—2u 1t 1—2u° L
— <
0 %

. —_ _1 .
Since the distance of two intervals in Ay is at least 1 z’f — we can intersect

at most one such interval. For n > k we see that V; intersects at most
2nk =2 (k) < 27(1 — 2~ 1)~ V;|¢ intervals of A,,.

Now choose n larger than all £ (for all V). Since {V;} covers A, we must
intersect all 2" intervals in A,,. So we end up with

2n
<y — V|,
DBy il
which together with our first estimate yields
2

_ 4\d d
(=)t nia) <.

O

Observe that this result can also formally be derived from the scaling
property of the Hausdorff measure by solving the identity

h*(A) = h*(ANIy) +h*(ANIL)=2h"(ANI)
_ ;ha(TH(AﬁIO)):;hO‘(A) (11.50)

for a. However, this is only possible if we already know that 0 < h*(A) < oo
for some a.

Problem 11.10. Let C = [0,1] x {0} € R2. Show that h*(C) = 1.

Problem 11.11. Show that dimy(U) < n for every U C R™. (Hint: It
suffices to take for U the unit cube. Now split U into k™ cubes of length

1/k.)

11.7. Homoclinic orbits as source for chaos

In this section we want to show that similar considerations as for the tent
map can be made for other maps as well. We start with the logistic map for
p > 4. As for the tent map, it is not hard to show that that Lj}(z) — —oo
if € R\[0, 1]. Hence most points will escape to —oo and we want to find
the points which stay in [0, 1] for all iterations.

Set Ag = [0,1]. Then A; = L;l(Ao) is given by
A =IhulL =[0,G,(1)]U [l —G,(1),1], (11.51)
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where
Gulx)=-—/=——, LuGux)) =2, 0<z<1L (11.52)

To make our life a little easier we will make the additional assumption that
L(z)=p(l=2z)>a>1 for zel. (11.53)
Since we have

Vil —4) = LL(Gu() < 1L @) S TL0) = p, € lUL,  (1154)

this implies u > 2 + /5 = 4.236. The general case p > 4 can be found in
the book by Robinson [25].

Now proceeding as in the case of the tent map, we see that there
is a sequence of nesting sets A, consisting of 2" subintervals I ... 5, ,,
s; € {0,1}, defined recursively via Iy s,... s, = Gu(Isg, ,s,,) and I ... 5, =
1 — Gu(Is, s,)- The only difference is that, since L, is not (piecewise)
linear, we do not know the length of the interval Iy, ... 5,. However, by our
assumption (11.53), we know G, (z) < o' and thus [Ty, .. s,| < Gu(1)a™™.
But this is all we have used for the tent map and hence the same proof shows

Theorem 11.21. Suppose jn > 2++/5. Then the logistic map L,, leaves the
set
A=) A, C01] (11.55)
neN
invariant. All points x € R\A satisfy lim, o Lj;(x) = —oo. The set A is
a Cantor set and the dynamical system (A, L,) is topologically equivalent to

the shift on two symbols (Xo,0) by virtue of the itinerary map

p: A = Xy

r = wp=jif Lj(x) €l (11.56)

In particular, (A, L,) is chaotic.

Clearly we also want to know whether the repellor A of the logistic map
is strange.

Theorem 11.22. The Hausdorff dimension of the repellor A of the logistic
map satisfies

. 1, 1<24 V8, _ In(2)
d(p) < dimpg(A) < {d(\/M), 4> 21 VR d(xz) = In(x)’
(11.57)

In particular, it is strange if p > 2 + /8 = 4.828.
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Proof. The proof is analogous to the one of Theorem 11.20. The only
difference is that we have to use different estimates for LL from above and
below,

Vud—p)=a<|L (x)|<f=p, xelgUI.

Using the d-cover Iy, s, we see h¥®(A) < (a/a) ™) where a = |Iy| =
1] = Gpu(1).

Similarly, using that the distance of two intervals in Ay is at least
where b = d(lp,I1) =1 —2G,(1), we obtain

b8 < pdB)(A)
which finishes the proof. ([

_b_
BR—1>

Well, if you look at the proof for a moment, you will see that only a few
properties of the logistic map have been used in the proof. And it is easy to
see that the same proof applies to the following more general situation.

Theorem 11.23. Let f: M — M be a continuously differentiable interval
map. Suppose there are two disjoint compact intervals Iy, 11 such that Iy U
L Cf(ly), oVl C f(Ih), and 1 < a < |f'(x)| < B for all x € Iy UI;. Set

A={zelhyUlL|f"(z) € IyU I for alln € N} (11.58)
and define the itinerary map as

p: A = Xy

x = x,=jif ffx)el;’ (11.59)

Then the set A is a Cantor set and the dynamical system (A, f) is topologi-
cally equivalent to the shift on two symbols (32, 0). The Hausdorff dimension
of A satisfies

d(B) < dimp(A) < d(a),  d(z) = (11.60)

and it is strange if o > 2.

Proof. By assumption, the restricted maps f : Iy — f(lp) and f : [} —
f(I) are invertible. Denote by go : f(Ily) — Ip and ¢1 : f(I1) — I; the
respective inverses. Now proceeding as usual, we see that there is a sequence
of nesting sets A,, consisting of 2" subintervals I ... 5, ,, s; € {0, 1}, defined
recursively via 1o sy....s, = 90(Zsg, - ,5,) and I1 59 s, = G1(Lsg, 5, ). By
assumption we also know at least |Ig, ... 5,| < o™ "|Is,| and hence the proof

follows as before. O

You should try to draw a picture for f as in the above theorem. More-
over, it clearly suffices to assume that f is absolutely continuous on Iy U I7.
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Next, let f be as in Theorem 11.23 and note that Iy C f(Ip) implies that
there is a (unique) fixed point p € Iy. Since Iy C f(I;) there is a point g € I;
such that f(q) = p. Moreover, denoting by go : f(Iy) — Iy the inverse of
f 1o — f(lo), we see that there is a whole sequence gg(q) which converges
to p as n — oo. In the case of the logistic map we can take ¢ = G, (1).

In[3]:= p = b;
1 1
Xo:Nest[<— —#> &, 1.,5];
2 4 pu
ShowWeb|u#(1 — #)&, %o, 6];

1.

© o o o
N A O 0 BN

0.2 0.4 0.6 0.8 1

The fact that o reaches the fixed point 0 after finitely many iterations (and
not only asymptotically) is related to dimension one. Since the fixed point
0 is repelling (L},(0) = p > 1) it cannot converge to 0 unless it reaches it
after finitely many steps.

In general, let f : I — I be continuously differentiable. A fixed point p is
called a hyperbolic repellor if |f'(p)| > 1. Hence there is a closed interval
W containing p such that |f'(z)| > a > 1 for all z € W. Moreover, by the
inverse function theorem there is a local inverse g : f(W) — W such that
g(f(x)) =z, x € W. Note that since f is expanding on W, we have W C
f(W) and that g is a contraction. A point ¢ € W is called a homoclinic
point if there exists an I € Ng such that f!(¢) = p. Theset v(q) = {f’(q)|j €
No} U {¢’(¢q)|j € N} is called the corresponding homoclinic orbit. It is
called nondegenerate if (f!)'(q) # 0 (which implies f'(x) # 0 for all z € v(q).
A hyperbolic repellor with a homoclinic orbit is also called a snap back
repellor.

Theorem 11.24. Suppose f € C*(I,1) has a repelling hyperbolic fixed point
p and a corresponding nondegenerate homoclinic point q.

