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1. State and prove the Gronwall inequality (there is more than one version of
the inequality, chose one). (5p)

2. Let L : U → R be a Lyapunov function for the fixed point x0 of a differential
equation. Define Sδ as the connected component of {x ∈ U

∣∣L(x) ≤ δ} that
contains. Prove that if Sδ is closed, it is a positively invariant set. Be careful
to state all properties of a Lyapunov function that you use in the proof. Why
is it important to mention ”connected component”, and why is it necessary
that Sδ is closed? (5p)

.

3. Compute the matrix exponential of the matrix A =

 1 1 0
0 1 0
0 0 1

. (5p)

4. Consider the system

ẋ = y ,

ẏ = −x+ x2 .

Sketch the phase portrait in as much detail as you can: find the fixed points,
determine their character, separatrices if there are any etc. (5p)

5. Find the flow of the differential equation

ẋ = −x2 ,
ẏ = −xy .

Be careful to state the domain of definition. (5p)

6. Consider the equation ẋ = Ax, where x ∈ Rn, and A is a hyperbolic matrix.
Let z ∈ Rn, and let Ωz = Rn \ {z}, i.e. Rn with the point z removed. If Ωz
is invariant under the flow, what is z? You must motivate your answer well. (5p)

Good luck!
Bernt W.


