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MMA421: Ordinary differential equations and dynamical systems

Computer assignments
The computer assignments described in this document are compulsory. The reports must be delivered in
the form of a pdf-document sent by e-mail to wennberg@chalmers.se no later than the date of the
written exam. The reports will be graded ( with grades pass (G) and pass with distinction (VG) for students
registered with the University of Gothenburg, and (3), which is equivalent to pass, (4) or (5) for students
registered with Chalmers), and the grade will be used when the final grade for the course is determined. To
pass the course, the student must obtain pass on the computer assignment.

Purpose

The computer assignments should

• give deeper understanding of the course material;

• introduce the student to numerical methods for studying dynamical systems;

• give a training in written communication of mathematical concepts.

Mathematical software

The assignments are developed to be solved using Matlab, which is available on the computer system. It is
allowed to use other types of mathematical software, but a person who chooses a different kind of software
must be particularly careful to respect the intention of the assignment. Some familiarity with Matlab is
assumed. A booklet with a ”Crash course” in Matlab will be available for persons who need it.

The report

You are allowed (and even encouraged) to work in pairs while doing the assignments. However, every
student must write his/her own report, and hence must participate in all parts of the work. If you worked
with somebody, you should state that in the beginning of the report.

The report does not need to be a complete technical report, and in particular you should not spend a lot
of time making it look very nice typographically. It should be sufficiently detailed to be read without
the assignment description (this document) in hand. You should present the results of your computer
experiments, explain how they were carried out (but I am not very interested in matlab code), and comment
on them, and of course, answer all explicit questions given in the text.

Assignment 1: numerical solution of ordinary differential equations
The most elementary way of solving an ordinary differential equation numerically is to approximate deriva-
tives by finite differences. We consider first the initial value problem

ẋ(t) = f(x(t))

x(0) = 1 (1)

and suppose that we look for approximations in the interval 0 ≤ t ≤ T , which we divide into sub intervals
0 = t0 < t1 < ... < tN−1 < tN = T . We write hi = ti − ti−1, and from now on we assume that all the
hi are equal, h = T/N .

With the Forward Euler Method the time derivative is approximated as ẋ(ti) ≈ (x(ti+1) − x(ti))/h, and
approximations of x(ti) can be computed as

x̃(ti+1)− x̃(ti)

h
= f(x̃(ti)) , (2)
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or

x̃(ti+1) = x̃(ti) + hf(x̃(ti)) . (3)

This is also known as the explicit Euler method, because the formula gives an explicit expression for the
the following time step. This formula gives the values of x̃(t) only at discrete time points, and one needs
to use some interpolation method to find x̃(t) for values between these values.
From here, I will let x̃k denote x̃(tk).

With the Backward Euler Method, or implicit Euler method, one writes

x̃i+1 = x̃i + hf(x̃i+1) . (4)

This is an implicit method, because one needs to solve an equation to obtain x̃i+1 from x̃i – the value of
x̃i+1 is only implicitly defined by the formula.

Note that only first order systems can be solved with these methods, and that therefore higher order systems
must be rewritten as first order systems.

ASSIGNMENT: When f(x) = ax for some constant a, one can compute x̃j exactly, for both the explicit
and implicit Euler methods. Do that, and show that x̃N converges to the exact solution eaT when N →∞.

By using higher order approximations of the derivative, one can obtain methods that converge faster.
Heun’s method is an explicit method:

x̃i+1 = x̃i +
h

2

(
f(x̃i) + f(x̃i + hf(x̃i))

)
. (5)

Here the derivative is computed as the average of the f(x) evaluated at the point x̃i and the f(x) evaluated
at the point x̃i + hf(x̃i), which is the next point as computed with the explicit Euler method.

In Matlab there is a whole family of methods for solving systems of ode. In many cases, the best choice is
ode45, which is a Runge-Kutta method of order 4, which automatically finds the optimal step length for
for obtaining the requested accuracy. The manual pages of Matlab give a very good introduction to these
methods, and there are several useful examples on how to use them.

ASSIGNMENT: Consider the pendulum equation

d2θ

d t2
= − g

L
sin(θ) (6)

where g is the gravitational acceleration, and L is the length of the pendulum. For this exercise, you may
assume that g/L = 1. Rewrite this as a first order system, and solve it numerically using the the implicit
and explicit Euler methods and Heun’s method for various values of the step size h. If the error decreases
as a power of h, that is, the error is proportional to hm for some m > 0, one says that the method has order
m. Try to determine the rate of convergence for the different methods. The time interval should be so large
that a several periods of the oscillation can be seen. Compare the solution to the one obtained by using
Matlab’s ode45-method.