For every sufficiently small neighborhood U of p there is an n € N and
an f" invariant Cantor set A C U (i.e., f"(A) = A) such that (A, f*) is
topologically equivalent to the shift on two symbols (Xg,0).

Proof. We will need to construct two disjoint intervals I; C UNW, j = 0,1,
as in Theorem 11.23 for the map F' = f™ with n suitable. By shrinking W
it is no restriction to assume W C U.
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The idea is to take compact intervals Iy containing p and [; containing
q. Since f'(q) = p, the interval f!(I1) contains again p. Taking sufficiently
many iterations we can blow up both intervals such that the iterated im-
ages contain both original ones. The only tricky part is to ensure that the
derivative of the iterated map is larger than one.

So we start with an interval Iy C W containing ¢ € W. Since q is
nondegenerate we can choose I; such that |(f')'(x)] > e > 0 for all z € I.
Moreover, by shrinking I; if necessary we can also assume f!(I;) NIy = 0.
Next pick m so large that ¢™(I1) C f'(I1) (g being the local inverse of f
as above) and a™e > 1. Set n = m + [. Next, choose fl C I; such that
g™(n) C f'(I) but fi(I1) € g™(W). Then we have g™(L) C g™(I) C
f!(I;) and we can replace I; by I;. By construction f'(I;) C ¢" (W), that
is, f™(I;) € W and thus |(f")'(z)] > ea™ > 1 for z € I;.

Next we will choose Iy = ¢'(f(I1)). Then we have Iy N I; = () and Iy C
(1) since Iy C f!(I;). Furthermore, by p € Iy we have Iy C f™(Iy) and
by ¢™(I) C fY(I1) = f'(Ip) we have I} C f*(Iy). Finally, since Iy C g"(W)
we have |(f")'(z)] > o™ > 1 for « € Iy and we are done. O

Problem 11.12. Why is the degeneracy condition in Theorem 11.2/4 nec-
essary? Can you give a counter example?
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Periodic solutions

12.1. Stability of periodic solutions

In Section 6.5 we have defined stability for a fixed point. In this section we
want to extend this notation to periodic solutions.

An orbit y(xg) is called stable if for any given neighborhood U (y(zg))
there exists another neighborhood V' (v(z¢)) C U(y(zp)) such that any so-
lution starting in V(y(zo)) remains in U(y(zo)) for all ¢ > 0.

Similarly, an orbit y(z¢) is called asymptotically stable if it is stable
and if there is a neighborhood U (v(xg)) such that

tll)Igo d(®(t,z),v(xo)) =0 for all z € U(xp). (12.1)
Here d(z,U) = SUpycp/ |z — yl.
Note that this definition ignores the time parametrization of the orbit.
In particular, if x is close to z1 € v(xp), we do not require that ®(¢, x) stays
close to ®(t,z1) (we only require that it stays close to y(zp)). To see that
this definition is the right one, consider the mathematical pendulum (6.43).
There all orbits are periodic, but the period is not the same. Hence, if we
fix a point xg, any point x # x( starting close will have a slightly larger
respectively smaller period and thus ®(t,x) does not stay close to ®(t,xg).
Nevertheless, it will still stay close to the orbit of xg.

But now let us turn to the investigation of the stability of periodic
solutions. Suppose the differential equation

i= f(z) (12.2)

has a periodic solution ®(t,xzg) of period T = T'(x).

281
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Since linearizing the problem was so successful for fixed points, we will
try to use a similar approach for periodic points. Abbreviating the lineariza-
tion of f along the periodic orbit by

A(t) = df@(t,zo)a A(t + T) = A(t)7 (123)

or problem suggests to investigate the first variational equation
y=At)y, (12.4)
which we already encountered in (2.45). Note that choosing a different point

of the periodic orbit 29 — ®(s,xp) amounts to A(t) — A(t + s).

Our goal is to show that stability of the periodic orbit v(zg) is related
to stability of the first variational equation. As a first useful observation
we note that the corresponding principal matrix solution II(¢,%y) can be
obtained by linearizing the flow along the periodic orbit.

Lemma 12.1. The principal matrixz solution of the first variational equation

18 given by
MLy (1, t0) = 250 (10, 20)). (12.5)
Moreover, f(®(t,x0)) is a solution of the first variational equation
f(@(t, 20)) = gy (2, to) f(P(to, 20))- (12.6)

Proof. Abbreviate J(t,z) = %(:p). Then J(0,z) = I and by interchanging
t and z derivatives it follows that .J(t,z) = dfo () (t,z). Hence J(t —
to, ®(to, o)) is the principal matrix solution of the first variational equation.
It remains to show that (12.6) satisfies the first variational equation which
is a straightforward calculation. O

Since A(t) is periodic, all considerations of Section 3.6 apply. In partic-
ular, the principal matrix solution is of the form

Iy (t, o) = Pay (L, to) exp((t — to)Qaq (t0)) (12.7)

and the monodromy matrix M, (to) = exp(T'Qx,(t0)) = 8<I>gx_t0 (®(to, z0))

has eigenvalues independent of the point in the orbit chosen. Note that one
of the eigenvalues is one, since

My, (to) f(@(to, z0)) = f(®(to, x0))- (12.8)

12.2. The Poincaré map

Recall the Poincaré map

Pr(y) = 2(7(y),y) (12.9)
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introduced in Section 6.3. It is one of the major tools for investigating
periodic orbits. Stability of the periodic orbit «y(z¢) is directly related to
stability of g as a fixed point of Ps.

Lemma 12.2. The periodic orbit y(xo) is an (asymptotically) stable orbit
of f if and only if xo is an (asymptotically) stable fixed point of Ps.

Proof. Suppose z is a stable fixed point of P5;. Let U be a neighborhood of
v(z0). Choose a neighborhood U C U N'Y of g such that ®([0,7],U) C U.
If zg is a stable fixed point of Py, there is another neighborhood V C Y of
xo such that P"(V) C U for all n. Now let V be a neighborhood of ~(zg)
such that V' C ®([0,7],V). Then if y € V there is a smallest ¢y > 0 such
that yo = ®(tg,y) € V. Hence y, = PZ(yo) € U and thus ¢(t,V) C U for
all t > 0.

Moreover, if y, — xo then ®(t,y) — ~(x¢) by continuity of & and
compactness of [0,7]. Hence ~y(x¢) is asymptotically stable if zp is. The
converse is trivial. O

As an immediate consequence of this result and Theorem 10.1 we obtain

Corollary 12.3. Suppose f € C* has a periodic orbit y(xo). If all eigen-
values of the Poincaré map lie inside the unit circle then the periodic orbit
is asymptotically stable.

We next show how this approach is related to the first variational equa-
tion.

Theorem 12.4. The eigenvalues of the derivative of the Poincaré map dPs
at xg plus the single value 1 coincide with the eigenvalues of the monodromy
matriz My, (to).

In particular, the eigenvalues of the Poincaré map are independent of
the base point xy and the transversal arc 3.

Proof. After a linear transform it is no restriction to assume f(xo) =
(0,...,0,1). Write z = (y,2) € R"! x R. Then ¥ is locally the graph
of a function s : R"! — R and we can take y as local coordinates for the
Poincaré map. Since

P
La(r(@),2)]_ = feo)dr, + S (w0)
we infer dPs(zo)jr = My (to)jr for 1 < j,k < n —1 by Lemma 12.1.

Moreover, M,,(0)f(zo) = f(xo) and thus
M0 = (P00 )

m 1
from which the claim is obvious. O
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As a consequence we obtain

Corollary 12.5. The determinants of the derivative of the Poincaré map
at xo and of the monodromy matriz are equal

det(dPs(x0)) = det(My, (to)). (12.10)

In particular, since the determinant of the monodromy matrix does not van-
ish, Ps(y) is a local diffeomorphism at xg.

