
version: January 14, 2013

MMA421: Ordinary differential equations and dynamical systems

Computer assignments

The computer assignments described in this document are compulsory. The reports must be delivered in
the form of a pdf-document sent by e-mail to wennberg@chalmers.se no later than the date of the
written exam. The reports will be graded ( with grades pass (G) and pass with distinction (VG) for students
registered with the University of Gothenburg, and (3), which is equivalent to pass, (4) or (5) for students
registered with Chalmers), and the grade will be used when the final grade for the course is determined. To
pass the course, the student must obtain pass on the computer assignment.

Purpose

The computer assignments should

• give deeper understanding of the course material;

• introduce the student to numerical methods for studying dynamical systems;

• give a training in written communication of mathematical concepts.

Mathematical software

The assignments are developed to be solved using Matlab, which is available on the computer system.
It is allowed to use other types of mathematical software, but a person who chooses a different kind of
software must be particularly careful to respect the intention of the assignment. Some familiarity with
Matlab is assumed. Students who are new to Matlab are encouraged obtain a book to learn the basics. A
good example is “Learning MATLAB” by T. A. Driscoll, that can be obtained from SIAM (Society for
Industrial and Applied Mathematics; http://www.ec-securehost.com/SIAM/OT115.html).
Many universities give a course called “Crash Course in Matlab” or something similar, and some also
provide good material on their web pages. Also the online Matlab manual is very useful.

The report

You are allowed (and even encouraged) to work in pairs while doing the assignments. However, every
student must write his/her own report, and hence must participate in all parts of the work. If you worked
with somebody, you should state that in the beginning of the report.

You must write your name and personal identification number in the report.

The report does not need to be a complete technical report, and in particular you should not spend a lot
of time making it look very nice typographically. It should be sufficiently detailed to be read without
the assignment description (this document) in hand. You should present the results of your computer
experiments, explain how they were carried out (you should put the the matlab code as an appendix to the
report, but it should be possible to read the report without looking at the code), and comment on them, and
of course, answer all explicit questions given in the text.

Grading

To obtain grade G (3), you must give good answers to Assignment 1.1, 1.2, 1.3, 2.1, and parts of Assign-
ment 2.2 and 3.1. To obtain higer grades (VG or 4 or 5, respectively), you must give detailed answers to
all questions and have made good attempts on all assignemnts.
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Assignment 1: numerical solution of ordinary differential equations
The most elementary way of solving an ordinary differential equation numerically is to approximate deriva-
tives by finite differences. We consider first the initial value problem

ẋ(t) = f(x(t))

x(0) = 1 (1)

and suppose that we look for approximations in the interval 0 ≤ t ≤ T , which we divide into sub intervals
0 = t0 < t1 < ... < tN−1 < tN = T . We write hi = ti − ti−1, and from now on we assume that all the
hi are equal, h = T/N .

With the Forward Euler Method the time derivative is approximated as ẋ(ti) ≈ (x(ti+1) − x(ti))/h, and
approximations of x(ti) can be computed as

x̃(ti+1)− x̃(ti)

h
= f(x̃(ti)) , (2)

or

x̃(ti+1) = x̃(ti) + hf(x̃(ti)) . (3)

This is also known as the explicit Euler method, because the formula gives an explicit expression for the
the following time step. The formula gives the values of x̃(t) only at discrete time points, and one needs to
use some interpolation method to find x̃(t) for values between these values.
From here, I will let x̃k denote x̃(tk).

With the Backward Euler Method, or implicit Euler method, one writes

x̃i+1 = x̃i + hf(x̃i+1) . (4)

This is an implicit method, because one needs to solve an equation to obtain x̃i+1 from x̃i – the value of
x̃i+1 is only implicitly defined by the formula.

Note that only first order systems can be solved with these methods, and that therefore higher order systems
must be rewritten as first order systems.

ASSIGNMENT 1.1: When f(x) = ax for some constant a, one can compute x̃j exactly, for both the
explicit and implicit Euler methods. Do that, and show that x̃N converges to the exact solution eaT when
N →∞. N.B. You cannot use the computer to do this!

By using higher order approximations of the derivative, one can obtain methods that converge faster.
Heun’s method is an explicit method:

x̃i+1 = x̃i +
h

2

(
f(x̃i) + f(x̃i + hf(x̃i))

)
. (5)

Here the derivative is computed as the average of the f(x) evaluated at the point x̃i and the f(x) evaluated
at the point x̃i + hf(x̃i), which is the next point as computed with the explicit Euler method.

