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1. For the following differential equations, find the fixed points and determine their stability.

a)

ẋ = x+
1

x
− 4 (here x ∈ R).

b)
d

dt

[
x
y

]
=

[
sin y
x+ y

]
(here x, y ∈ R).

(5p)

2. Compute the principal matrix solution Π(t, t0) for the system given by A(t) =

(
2 e−t

0 1

)
. (5p)

3. Consider the system

ẋ = (x2 + y2)(2 + cos(x3y2))

ẏ = y sin2(x2 + y2)

Does it have any periodic solutions? Motivate your answer. (5p)

4. The Poincaré-Bendixon theorem states the following: Let M is an open subset of R2, and
f ∈ C1(M,R2), and consider the initial value problem φ̇ = f(φ);φ(0) = x. Fix x ∈ M , and
suppose that ω±(x), the ω-limiting sets are non-empty and compact. Then one of the following
holds:

a) ω±(x) is a fixed orbit.

b) ω±(x) is a regular periodic orbit.

c) ω±(x) consists of (finitely many) fixed points {xj} and unique non-closed orbits γ(y) such
that ω±(y) ∈ {xj}.

Sketch three different phase-portraits that illustrate the three cases. (5p)

5. Consider a linear system ẋ = Ax, where A is a real n × n-matrix. State and prove a theorem
which states how the stability of the fixed point x = 0 can be determined from knowledge of
the eigenvalues (and eigenvectors) of A. (5p)

6. State the definition of a Liapunov function. Let L = U → R be a Liapunov function for the fixed
point x0 ∈ U , and let Sδ be the connected component of the set {x ∈ U such that L(x) ≤ δ}.
Let Bε(x0) = {x such that |x− x0| < ε} be the open ball of radius ε around x0. Prove that for
every ε > 0, there is δ > 0 such that Sδ ⊂ Bε(x0). (5p)

Good luck!
Bernt W.