By Liouville’s formula (3.82) we have

det(M,, (to)) = exp ( /0 Ttr(A(t)) dt) = exp ( /0 Tdiv( F(@(t, 20)) dt> .
(12.11)

In two dimensions there is only one eigenvalue which is equal to the deter-
minant and hence we obtain

Lemma 12.6. Suppose f is a planar vector field. Then a periodic point xg
is asymptotically stable if

T
/ div(f(®(t,x0))dt <0 (12.12)
0
and unstable if the integral is positive.

As another application of the use of the Poincaré map we will show that
hyperbolic periodic orbits persist under small perturbations.

Lemma 12.7. Let f(z,)\) be C* and suppose f(x,0) has a hyperbolic peri-
odic orbit y(xg). Then, in a sufficiently small neighborhood of O there is a
C* map A — zo(\) such that 0(0) = zo and y(2o()\)) is a periodic orbit of
[, ).

Proof. Fix a transversal arc X for f(x,0) at zp. That arc is also transversal
for f(x, \) with A sufficiently small. Hence there is a corresponding Poincaré
map Py(z,¢) (which is CF). Since Pgs(x,0) = x¢ and no eigenvalue of
Ps(x,0) lies on the unit circle the result follows from the implicit function
theorem. O

12.3. Stable and unstable manifolds

To show that the stability of a periodic point xy can be read off from the
first variational equation, we will first simplify the problem by applying some
transformations.

Using y(t) = z(t) — ®(t, z9) we can reduce it to the problem
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where f(t,0) =0 and f(t + T, x) = f(t,z). This equation can be rewritten
as
y=At)y+3(ty) (12.14)
with g T-periodic, g(t,0) = 0, and (9g/dy)(t,0) = 0.
We will see that hyperbolic periodic orbits are quite similar to hyperbolic

fixed points. (You are invited to show that this definition coincides with our
previous one for fixed points in the special case T' = 0.)

Moreover, by Corollary 3.17 the transformation z(t) = P(t) 1y(t) will
transform the system to

i =Qz+g(t,2). (12.15)

Hence we can proceed as in Section 9.2 to show the existence of stable and
unstable manifolds at xg defined as

M*(z¢) = {z € M| sup e ®(t, 2) — B(t,x0)| < oo for some v > 0}.
£t>0

(12.16)
Making this for different points ® (g, zp) in our periodic orbit we set
Mt (o) = M*(D(to, w0)). (12.17)
Note that the linear counterparts are the linear subspaces
E*(to) = My, (t1,0)E(0) (12.18)

corresponding to the stable and unstable subspace of M,,(ty) (compare
(3.119)).

Theorem 12.8 (Stable manifold for periodic orbits). Suppose f € C* has a
hyperbolic periodic orbit y(xg) with corresponding monodromy matriz M (to).

Then, there is a neighborhood U(v(zq)) and functions h* € C*([0,T] x
E*,ET) such that

MiE(z0) N U (v(z0)) = {®(to, m0) + a + hE(to, a)|la € EX(tg) N U}. (12.19)

Both h*(to,.) and their Jacobians vanish at xo, that is, Mtf(:ro) are tangent
to their respective linear counterpart E*(ty) at ®(tg, ). Moreover,

|D(t, ) — ®(z0,t +to)| < Ce™, £t > 0,2 € M- () (12.20)

for any v < min{|Re(v;)|}[L; and some C > 0 depending on ~y. Here ~y; are
the eigenvalues of Q(to).

Proof. As already pointed out before, the same proof as in Section 9.2
applies. The only difference is that g now depends on ¢. However, since g
is periodic we can restrict ¢ to the compact interval [0, 7] for all estimates
and no problems arise. Hence we get Mtf for each point in the orbit.
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Parametrizing each point by tq € [0, 7] it is not hard to see that g is C*
as a function of this parameter. Moreover, by (12.18), so are the stable and
unstable subspaces of the monodromy matrix M (tg). (]

Now we can take the union over all tg and define

M*(y(0)) =
= {z| sup eiwt\@(t,x) — O(t + tg,x0)| < oo for some tg,y > 0}
+>0
= |J M (x0). (12.21)
to€[0,T]

as the stable and unstable manifold, respectively. They are clearly
invariant under the flow and are locally given by

M*(y(x0)) N U(v(x0)) =
{@(to, 20) + Ty (to, 0)a + h™ (to, I, (to, 0)a)|
ac EX0)NU, tye[0,7T]}. (12.22)

The points in M*(y(z0)) are said to have an asymptotic phase, that
is, there is a tp such that

O(t,z) —» ©(t +to,z9) as t— oo or t — —o0. (12.23)

As in the case of a fixed point, the (un)stable manifold coincides with
the (un)stable set
WE(y(x0)) = {z] lim d(®(t,x),v(xo)) = 0} (12.24)

t—=o0

of v(z¢) if the orbit is hyperbolic.

Theorem 12.9. Suppose f € C* has a hyperbolic periodic orbit (xg).
Then there is a neighborhood U(xg) such that v+ (x) C U(y(xg)) if and only
if v € M*(y(20)). In particular,

W (y(20)) = M*(y(x0)). (12.25)

Proof. Suppose d(®(t,x),v(xo)) — 0 as t — oo. Note that it is no restric-
tion to assume that z is sufficiently close to v(zp). Choose a transversal
arc X containing x and consider the corresponding Poincaré map Ps. Then
M*((x0)) N Y must be the stable and unstable manifolds of the Poincaré
map. By the Hartman—Grobman theorem for flows,  must lie on the stable
manifold of the Poincaré map and hence it lies in M*(y(x0)). O

Moreover, if f depends on a parameter A, then we already know that
a hyperbolic periodic orbit persists under small perturbations and depends
smoothly on the parameter by Lemma 12.7. Moreover, the same is true for
the stable and unstable manifolds (which can be proven as in Theorem 9.7).
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Theorem 12.10. Let f(z,)\) be C* and suppose f(x,0) has a hyperbolic
periodic orbit y(xg). Then, in a sufficiently small neighborhood of 0 there is
a C* map \ — xo(\) such that 2¢(0) = zo and y(xo(N)) is a periodic orbit
of f(x,\). Moreover, the corresponding stable and unstable manifolds are
locally given by

M*(1(zo(A))) N U (7(20(N)) = {@(t0, 20(A), A) + a(X) + h*(to,a(N)]
a€ EX0)NU, ty e (0,7}, (12.26)
where a(A) = I,y (to, 0, \) PE(N)a, h* € C*.
Problem 12.1 (Hopf bifurcation). Investigate the system
it=—y+(uto@@®+yd)z,  G=a+(pra@®+y?y

as a function of the parameter p for c =1 and 0 = —1. Compute the stable
and unstable manifolds in each case. (Hint: Use polar coordinates.)

12.4. Melnikov’s method for autonomous perturbations

In Lemma 12.7 we have seen that hyperbolic periodic orbits are stable under
small perturbations. However, there is a quite frequent situations in appli-
cations where this result is not good enough! In Section 6.7 we have learned
that many physical models are given as Hamiltonian systems. Clearly such
systems are idealized and a more realistic model can be obtained by per-
turbing the original one a little. This will usually render the equation un-
solvable. The typical situation for a Hamiltonian system in two dimensions
is that there is a fixed point surrounded by periodic orbits. As we have seen
in Problem 6.24, adding an (arbitrarily small) friction term will render the
fixed point asymptotically stable and all periodic orbits disappear. In par-
ticular, the periodic orbits are unstable under small perturbations and hence
cannot be hyperbolic. On the other hand, van der Pol’s equation (7.28) is
also Hamiltonian for ¢ = 0 and in Theorem 7.8 we have shown that one of
the periodic orbits persists for g > 0.