In Matlab there is a whole family of methods for solving systems of ode. In many cases, the best choice
is ode45, which is a Runge-Kutta method of order 4, that automatically finds the optimal step length for
for obtaining the requested accuracy. The manual pages of Matlab give a very good introduction to these
methods, and there are several useful examples on how to use them.
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ASSIGNMENT 1.2: Consider the pendulum equation

d2θ

d t2
= − g

L
sin(θ) (6)

where g is the gravitational acceleration, and L is the length of the pendulum. For this exercise, you may
assume that g/L = 1. Rewrite equation (6) as a first order system, and solve it numerically using the the
implicit and explicit Euler methods and Heun’s method for various values of the step size h. If the error
decreases as a power of h, that is, the error is proportional to hm for some m > 0, one says that the method
has order m. Try to determine the rate of convergence for the different methods. The time interval should
be so large that a several periods of the oscillation can be seen. Compare the solution to the one obtained
by using Matlab’s ode45-method.

For systems of ode’s it is sometimes useful to use explicit methods for some of the variables and implicit
methods for other variables. In a system of two equations,

ẋ = f(x, y) (7)
ẏ = g(x, y)

the SYMPLECTIC EULER METHOD is

x̃i+1 = x̃i + hf(x̃i, ỹi+1) (8)
ỹi+1 = ỹi + hg(x̃i, ỹi) .

Symplectic methods are particularly suited for Hamiltonian systems. The methods are constructed to
conserve certain quantities that are preserved by the system, e.g. the energy.

ASSIGNMENT 1.3: Prove that the total energy1

H =
(θ̇)2

2
− g

L
cos θ (9)

is constant for solutions to the system (6) (N.B. You are supposed to do this by exact calculation, not
numerically!) Check how accurately the numerical approximations conserve the energy. For the symplectic
Euler method, check if it matters which of θ and θ̇ that is set to x and y in (8).

Assignment 2: Phase portraits
Consider the equation

ẋ = ax+ by (10)
ẏ = cx+ dy . (11)

The only fixed, or stationary point, to this equation is x = y = 0. Whether this point is stable or not
depends on the values of a, b, c, and d. Figure 1 shows the phase plane for some different values of the
parameters. The vector field is indicated by blue arrows, and some trajectories for different starting points
are given in red. In figure (1a), all trajectories are repelled from the origin and approach infinity as t goes
to infinity, in (1b), which is then a stable fixed point, and all of R2 is the domain of attraction for the origin;
in (1c) the eigenvalues of A are purely imaginary, and the trajectories remain on a closed curve around the
origin; in (1d), finally, there are two real eigenvalues with opposite signs, λ1 > 0 and λ2 < 0 with the
corresponding eigenvectors u1 and u2. In the latter case, trajectory starting on the line Ru1 will remain on
that line, and move away from the origin as t increases. Ru1 is called the unstable manifold. Similarly the
line Ru2 is called the stable manifold. These are drawn in green in figure (d).

1Well, this is not exactly the total energy: assuming that it is an idealized pendulum with a mass m concentrated at the endpoint
of the otherwise weightless pendulum, you should multiply by mL2. It is also always possible to add a constant.
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(a) (b)

(c) (d)

Figure 1: Phase portraits for the linear system ẋ = Ax. In (a), the origin is an unstable fixed point, in (b) it
is stable, in (c) it marginally stable, and in (d) there is one stable and one unstable direction

ASSIGNMENT 2.1: Consider the equation

{
ẋ = x2 + y2 − 1
ẏ = x− y (12)

Make a phase plane analysis of this equation as in the linear example above (this is not linear, so exact
calculations are more difficult, if not impossible):

• Determine the fixed points, and their quality (stable, unstable, ...).

• Sketch the vector field, e.g. using the matlab command quiver

• Plot a number of trajectories with different starting points.

• In case a fixed point is stable, determine the domain of attraction as accurately as possible (numeri-
cally), and give it a distinct color in the phase plane.

• In case a fixed point is similar to (d) above, try to compute the stable and unstable manifolds as
accurately as possible (numerically), and plot them using green color.
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THE RÖSSLER SYSTEM: This is a famous system of differential equations, which has been thoroughly
studied since the first paper by Rössler appeared in 1977: ẋ = −y − z

ẏ = x+ ay
ż = b+ z(x− c)

(13)

Depending on the values of the real parameters a, b and c the solutions may behave very differently: for
some values there are periodic solutions, and for some values the solutions are chaotic.
Three dimensional graphs of trajectories may be produced using matlab, but it is equally useful to plot only
the x and y components of the trajectories.

