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1. State and prove a theorem concerning the global in time existence of solutions
to odes with a right hand side that is growing at most linearly in z. Be careful
to give all necessary definitions.

2. Let C be a closed subset of a Banach space X, and let K : C — C be a
contraction. Explain what is meant by the word contraction, and state and
prove the contraction mapping principle.

3. Show that the differential equation & = f(t)x + g(¢)2™ can be transformed
into a first order linear equation by setting y = x'~™. Then write the solution
to the equation in y.

4. Sketch the phase portrait of the system

= m+y2
= Y

5. Find the flow of the system given in the previous problem. Be careful to state
the domain of definition.

6. Let ¢(t,to,y) be the (unique) solution to the system

{ &= flz)

z(to) = y

To study the the sensitivity of solutions with respect to changes in initial
data, it is useful to write an equation for %gf)(t,to,y) (note that this is a
matrix if y € R? with d > 1). Write this equation. Is it linear? Homogeneous?
Autonomous? What assumptions do you have to make on f if this is to make
sense?

Good luck!
Bernt W.
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