So let us consider a Hamiltonian system
2

p
H(p,q) = 5 +Ulq), (12.27)
with corresponding equation of motions
p=-U'e), q=p (12.28)

Moreover, let gy be an equilibrium point surrounded by periodic orbits.
Without restriction we will choose gp = 0. We are interested in the fate of
these periodic orbits under a small perturbation

p=-Ulq)+ef(p,q), ¢=p+eg(p,q), (12.29)
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which is not necessarily Hamiltonian. Choosing the section X = {(0, q)|q >
0}, the corresponding Poincaré map is given by

PE((O7 Q)’E) = @(T(q,&‘), (Ov Q)75)7 (12‘30)

where 7(q,¢) is the first return time. The orbit starting at (0,q) will be
periodic if and only if ¢ is a zero of the displacement function

A(qa 8) = QI(T(Qa 5)7 (07 q)7 8) —q. (1231)
Since A(q,0) vanishes identically, so does the derivative with respect to ¢
and hence we cannot apply the implicit function theorem. Of course this
just reflects the fact that the periodic orbits are not hyperbolic and hence
was to be expected from the outset.

The way out of this dilemma is to consider the reduced displacement
function A(g,e) = e 'A(g, ) (which is as good as the original one for our
purpose). Now A(g,0) = A.(g,0) and Ay(g,0) = A.4(g,0). Thus, if we
find a simple zero of A.(q,0), then the implicit function theorem applied to

A(q, ) tells us that the corresponding periodic orbit persists under small
perturbations.

Well, whereas this might be a nice result, it is still of no use unless we
can compute A.(q,0) somehow. Abbreviate

(p(t,&), Q(tve)) = (1>(ta (Ov Q)’5)7 (12'32)
then
In@e)| = ZLar@e )| = iT(@),0)m(4,0) + ¢:(T(g).0)
Oe " e=0 Oe R PR P/ © ’

= p(T(q),0)7:(¢,0) + ¢=(T'(q), 0) = ¢=(T'(9), 0), (12.33)
where T'(q) = 7(q,0) is the period of the unperturbed orbit. Next, ob-
serve that (p:(t),q:(t)) = %(p(t,a),q(t,e))lgzo is the solution of the first
variational equation

Pe(t) = =U"(ge(t))a=(t) + £ (p(t), q(1)),  de(t) = p=(t)+g(p(t), a(t)) (12.34)

corresponding to the initial conditions (p.(t),q-(t)) = (0,0). Here we have
abbreviated (p(t),q(t)) = (p(t,0),q(t,0)). By the variation of constants
formula the solution is given by

() = [ () e

I4(T(a), s) = Tg(T(q), 0)IL4(0, 5) = I (T(g), 0)IL4(s,0) . (12.36)

Furthermore, using Lemma 12.1,

L, (, 0) <_U(;(Q)> = <_U/(Q(t))> (12.37)
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and we infer

L1 (UN(t) —aU (1) + BEp(t)
“q(t’o)‘qu)(—p(t) a<t>p<t>+5<t>U'<q<t>>>’ (12.38)

where «(t) and B(t) are given by

100 () =0 (50 7) +90 () 020

Moreover, by Liouville’s formula we have detII,(¢,s) = 1 and hence

_ U'(g)* B U'(q)?
B(t) = T a0 + (0 det I1,(¢,0) = Oz + 00 (12.40)

Now putting everything together we obtain

1 T(q)
— g [ G p(s).a(90) + U a5 a(5) .

(12.41)
The integral on the right-hand side is known as the Melnikov integral for
periodic orbits.

Ac(g,0)

For example, let me show how this applies to the van der Pol equation
(7.28). Here we have (¢ = 2 and p = y) the harmonic oscillator U(q) = ¢*/2
as unperturbed system and the unperturbed orbit is given by (p(t),q(t)) =
(gsin(t), g cos(t)). Hence, using f(p,q) =0, g(p,q) = ¢ — ¢*/3 we have

cos(s)

21 2
A.(q,0) = 22200
=(q,0) q/o cos(s)”( 37

and g = 2 is a simple zero of A.(q,0).

—1)ds = %q( 2_yg) (12.42)

This result is not specific to the Hamiltonian form of the vector field as
we will show next. In fact, consider the system

&= f(z)+eg(z,e). (12.43)

Suppose that the unperturbed system € = 0 has a period annulus, that is,
an annulus of periodic orbits. Denote the period of a point x in this annulus
by T'(x).

Fix a periodic point xy in this annulus and let us derive some facts
about the unperturbed system first. Let ®(¢, z,¢) be the flow of (12.43) and
abbreviate ®(t,z) = ®(¢,2,0). Using the orthogonal vector field

Fa=as@. =13 (12.49)

we can make the following ansatz for the principal matrix solution of the
first variational equation of the unperturbed system

1L, (¢,0)f(x0) = f(z(t)),
oy (,0)f 5 (20) = g () f(@(8)) + Bay () f 5 (2(t)),  (12:45)
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where z(t) = ®(t, zo).

Lemma 12.11. The coefficients oy, (t) and By, (t) are given by

| f(xo)? Qi div(f (a(s)))ds
Prol) = T4t
anl®) = [ S f D A )i, (12.46)

where x(t) = ®(t,x0) and A(t) = dfy)-

Proof. Since 3(t) = Hf;gf(?));; det(Il;,) the first equation follows from Liou-

ville’s formula. Next, differentiating (12.45) with respect to ¢ shows

() f (x(t) + B()fH (2(t) = BE)(A@) S (2(8) — (A@)f(z(1)) )

since f(x(t)) = A(t)f(x(t)). Multiplying both sides with f(z(t)) and inte-
grating with respect to ¢ proves the claim since «(0) = 0. g

Now denote by ¥(t, ) the flow of the orthogonal vector field f*(x) and
let us introduce the more suitable coordinates

z(u,v) = ®(u, ¥(v, z9)). (12.47)

Abbreviate T'(v) = T(z(u,v)) and differentiate ®(T'(v), x(u,v))—x(u,v) =0
with respect to v producing

@)(T(v),x(u,v))g—f(v) + %(T(v},x(u,v))%(u, v) = %(u,v). (12.48)

Evaluating at (u,v) = (0,0) gives
or

Mo (T (20),0) f* (o) + 5y (0)f(x0) = fH (o). (12.49)
Using (12.45) we obtain
(g (7))~ T(0)) (o) = (1 By (Do)} (o) (1250)
or equivalently
on(T0)) = T2 (0) = I (o) (@), faa(T(ao)) =1 (125)

After these preparations, let us consider the Poincaré map

Py(z,e) = ®(7(x,¢),x,¢€), x €Y, (12.52)



12.4. Melnikov’s method for autonomous perturbations 291

corresponding to some section ¥ (to be specified later). Since we expect the
¢ derivative to be of importance, we fix ¢y € ¥ and compute

%@(T(l’o, 5)7 o, 5) — 20 £=0
= (T (r0),w0) 5 (20,0) + 5 @(T(a0), 20,5)|
= I (20, 0) 7 (wo) + (T (o)), (1259
where z.(t) is the solution of the variational equation
e (t) = A(t)ze(t) + g(z(t),0) (12.54)
corresponding to the initial condition z.(0) = 0. Splitting ¢ according to
oy FEEDg@(6).0) ) Agla(),0) 1
ola(s).0) = T TS Fa(s)) + R AT o)
(12.55)

and invoking (12.45) we obtain after a little calculation

T(zo0)
22T (z0)) = /0 My (T (z0), 5)9(x(5), 0)ds

= (N(x0) + o (T (x0)) M (0)) f(z0) + M(z0) f(z0),  (12.56)

~T@0) f(a(s) A gla(s),0)
M(“)_/o Ba (@ (12:57)

where

and

Tl@o) fx(s)) Ag(a(s),0)
- o ds. 12.58
e i 0259
Putting everything together we have

;@(T(az,s),m,e) —x -
= (7(@,0) + N(&) + 0x (T (@) M(@) f(z) + M(x) [ () (12:59)

at any point x € X.