ASSIGNMENT 2.2:

• Let a = b = 0.1 and plot projections of the trajectories in the x − y-plane for different values of c.
In particular, try the values c = 4, 6, 8.5, 9, 12, 12.6, 18 (these are standard values to try).

• Check what happens with different starting points. Explain. Are there invariant sets? Are they
attracting or repelling?

Parameter values where the solutions change character are called bifurcation points. In the case of the
Rössler system (and with many other examples) a method that has been used to systematically study bifur-
cations is the following:

• Fix two of the parameter values, and let the third one vary.

• For a given value of the third parameter (c, for example)

– Compute a trajectory for such a long time that the attractor has been reached (within reasonable
accuracy)

– The trajectory will continue in a loop, periodically or non periodically. For each loop, make
a record of the largest value of x(t), call it x̄n. Run the system sufficiently long time to get a
large number of points x̄n

– Plot the point (c, x̄n).

• Change the value of the parameter in small steps and repeat the procedure, still plotting in the same
graph.

ASSIGNMENT 2.3:
Carry out this procedure using a = 0.2, c = 5.7 and varying b in small steps in the interval 0 < b ≤ 2.

Assignment 3: Discrete dynamical systems

If f : M →M is a (differentiable) map, we may define a discrete dynamical system by iterations of f . We
define

fk(x) = f(f(f(......f(x))...))︸ ︷︷ ︸
k times

Given a starting point x, we may now generate a sequence of points,

xk = fk(x) .

This sequence is called the orbit of x. It may consist of just one point, x itself, which then a fixed point of
the map (i.e. f(x) = x), or a larger number of points. If there is k > 1 such that fk(x) = x, we say that x
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is a periodic point, and if k is the smallest integer such that fk(x) = x, the period is k. The orbit may also
contain infinitely many different points in M . Chapter 11 in the book by Teschl treats maps of this kind
thoroughly.

In this assignment we first consider a family of maps on the real line called “the quadratic family”: For
µ > 0 we set

fµ(x) = µx(1− x)

You should convince yourself that if 0 ≤ µ ≤ 4, fµ maps the interval [0, 1] to itself,

fµ : [0, 1]→ [0, 1] ,

but that if µ > 4 there are points x ∈ [0, 1] such that fµ(x) /∈ [0, 1]. You should also check that if you plot
the graphs y = fµ(x) and y = x (0 ≤ x ≤ 1), the fixed points of fµ can be found as the values of x where
the two graphs intersect.

ASSIGNMENT 3.1:

• Plot the graphs of fkµ(x) for k = 1, 2, 3, 4 and for different values of µ. Use the results to draw
conclusions about how the number of fixed points and periodic points depend on µ.

• Try to determine which of the fixed (periodic) points that are stable and which ones are unstable.

• Make a bifurcation diagram similar to the one for the Rössler system: for a given µ compute xk =
fkµ(x) for k = 1...kmax (take a large value for kmax), and plot the points (µ, xk) in a µ − x-graph.
You will need to skip a rather large number of points in the beginning of the sequence to get a good
result (why). Repeat this for a large number of µ in the interval 0 < µ ≤ 4.

N.B. This can essentially be done using the Mathematica code in Teschel’s book. However, if you
do that, you must explain line by line what that code does.

• Discuss the result in relation to the graphs of fk(x).

One way to estimate the number of points in the orbit of x is the following:

• Compute xk, k = 1, 2, 3, ..... If you are only interested in the asymptotic behavior, you must then
throw away a (large) number of points in the beginning of the sequence.

• Using the matlab function hist, you can make a histogram of the points, i.e. you can split the
interval [0, 1] (or any other interval) into sub-intervals (bins) 0 < X1 < X2, ...., < XN = 1, and
the function hist can tell you how many points xk that belongs to each of the sub intervals. By
checking how many sub-intervals that are empty, you can get an estimate of the number of different
points that belong to the orbit of x.

• You have to experiment a little with the size of the sub intervals to get good results. Read the matlab
manual to see more.

ASSIGNMENT 3.2:
Carry out this procedure. Different values of µ will give different results, as we have seen. You should
be able to see that for certain values of µ there is only one bin that is not empty (this corresponds to one
fixed point), for other values of µ there are two non-empty bins (a periodic point with period 2). How
many different periods can you identify in this way? An interesting theorem by Sarkovskii (Theorem 11.2
in Teschl’s book) says that if there is an orbit with period three then there are orbits of all orders. Can you
find orbits of order three for in the way described above?

