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1. Prove that if f: R™ — R” is Lipschitz continuous, the the initial value problem
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has a unique solution for ¢ belonging to a sufficiently small interval around 0. (5p)

2. e Explain what is meant by the Jordan canonical form of a matrix, and state a theorem
concering the existence of such forms.

e What does the Jordan form of the matrix for a linear system of differential equation tell you
about the solutions the system? (5p)

3. Compute the matrix exponential of A = ( _21 ;1 ) .

4. Sketch the phase portrait of the system
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You may consider the case M =5, k = 1. (5p)

5. Show that if the origin is asymptotically stable for one of the following two systems of ode’s,
then the the same holds for the other one:

i = f(=)
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Here f € CY(R",R"), h(0) =0 and h € C*(R",R), h(0) > 0. (5p)
6. Consider the differential equation
dy . dy
1—t)—5 —2t— )y =
-2 -2 vamrny = o,
y(0) = 1,
y'(0) = 0.
This is Legendre’s differential equation of order n. Determine an interval [0, o] such that the
basic existence theorem for ode’s guarantees that a solution exists in this interval. (5p)

Good luck!
Bernt W.