Now let us fix 29 and choose ¥ = {zg + f(zo)tv|v € R}. Then the
displacement function is

Av,e) = (®(1(z,¢),z,€) — x) fH(xo), = =ux0+ flzo)Tv, (12.60)

and

0A

S (0.0) = 11 (@) M (ao). (12:61)



292 12. Periodic solutions

Moreover, since ®(7(zg,¢€), zg,€) € X we have

%(xo, 0) + N(20) + gy (T(0)) = 0 (12.62)
and, if M(xzg) =0,
2
§i£§2<0’0>::\fL<woNQf§tf<xo>fL<mo>. (12.63)

Theorem 12.12. Suppose (12.43) for € = 0 has a period annulus. If the
Melnikov integral M (x) has a zero xo at which the derivative of M (x) in the
direction of f*(x¢) does not vanish, then the periodic orbit at xo persists for
small €.

Note that we have

M (x(t)) = Bao (t) M (o). (12.64)
Problem 12.2. Show
Ba(s) (1) ﬁxgiz (T:)S) ,
(1) = G ot +9) = s (5)
and -
Ba(s)(T(z0)) =1, ayue)(T(z0)) = W-

12.5. Melnikov’s method for nonautonomous perturbations

Now let us consider the more general case of nonautonomous perturbations.
We consider the nonautonomous system

o(t) = f(x(t)) +eg(t z(t),e) (12.65)
ore equivalently the extended autonomous one
xzf(l')"‘EQ(T,{E,&), 7T=1 (1266)

We will assume that g(t,x,¢) is periodic with period 7" and that the unper-
turbed system € = 0 has a period annulus.

To find a periodic orbit which persists we need of course require that
the extended unperturbed system has a periodic orbit. Hence we need to
suppose that the resonance condition

mT = nT(xg), n,m e N, (12.67)

where T'(x) denotes the period of z, holds for some periodic point xg in this
annulus. It is no restriction to assume that m and n are relatively prime.
Note that we have Sy, (nT(x0)) = 1 and az,(nT(x0)) = n o, (T'(z0))-



12.5. Melnikov’s method for nonautonomous perturbations 293

The Poincaré map corresponding to ¥ = {7 =ty mod mT} is given by
Py (z,e) = ®(mT, (x,t0),¢) (12.68)

and the displacement function is
A(z,e) = z(mT,e) — x, (12.69)

where x(t, €) is the solution corresponding to the initial condition z(tp,e) =
x. Note that it is no restriction to assume ty = 0 and replace g(s,z,¢e) by
g(s+to, z, ).

Again it is not possible to apply the implicit function theorem directly
to A(z,e) since the derivative in the direction of f(zp) vanishes. We will
handle this problem as in the previous section by a regularization process.
However, since A(z,¢) is now two dimensional, two cases can occur.

One is if the derivative of A(z, €) in the direction of f*(zg) also vanishes.
This is the case if, for example, the period in the annulus is constant and
hence A(z,0) = 0. Here we can divide by € and proceed as before.

The second case is if the derivative of A(x,¢) in the direction of f*(xg)
does not vanish. Here we have to use a Liapunov-Schmidt type reduction
and split R? according to f(zo) and f+(xg). One direction can be handled
by the implicit function theorem directly and the remaining one can be
treated as in the first case.

We will express A in more suitable coordinates z(u,v) from (12.47).
Using the results from the previous section we have

gi(xo,()):o, %f(%o)zn%o(T(wo))f(xo) (12.70)
and
0A
e (20,0) = ae(mT) = (N(to, o) + nawy(T(w0)) M (to, x0)) f (z0)
+M (to, x0) f (o), (12.71)
where
nT(wo) f(x(s s x(s
- [ LD b0,y
and

T (a(s))gls + toy 2(s),0)
Moo = | RO

- nT(xo)a . f(z(s)) Ag(s+to,x(s),0) .
/O () a0 (127)

Note that M (tg + T, z9) = M (tg, z9) and N(tg + T, x0) = N(to,xo)-
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With this notation we can now easily treat the case of an isochronous
period annulus, where T'(z) = T'(z¢) is constant, respectively o, (T (z)) =
0. Since A(z,0) = 0 we can proceed as before to obtain

Theorem 12.13. Suppose (12.65) for e = 0 has an isochronous period an-
nulus. If the function x — (M (tg,z), N(to,x)) has a simple zero at (to,xo),
then the periodic orbit at (ty,zg) persists for small e.

The case a,(T(z)) # 0 will be considered next. We will call the period
annulus a regular period annulus in this case.

We split the displacement function according to (compare (12.47))

A(z(u,v),€) = Ay (u,v,€) f(x0) + Aa(u,v,e) f*(x0). (12.74)
Then 5A
a—vl(o,o,O) = nag, (T(z0)) # 0 (12.75)

and hence there is a function v(u,€) such that Aj(u,v(u,e),e) = 0 by the
implicit function theorem. Moreover, by A(z(u,0),0) = 0 we even have
v(u,0) = 0. Hence it remains to find a zero of

Ag(u,e) = Ng(u, v(u,€),e). (12.76)

Since Ag(u,0) = Ag(u,0,0) = 0, we can divide by e and apply the implicit
function theorem as before.

Now using 3
%(0,0) = M (to, o). (12.77)
and, if M (to,z9) =0,
A, OM

%( ,0) = %(toafvo)f(ﬂ?o) (12.78)

we obtain the following result.

Theorem 12.14. Suppose (12.65) for ¢ = 0 has a regular period annulus.
If the function x — M (tg, x) has a zero at (to,xo) at which the derivative of
M (tg, x) in the direction of f(xo) does not vanish, then the periodic orbit at
(to, o) persists for small €.



Chapter 13

Chaos in higher
dimensional systems

13.1. The Smale horseshoe

In this section we will consider a two dimensional analog of the tent map and
show that it has an invariant Cantor set on which the dynamics is chaotic.
We will see in the following section that it is a simple model for the behavior
of a map in the neighborhood of a hyperbolic fixed point with a homoclinic
orbit.

The Smale horseshoe map f : D — R2, D = [0,1]2, is defined by
contracting the x direction, expanding the y direction, and then twist the
result around as follows.

J1

Jo

Since we are only interested in the dynamics on D, we only describe this

295
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part of the map analytically. We fix A € (0, %], W E [2,00), set

Jo = [0,1] x [0, ;], Ji=[0,1] x [1— ; 1, (13.1)
and define
f : JO — f(JO)a (x7y) = ()‘xauy)7 (132)
respectively
fodi= f(), (zy) = (1= Az, u(l —y)). (13.3)

A look at the two coordinates shows that f1(z,y) € [0, 1] whenever = € [0, 1]
and that fo(z,y) = T,(y). Hence if we want to stay in D during the first
n iterations we need to start in Ay, = [0,1] x A,(T},), where A, (T,,) = A,
is the same as for 7),. In particular, if we want to stay in D for all positive
iterations we have to start in

Ay =[0,1] x A(T)) = () fM(D). (13.4)
n€eNp

But note that f is invertible, with inverse given by
g=f"":Ko= f(Jo) = Jo, (z.y) = A\l uly), (13.5)
respectively
g=f"Ki=f(h) =, (@y) = (A1 -a),1-ply). (13.6)

Hence, by the same consideration, if we want to stay in D for all negative
iterations, we have to start in

Ao =ANTy) x[0,1]= () FD). (13.7)
n€Ng

Finally, if we want to stay in D for all (positive and negative) iterations we
have to start in

A=A NAy = ATy x A(T). (13.8)

The set A is a Cantor set since any product of two Cantor sets is again a
Cantor set (prove this).