If A ⊂ [0, 1] is a subset of the interval [0, 1], we define

f(A) =
⋃
x∈A

f(x) = {y : y = f(x) for some x ∈ A }
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In the same way we define fk(A). By f−1(A) we mean

f−1(A) = {x : f(x) ∈ A}

In general we know that the set f({x}), the image of the set consisting only of the point x, consists of only
one point, f(x). But it may very well happen that f−1({x}) is a set consisting of many points.

The measure of an interval [a, b] ⊂ R is defined as the length of the interval:

m([a, b]) = b− a

(there are may other possibilities, but this is the most familiar one). If a set A ⊂ R is the union of finitely
many disjoint intervals, A = I1 ∪ I2 ∪ ... ∪ In, then we define

m(A) = m(I1) +m(I2) + ...+m(In) ,

the sum of lengths of the intervals. Note that m([a, b]) = m(]a, b[), the measure of an open interval and
the measure of its closure are equal. This is because the length of an “interval” consisting of only one
point is zero. The measure of more complicated sets can be defined in a certain way by approximating with
finite unions of intervals. A possible numerical method to estimate the measure of a set is by box counting:
suppose that A ⊂ [0, 1[, and divide [0, 1[ in M intervals, [0, 1/M [∪[1/M, 2/M [∪... ∪ [1 − 1/M, 1[=
I1 ∪ ... ∪ IM . Check how many of the sub-intervals Ij that are needed to cover the set A, i.e. count the
number of intervals such that Ij ∩ A 6= ∅. If that number is N , an estimate of m(A) is N/M . If A is a
complicated set, this may converge very slowly (or not at all ...).
However, there are sets for which it does not make sense to speak about their measure. These are the “non
measurable sets”, and it is not a trivial matter to show that such sets exist.

Here we are interested in the following problem: what is the relation between m(A) and m(f(A)), and
m(f−1(A)).

We say that a map f is measure preserving if for all sets A ⊂M

m(f−1(A)) = m(A)

Our fµ is clearly not measure preserving: The experiments carried out so far do not seem to depend very
much on the starting point, so for example, for 1 < µ < 3 it seems that no matter where you start,
fk(x) → x∞, all orbits converge to the same point (you should try to prove this). Does this mean that
m(fk(]− 1, 1[)→ 0 when k →∞? The next part of the assignment concerns this question.

ASSIGNMENT 3.3:

• For the quadratic map one can carry out many calculations explicitly. Try to compute m(f(]a, b[)),
where 0 ≤ a < b ≤ 1. Then do the same for m

(
f−1( ]a, b[∩f( [0, 1] ) )

)
. Then, finally, do

the same with the interval ]a, b[ replaced by a union of two disjoint intervals, [a, b] ∪ [c, d], where
0 ≤ a < b < c < c ≤ 1.

• Let a = 0.0, b = 0.3, c = 0.6, d = 1.0, and let A = fµ([a, b] ∪ [c, d]). You could use a Monte Carlo
method to estimate the measure of A as follows: take a large set of point x1, ..., xn in [a, b] ∪ [c, d],
and compute yj = fµ(xj). Then, as with the box counting method described above, count the
number of intervals Ij needed to cover the set

⋃n
j=1,{yj}. You can do this most easily with the

matlab command hist. Try this method for a few different values of µ and for different values of
M , but always for a large number of points xj . Compare with the exact result.

• Discuss whether this is a good method, and, if you can, propose a better one. How does the result
depend on M and on the number of points n? Why doesn’t n appear in the estimate?

If µ > 4 there is an interval around 0.5 such that for all points x in this interval, f(x) > 1, and another
set of points x such that f2µ(x) fall outside the interval. The following exercise amounts to finding a set A
such that fk(x) ∈ [0, 1] for all k and all x ∈ A. Of course, we cannot try all x, but a large number of them,
and of course we cannot compute fkµ(x) for all values of k, but a rather large value can be done.
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ASSIGNMENT 3.4:

• Explain why the set {x ∈ [0, 1] : fk(x) ∈ [0, 1] for all k} is invariant.

• Take a large number of points xj ∈ [0, 1], and compute fkµ(xj) for some large value of k. Then let
A =

⋃
{xj such that fkµ(xj) ∈ [0, 1]}. Use the box counting argument to estimate m(A).


