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A little topology

This is a collection of definitions and results from topology, which are needed for the
ode course. The notes are certainly not intended to be part of a course in topology, there
are many good books to study then – Simmons: ”Introduction to topology and modern
analysis” is one example.

Let M be a set of points (in most cases M will be Rn or a subset of Rn).

A metric on M is a function ρ : M ×M → R such that for all x, y, z ∈M

ρ(x, y) = ρ(y, x)

ρ(x, y) ≥ 0

ρ(x, y) = 0⇔ x = y

ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

An (open) ball of diameter r around x ∈M is the set

Br(x) = { y ∈M : ρ(y, x) < r }

A subset of M , U ⊂M is open if for each x ∈ U , there is a ball Br(x) such that

Br(x) ⊂ U

A subset of M , K ⊂ M is closed if it contains all limit points, i.e. if x1, x2, ..... ∈ K
and xk → x when k → ∞, then x ∈ K. The complement ( Kc = M \ K = {x ∈
M : x /∈ K } ) of an open set is closed.

A neighbourhood of x is a set U that contains x and such that x is an interior point of
U . Another way to say this is that there is an open set V ⊂ U such that x ∈ V . Note
that it is not uncommon to use the word neighbourhood for open neigbourhood, i.e. an
open set that contains x.

Let A be a subset of M . The limit set of A is the set of

{x ∈M : there is a sequence xk ∈ A, k = 1, 2, 3..., lim
k→∞

xk = x}

This is a closed set, and it is the closure of A. It is denoted Ā.

A subset C ⊂ Rn is compact if it is closed and bounded. For us the most important
property of compact sets is the following: Let xk ∈ C, k = 1, 2, 3... be a sequence of
points in C. Then there is a subsequence xkj , j = 1...∞ that is convergent,

lim
j→∞

xkj = x ∈ C .

Note that a sequence xk may contain many convergent subsequences converging to
different points in C, but at least one.
The meaning of compact is in fact this: if a B is a subset of C that contains infinitely
many points, then this infinite set of points must concentrate at least at one point in C,
there is not enough space to keep all these points spread out.
If M is not Rn it there may be closed and bounded sets that are not compact, and
then another definition is needed. In fact, if M is metric, i.e. there is a metric ρ(x, y),
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then a set C ⊂ M is said to be compact if every infinite sequence of points contains a
convergent subsequence. So the important result about closed and bounded sets in Rn

is taken to be the definition of compactness.
There are other definitions that can be used for topological spaces (this term needs a
definition) M that are not metric.

Continuous functions

Let M and N be metric spaces, and let f : M → N be a function from M to N . The
function f is said to be continuous if when x, x1, x2, x3, ... ∈M and limk→∞ xk = x,
then limk→∞ f(xk) = f(x). A different, equivalent definition is the following: Let
U ⊂ N be any open set and define f−1(U) to be the set

f−1(U) = {x ∈M : f(x) ∈ U }

The function f is continuous if f−1(U) is open. We prove that this second definition
implies the first: take x ∈ M and let y = f(x) ∈ N . Let xk, k = 1, 2, 3... be a
sequence in M with limk→∞ xk = x. We must prove that limk→∞ f(xk) = y. To
this end, take a ball Br(y) ⊂ N with center at y, and consider the shrinking sequence
of balls Br/n(y). These are open sets, each of them containing y and according to the
second definition of continuous, all the sets Un = f−1(Br/n) are open, and x ∈ Un

for all n. And because the sequence xk converges to x we must have xk ∈ Un for all
sufficiently large k. We have Um ⊂ Un if m > n, and therefore ”sufficiently large”
increases with n. Now chose ε > 0 arbitrarily small, and take n so large that r/n ≤ ε.
Next chose Kn so large that xk ∈ Un for all k ≥ Kn. But Un = f−1(Br/n(y)) so
therefore f(xk) ∈ Br/n(y) for k ≥ Kn, and this means that ρN (f(xk), y) < ε for
k > Kn. (I have written ρN for the metric in N ). Hence the sequence f(xk) converges
to y when k →∞ and the proof is ready.
Next, suppose that xk → x implies f(xk)→ f(x). We want to prove then that for any
open U ⊂ N , f−1(U) is open. If f−1(U) is not open, there is x ∈ f−1(U) and a se-
quence of points xk /∈ f−1(U) such that limk→∞ xk = x. But then limk→∞ f(xk) =
f(x) ∈ U , and because U is open there is a ball Br(f(x)) ⊂ U and then f(xk) ∈ U
for all sufficiently large k. But then, for k sufficiently large, xk ∈ f−1(U), which is a
contradiction. Hence we conclude that f−1(U) must be open.
The second characterization of continuous functions can be used also in topological
spaces that are not metric.

Differentiable functions M →M and the implicit function theorem

If f ∈ C1(R), and f ′(x0) 6= 0, there is an interval ]x0− ε, x0 + ε[ such that f ′(x) 6= 0
for all x in this interval. We may assume that f ′(x) > 0 in the interval, becuase the
opposite case works in the same way. Then f(x) is strictly monotonously increasing in
the interval, and we know that there is an inverse function:

y = f(x) ⇔ x = f−1(y)

for all x ∈]x0 − ε, x0 + ε[. The inverse function is also differentiable, and

d

dy
f−1(y) =

1

f ′(x)
(y = f(x))
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The relateion between the derivatives of f and f−1 follows by the chain rule. Set
g(y) = f−1(y), to avoid cumbersome notation. Then

x = g(f(x)) ⇒ 1 =
d

dx
g(f(x)) = g′(f(x))f ′(x)

⇒ g′(f(x)) =
1

f ′(x)

The same argument can be carried out for functions f ∈ C ′(M,M), where M ⊂ Rn..
Suppose first that the function f : M →M is differentiable and that there is an inverse
function g such that for all x ∈M ⊂ Rn,

x = g(f(x))

Then, differentiating with respect to x we get

I = g′(f(x))f ′(x)

i.e. exactly the same expression as in the one dimensional case, except that in the left
hand side, we have the n× n identity matrix, and

g′(y) =


∂g1
∂y1

∂g1
∂y12

... ∂g1
∂yn

∂g2
∂y1

∂g2
∂y12

... ∂g2
∂yn

...
∂gn
∂y1

∂gn
∂y12

... ∂gn
∂yn


and similary for f ′(x). And if the matrix f ′(x) is invertible, then

g′(y) = f ′(x)−1

where in the righthand side we mean the matrix invers of f ′(x). The inverse function
theorem states that, just like in the one-dimensional case, if det(f ′(x0)) 6= 0 for some
x0 ∈ M , then there is an open set U which contains x0 such that det(f ′(x)) 6= 0 for
all x ∈ U , and such that the function f(x) has an inverse g that is defined on U , and
the stated formula for g′ is valid.