Now by our considerations for the tent map, the y coordinate of every
point in A can uniquely defined by a sequence ¥,, n € Ny. Similarly, the
x coordinate of every point in A can be uniquely defined by a sequence x,,
n € Nyg. Hence defining s, = y, and s_,, = x,_1 for n € Ny we see that
there is a one-to-one correspondence between points in A and doubly infinite
sequences on two symbols. Hence we have found again an itinerary map

w: A — X9

| yn n>0 |, (13.9)
e F
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where y,, is defined by f"(x,y) € Jy, and x,, is defined by ¢"(z,y) € K,,,. As
in the case of the tent map it is easy to see ¢ is continuous (exercise). Now
what about the action of ¢ = po foyp™'? By construction, o shifts y,, to the
left, 0(8)n = Yns1, n > 0, and o~ shifts z,, to the left, o= (s), = 2_p_1,
n < 0. Hence o shifts z,, to the right, o(s), = x_,—2, n < —1, and we need
to figure out what the new first element o(s)_; is. Well, since (z,y) € Jy,
is equivalent to f(z,y) € K,,, we see that this element is o(s)_1 = yo and
hence o just shifts s, to the left, o(s),, = sp+1. In summary, we have shown

Theorem 13.1. The Smale horseshoe map has an invariant Cantor set A
on which the dynamics is equivalent to the double sided shift on two symbols.
In particular it is chaotic.

13.2. The Smale—Birkhoff homoclinic theorem

In this section I will present the higher dimensional analog of Theorem 11.24.

Let f be a diffeomorphism (C') and suppose p is a hyperbolic fixed point.
A homoclinic point is a point ¢ # p which is in the stable and unstable
manifold. If the stable and unstable manifold intersect transversally at g,
then ¢ is called transverse. This implies that there is a homoclinic orbit
v(q) = {gn} such that lim, o g = lim,__oc gn = p. Since the stable and
unstable manifolds are invariant, we have g, € W*(p)NW*"(p) for all n € Z.
Moreover, if q is transversal, so are all ¢, since f is a diffeomorphism.

The typical situation is depicted below.
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This picture is known as homoclinic tangle.

Theorem 13.2 (Smale-Birkhoff). Suppose f is a diffeomorphism with a
hyperbolic fized point p and a corresponding transversal homoclinic point
q. Then some iterate f™ has a hyperbolic invariant set A on which it is
topologically equivalent to the bi-infinite shift on two symbols.

The idea of proof is to find a horseshoe map in some iterate of f. In-
tuitively, the above picture shows that this can be done by taking an open
set containing one peak of the unstable manifold between two successive
homoclinic points. Taking iterations of this set you will eventually end up
with a horseshoe like set around the stable manifold lying over our original
set. For details see [25].

13.3. Melnikov’s method for homoclinic orbits

Finally we want to combine the Smale-Birkhoff theorem from the previous
section with Melnikov’s method from Section 12.5 to obtain a criterion for
chaos in ordinary differential equations.

Again we will start with a planar system
T = f(x) (13.10)
which has a homoclinic orbit v(xo) at a fixed point py. For example, we

could take Duffing’s equation from Problem 9.6 (with § = 0). The typical
situation for the unperturbed system is depicted below.

pO $0

Now we will perturb this system a little and consider

&= f(x)+eg(z). (13.11)

Since the original fixed point pg is hyperbolic it will persist for £ small, lets
call it pp(). On the other hand, it is clear that in general the stable and
unstable manifold of py(e) will no longer coincide for € # 0 and hence there
is no homoclinic orbit at py(e) for € # 0. Again the typical situation is
displayed in the picture below
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(o) J 7€)

However, it is clear that we will not be able to produce chaos with such a
perturbation since the Poincaré—Bendixson theorem implies that the motion
of a planar system must be quite regular. Hence we need at least another
dimension and hence we will take a nonautonomous perturbation and con-
sider

&= f(x)+eg(r,z,e), T=1, (13.12)

where g(7,z,¢) is periodic with respect to 7, say g(7 + 27, z,¢) = g(7, x,€).
We will abbreviate z = (z, 7).

Of course our pictures from above do no longer show the entire system
but they can be viewed as a slice for some fixed 7 = t3. Note that the first
picture will not change when 7 varies but the second will. In particular,
po(7,€) will now correspond to a hyperbolic periodic orbit and the manifolds
in our pictures are the intersection of the stable and unstable manifolds of
po(7,e) with the plane ¥ = {(z,7)|7 = to}. Moreover, taking ¥ as the
section of a corresponding Poincaré map Ps, these intersections are just the
stable and unstable manifold of the fixed point pg(e) = po(to, ) of Ps. Hence
if we can find a transverse intersection point, the Smale-Birkhoff theorem
will tell us that there is an invariant Cantor set close to this point, where
the Poincaré map is chaotic.

Now it remains to find a good criterion for the existence of such a
transversal intersection. Replacing g(7,z, ) with g(7 — o, x,€) it is no re-
striction to assume ¢ty = 0. Denote the (un)stable manifold of the periodic
orbit (po,7) by W(po) = {(®(w0, s),7)|(s,7) € R x S'}. Then for any given
point zg = (xo,t0) € W(pp) a good measure of the splitting of the perturbed
stable and unstable manifolds is the distance of the respective intersections
points with the line through zy and orthogonal to the vector field. That
is, denote by z (¢), zy (¢) the intersection of the stable, unstable manifold
with the line {(z¢ + uf(zo)*,0)|u € R}, respectively. Then the separation
of the manifolds is measured by

A(z0,€) = Fwo) (g (&) = (€)= flwo) A (g (&) — i (£)).  (13.13)
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Since A(zp,0) = 0 we can apply the same analysis as in Section 12.4 to
conclude that A(zp,e) has a zero for small ¢ if %(zo, 0) has a simple zero.
Moreover, if the zero of %(zo, 0) is simple, this is also equivalent to the fact
that the intersection of the stable and unstable manifolds is transversal.

It remains to compute %(zo, 0) which can be done using the same ideas
as in Section 12.4. Let z%(¢,e) = (z%(t,¢),t) be the orbit in W*(y(po(e)))
which satisfies 2+(0,¢) = 23 (¢). Then we have

oA N

e (20:0) = f(o) A (z2(0) — 2(0)), (13.14)

where zF(t) = %xi(t, £)|e=o are solutions of the corresponding variational

equation. However, since we do not know the initial conditions (we know
only the asymptotic behavior), it is better to consider

y (1) = flao() AaZ(t), wo(t) = ®(t,z0). (13.15)
Using the variational equation

we obtain after a little calculation (Problem 13.1)

() = tr(A®)y™ () + f(xzo(t)) A g(t — to, o(t),0) (13.17)
and hence
g = g (Ty) + /T t oJs AN £ (20 (5)) A g(s — to, x0(s),0) ds. (13.18)

Next, we want to get rid of the boundary terms at Ty by taking the limit
Ty — 4oco. They will vanish provided xZ(7%) remains bounded since
limy, 1o f(z0o(t)) = f(po) = 0. In fact, this is shown in the next lemma.

