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1. Prove that if f : R® — R"™ is Lipschitz continuous, the the initial value
problem

i = f(x) (1)
z(0) = a9

has a unique solution for ¢ belonging to a sufficiently small interval around 0.

2. State and prove the Gronwall inequality (there are several versions, choose
one).

3. Show that L(z,y,z) = 2% — cosy + z* is a Lyapunov function at the equili-
brium point (0,0,0) of the system
= —22%—zsiny
= 2zz—siny
3 = x—sin®.

What conclusion can you draw about the equilibrium point? Why couldn’t
linearization give the same information?

4. Compute the matrix exponential of A =

O O =
o~ O
e )

5. Find the flow of the system

= UV
~1/Vz.
Be careful to state the domain of definition. It is possible to give the solution

completely explicitly, but I give full marks for an implicitly given solution
(i.e. an equation involving x,y and ¢ but not & or g.)

(5p)

(5p)

(5p)

(5p)

(5p)



6. Give an example of a vector field (the right hand side of a system of odes)
whos phase portrait is similar to figure 1. Prove that your example has has
the right properties. (5p)

Figur 1: Phase portrait for problem 6

Good luck!
Bernt W.