Lemma 13.3. The stable and unstable manifolds of the perturbed periodic
orbit po(e) are locally given by

WE(y(po(e))) = {(®(s,z0) + (7, 5)e + o(e), 7)|(s,7) € S* x R}, (13.19)

where xo € W (po) is fized and h*(r,s) is bounded as s — +00.

Proof. By Theorem 12.10 a point in W= (y(po(¢))) can locally be written
as

(po + hgy (7,a) + hi (1,a)e + o(e), 7).
Moreover, fixing xo € W (po) there is a unique s = s(7,a) such that

po + h%(T, a,0) = ®(s, zop)

and hence we can choose h*(7,s) = hi (7, a(r, 5)). O
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Hence we even have

yE(t) = /j: ols E(AMAT £(20(5)) A g(s — to, To(s),0) ds (13.20)

and thus finally

0A
2z (20,0) = M, (t0), (13.21)

where M, (o) is the homoclinic Melnikov integral

M (t) = / e I RN £ (5, 20)) A g(s — 1, B(s, 20), 0) ds.
- (13.22)

Note that the base point xy on the homoclinic orbit is not essential since
we have (Problem 13.2)

Ma(s 2)(to) = elo AV (@reo)dr\p (4 4 4y, (13.23)
In summary we have proven

Theorem 13.4 (Melnikov). Suppose the homoclinic Melnikov integral M, (t)
has a simple zero for somet € R, then the Poincaré map Ps has a transver-
sal homoclinic orbit for sufficiently small € # 0.

For example, consider the forced Duffing equation (compare Problem 9.6)

G=p, p=q—q¢ —e(dp+ycos(wr)), 7=1. (13.24)
The homoclinic orbit is given by

qo(t) = V2sech(t), po(t) = —v/2 tanh(t)sech(t) (13.25)
and hence

M(t) = /OO qo(8) (6po(s) + 7y cos(w(s —t))) ds

46
= 3 - \/iﬂfywsech(%) sin(wt) (13.26)
Thus the Duffing equation is chaotic for 9, v sufficiently small provided
) 2
~|< Wsech(ﬂ;). (13.27)

Problem 13.1. Prove the following formula for x,y € R? and A € R?®R?,
Az Ny +x AN Ay =tr(A)z Ay.
Problem 13.2. Show (13.23).

Problem 13.3. Apply the Melnikov method to the forced mathematical pen-
dulum (compare Section 6.7)

qg=np, G = —sin(q) + esin(t).
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The End



Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature,
but to document the sources from which I have learned the materials and
which I have used during the preparation of this text. In addition, I will
point out some standard references for further reading.

Chapter 3: Linear equations

More information in particular on n’th order equations can be found in [11],
[17].

Chapter 4: Differential equations in the complex domain
Classical references whith more information on this topic include [12], [17].
Chapter 5: Boundary value problems

Classical references whith more information on this topic include [6], [11].
Chapter 7: Planar dynamical systems

The proof of the Poincaré—Bendixson theorem follows [23]. More on ecolog-
ical models can be found in [14].
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Glossary of notation

Ax ... matrix A restricted to E*(A)

B, (x) ...open ball of radius r centered at =

C(U,V) ...set of continuous functions from U to V

c(U) =C(U,R)

Ck(U, V) ...set of k times continuously differentiable functions
C ...the set of complex numbers

XA ... Characteristic polynomial of A, 90

d(U) ...diameter of U, 273

d(z,y) ...distance in a metric space

d(z, A) ...distance between a point z and a set A, 167
dfx = % Jacobian of a differentiable mapping f at x
E°(A) ... center subspace of a matrix, 94

E*(A) ... (un)stable subspace of a matrix, 94

Fix(f) = {z|f(z) = z} set of fixed points of f, 248

v(x) ...orbit of x, 163

v+ () ... forward, backward orbit of x, 163

I'(2) ... Gamma function, 107

9o ...inner product space, 128

I, = (T_(z), T4 (x)) maximal interval of existence, 161
L, .. logistic map, 246

A ...a compact invariant set

M* ... (un)stable manifold, 222, 286

N ={1,2,3,...} the set of positive integers

Ny =NU {0}

o(.) ... Landau symbol

O(.) ... Landau symbol
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308 Glossary of notation
Q(f) ..set of nonwandering points, 167
Px(y) .. Poincaré map, 169
Per(f) = {z|f(z) = x} set of periodic points of f, 248
®(t,x0) ...flow of a dynamical system, 161
II(t,tp) ...principal matrix of a linear system, 73
R ... the set of reals
o .. shift map on X, 269
o(A) ..spectrum (set of eigenvalues) of a matrix
YN ...sequence space over N symbols, 267
sign(z) ...+1 for x > 0 and —1 for z < 0; sign function
Ty (x) .. positive, negative lifetime of x, 164
T(z) .. period of z (if = is periodic), 164
Ty .. tent map, 263
wi(x)  ...positive, negative w-limit set of =, 165
w#* .. (un)stable set, 221, 197, 248
Z ={...,—2,-1,0,1,2,...} the set of integers
z ..a complex number
NE ..square root of z with branch cut along (—o0,0)
* ..complex conjugation

-1

|-

(). .
(A1, A2) =
A1, Ae] =
Ed =
[2] =

alAb =

..norm in a Banach space
.. Euclidean norm in R"” respectively C"
..scalar product in §g, 127

{A € R| A1 < A < A2}, open interval
{AeR| A < A< Ao}, closed interval
max{n € Z|n < z}, floor function
min{n € Z|n > x}, ceiling function
cross product in R3



Index

Abel’s identity, 75
action integral, 204
action variable, 210
analytic, 95
angle variable, 210
angular momentum, 208, 213
arc, 190
asymptotic phase, 286
asymptotic stability, 63, 169, 250, 281
attracting set, 197
attractor, 198, 273
strange, 273
autonomous differential equation, 7

backward asymptotic, 249
Banach algebra, 58
Banach space, 32
basin of attraction, 197
basis

orthonormal, 130
Bendixson criterion, 194
Bernoulli equation, 15
Bessel

equation, 104

function, 105
Bessel inequality, 130
bifurcation point, 258
bifurcation theory, 170
boundary condition, 125

Dirichlet, 136

Neumann, 136
boundary value problem, 126

canonical transform, 208
Cantor set, 265
catenary], 19

Cauchy sequence, 31
Cauchy—Schwarz inequality, 128
center, 62
characteristic exponents, 84, 120
characteristic multipliers, 84
characteristic polynomial, 90
commutator, 54
competitive system, 183
complete, 32
completely integrable, 210
confluent hypergeometric equation, 110
conjugacy

topological, 232
constant of motion, 173, 205
contraction principle, 33
cooperative system, 183
cover, 273
cyclic vector, 91

d’Alembert reduction, 76, 80
d’Alembert’s formula, 126
damping

critical, 70

over, 70

under, 70
damping factor, 71
diameter, 273
difference equation, 108, 247
differential equation

order, 6

autonomous, 7

exact, 18

homogeneous, 7, 14

integrating factor, 18

linear, 7

ordinary, 6
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partial, 7

separable, 11

solution, 6

system, 7
diophantine condition, 216
directional field, 16
domain of attraction, 197
dominating function, 236
Duffing equation, 198, 227, 301
Dulac criterion, 194
dynamical system, 159

chaotic, 262

continuous, 160

discrete, 159

invertible, 159

eigenspace, 90, 130

generalized, 91
eigenvalue, 90, 130

simple, 131
eigenvector, 90, 130
Einstein equation, 207
equilibrium point, see Fixed point
equivalence

topological, 262
Euler equation, 17, 99
Euler system, 113
Euler’s formula, 60
Euler’s reflection formula, 109
Euler-Lagrange equations, 204
Euler—Mascheroni constant, 106

Fermi—Pasta—Ulam experiment, 212

Fibonacci numbers, 252

first integral, 206

first variational equation, 42
periodic, 282

fixed point, 33, 163, 248
asymptotically stable, 169, 250
hyperbolic, 222
stable, 169

fixed-point theorem
contraction principle, 33
Weissinger, 37

Floquet discriminant, 149

Floquet exponents, 84

Floquet multipliers, 84, 149

Floquet solutions, 149

flow, 161

forward asymptotic, 248

Frobenius method, 119

Fuchs system, 120

fundamental matrix solution, 74

Gamma function, 107
geodesics, 207
gradient systems, 173

Green function, 138
Gronwall inequality, 40

Hamilton mechanics, 176, 205

Hamilton principle, 204

Hammerstein integral equation, 239

Hankel function, 106

harmonic numbers, 106

harmonic oscillator, 211

Hartman—Grobman theorem, 230
maps, 252

Hausdorff dimension, 275

Hausdorff measure, 274

heat equation, 127

Heun’s method, 51

Hilbert space, 128

Hilbert’s 16th problem, 193

Hill equation, 85

homoclinic orbit, 279

homoclinic point, 279, 297
transverse, 297

homoclinic tangle, 298

Hopf bifurcation, 189, 287

hyperbolic, 220, 222

hypergeometric equation, 110

inequality
Gronwall, 40
initial value problem, 34
inner product, 127
space, 128
integral curve, 161
maximal, 161
integral equation, 34
Hammerstein, 239
Volterra, 237
integrating factor, 18
invariant
set, 164, 248
Subspace, 90
isoclines, 24
itinerary map, 266, 277, 278

Jacobi identity, 207

Jordan block, 92

Jordan canonical form, 55, 92
real, 57

Jordan curve, 190

Kirchhoff’s laws, 68
Krasovskii-LaSalle principle, 172
Kronecker torus, 215

Lagrange function, 204
Lagrange identity, 137
Laplace transform, 66
LaSalle principle, 172
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Laurent series, 99

Lax equation, 212

Lax pair, 212

Legendre equation, 109

Legendre transform, 205

Leibniz’ rule, 207

Liénard equation, 185

Liapunov function, 171, 250
strict, 171, 250

Lie derivative, 173

lifetime, 164

limit cycle, 193

Liouville’s formula, 75, 202

Lipschitz continuous, 35

logistic map, 246

Lorenz equation, 199

manifold

(un)stable, fixed point, 222, 253

(un)stable, linear, 219

(un)stable, periodic point, 286

center, linear, 219

stable, 253

unstable, 253
mathematical pendulum, 174
matrix

exponential, 54

logarithm, 92

norm, 54

symplectic, 205
measure

Hausdorff, 274

outer, 274
Melnikov integral

homoclinic, 301

periodic, 289
monodromy matrix, 83, 149
movable singularity, 112

N-body problem, 214
Neumann series, 234
nilpotent, 92
nonresonant, 215
nonwandering, 167, 250
norm, 31

matrix, 54

operator, 234
normalized, 128

Ohm’s law, 69
omega limit set, 165, 195
operator
bounded, 131
compact, 131
domain, 130
linear, 130
symmetric, 130

orbit, 163, 248
asymptotically stable, 281
closed, 164
heteroclinic, 226, 255
homoclinic, 226, 255
periodic, 164
stable, 281

orthogonal, 128

Painlevé transcendents, 113
parallel, 128
parallelogram law, 133
pendulum, 174
perfect, 265
period anulus, 289
isochronous, 294
regular, 294
period doubling, 259
periodic orbit
stable, 250
periodic point, 164, 248
attracting, 249
hyperbolic, 249
period, 164
repelling, 249
periodic solution
stability, 281
perpendicular, 128
phase space, 173
Picard iteration, 36
Picard—Lindelof theorem, 36
pitchfork bifurcation, 170
Pochhammer symbol, 105
Poincaré map, 27, 169, 282

Poincaré—Andronov—Hopf bifurcation, 189

point
nonwandering, 167, 250
recurrent, 250

Poisson bracket, 205

power series, 96

Priifer variables, 141
modified, 146

principal matrix solution, 73

Pythagorean theorem, 128

quadrupole mass spectrometry, 87

quasi-periodic, 216

recurrent, 250
reduction of order, 76, 80
regular point, 163
relativistic mechanics, 207
repellor, 273

strange, 273
resolvent, 138
resonant, 215
Riccati equation, 15, 82, 135
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Index

Riemann equation, 111
Riemann symbol, 111

RLC circuit, 69
Rofe-Beketov formula, 135
Runge-Kutta algorithm, 51

saddle, 61
saddle-node bifurcation, 170
Sarkovskii ordering, 261
scalar product, 127
Schrodinger equation, 77
sensitive dependence, 261
separation of variables, 124
set
attracting, 197, 272
hyperbolic attracting, 273
hyperbolic repelling, 273
invariant, 164, 248
repelling, 272
shift map, 266, 269
singular point, see Fixed point
singularity
movable, 112
regular, 114
simple, 114
sink, 60
Smale horseshoe, 295
small divisor, 216
snap back repellor, 279
solution
matrix, 74, 251
sub, 23
super, 23
source, 60
spectral radius, 94
spectral theorem, 132
spectrum, 91
stability, 63, 169, 250, 281
stable set, 197, 221, 248

stationary point, see Fixed point

strange attractor, 203
Sturm-Liouville problem, 126
submanifold, 168
subshift of finite type, 270
subspace

center, 94

invariant, 90

reducing, 90

stable, 94

unstable, 94
superposition principle, 73
symbol space, 267
symplectic

gradient, 205

group, 208

map, 208

matrix, 205

two form, 208

tent map, 263
theoem

uniform contraction principle, 234

Theorem
Krasovskii-LaSalle, 172
theorem
Arzela-Ascoli, 48, 138
Cayley—Hamilton, 91
Dominated convergence, 236
Floquet, 84
Fuchs, 103, 104
Hartman—Grobman, 230, 252
Jordan curve, 190
KAM, 216
Liapunov, 172
Melnikov, 301
Noether, 206
Peano, 50
Picard—Lindelof, 36
improved, 37
Poincaré’s recurrence, 206
Poincaré—Bendixson, 193
Pythagorean, 128

Smale—Birkhoff homoclinic, 298

Stable Manifold, 225, 285
stable manifold, 254
Sturm’s comparison, 144
Weissinger, 37
time-one map, 203
totally disconnected, 265, 268
trajectory, 161
transcritical bifurcation, 170
transformation
fiber preserving, 14
transition matrix, 270
transitive, 270
transitive, 198, 262
trapping region, 197
triangel inequality
inverse, 31
two body problem, 212

uniform contraction principle, 234

unit vector, 128
unstable set, 197, 221, 249

Van der Pol equation, 189
variable
dependent, 6
independent, 6

variation of constants (parameters), 75

vector field, 160
complete, 164

vector space, 31
normed, 31
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Volterra integral equation, 237
Volterra—Lotka equations, 179

wave equation, 123
well-posed, 40
Weyl m-functions, 149
Weyl asymptotics, 147
‘Wronski determinant, 74, 79
Wronskian, 79

modified, 135

zeta function, 272
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