For systems of ode:s it is sometimes useful to use explicit methods for some of the variables and implicit
methods for other variables. In a system of two equations,

ẋ = f(x, y) (7)
ẏ = g(x, y)
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the SYMPLECTIC EULER METHOD is

x̃i+1 = x̃i + hf(x̃i, ỹi+1) (8)
ỹi+1 = ỹi + hg(x̃i, ỹi) .

Symplectic methods are particularly suited for Hamiltonian systems. The methods are constructed to
conserve certain quantities that are preserved by the system, e.g. the energy.

ASSIGNMENT: Show that the total energy1

H =
(θ̇)2

2
− g

L
cos θ (9)

is constant for solutions to the system (6). Check how accurately the numerical approximations conserve
the energy. For the symplectic method, check if it matters which of θ and θ̇ that is set to x and y in (8).

Assignment 2: Phase portraits
Consider the equation

ẋ = ax+ by (10)
ẏ = cx+ dy . (11)

The only fixed, or stationray point, to this equation is x = y = 0. Whether this point is stable or not
depends on the values of a, b, c, and d. Figure ... show the phase plane for some different values of the
parameters. The vectorfield is indicated by blue arrows, and some trajectories for different starting points
are given in red. In figure (1a), all trajectories are repelled from the origin and approach infinity as t goes
to infinity, in (1b), which is then a stable fixed point, and all of R2 is the domain of attraction for the origin;
in (1c) the eigenvalues of A are purely imaginary, and the trajectories remain on a closed curv around the
origin; in (1d), finally, there are two real eigenvalues with opposite signs, λ1 > 0 and λ2 < 0 with the
correspoinding eigenvectors u1 and u2. In the latter case, trajectory starting on the line Ru1 will remain
on that line, and move away from the origin as t increases. Ru1 is called the unstable manifold. Similarly
the line Ru2 is called the stable manifold. These are drawn in green in figure (d).

ASSIGNMENT: Consider the equation

{
ẋ = x2 + y2 − 1
ẏ = x− y (12)

Make a phase plane analysis of this equation as in the linear example above (this is not linear, so exact
calculations are more difficult, if not impossible):

• Determine the fixed points, and their quality (stable, unstable, ...).

• Sketch the vector field, e.g. using the matlab command quiver

• Plot a number of trajctories with different starting points.

• In case a fixed point is stable, determine the domain of attraction as accurately as possible, and give
it a distinct color in the phase plane.

• In case a fixed point is similar to (d) above, try to compute the stable and unstable manifolds as
accurately as possible, and plot them using green color.

1Well, this is not exactly the total energy: assuming that it is an idelized pendulum with a mass m concentrated at the endpoint of
the otherwise weightless pendulum, you should multiply by mL2. It is also always possible to add a constant.
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(a) (b)

(c) (d)

Figure 1: Phase portraits for the linear system ẋ = Ax. In (a), the origin is an unstable fixed point, in (b) it
is stable, in (c) it marginally stable, and in (d) there is one stable and one unstable direction

THE RÖSSLER SYSTEM: This is a famous system of differential equations, which has been thorougholy
studied since the first paper by Rössler in 1977:, ẋ = −y − z

ẏ = x+ ay
ż = b+ z(x− c)

(13)

Depending on the values of the real parameters a, b and c the solutions may behave very differently: for
some values there are periodic solutions, and for some values the solutions are chaotic.
Three dimensional graphs of trajectories may be produced using matlab, but it is equally useful to plot only
the x and y components of the trjacectories.

ASSIGNMENT:

• Let a = b = 0.1 and plot projections of the trajectories in the x − y-plane for different values of c.
In particular, try the values c = 4, 6, 8.5, 9, 12, 12.6, 18 (these are standard values to try).

• Check what happens with different starting points. Explain. Are there invariant sets? Are they
attracting or repelling?
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Parameter values where the solutions change character are called bifurcation points. In the case of the
Rössler system (and with many other examples) a method that has been used to systematically study bifur-
cations is the following:

• Fix two of the parameter values, and let the third one vary.

• For a given value of the third parameter (c, for example)

– Compute a trajectory for such a long time that the attractor has been reached (within reasonable
accuracy)

– The trajectory will continue in a loop, periodically or non periodically. For each loop, make
a record of the largest value of x(t), call it x̄n. Run the system sufficiently long time to get a
large number of points x̄n

– Plot the point (c, x̄n).

• Change the value of the parameter in small steps and repeat the procedure, still plotting in the same
graph.

ASSIGNMENT: Carry out this procedure using a = 0.2, c = 5.7 and varying b in small steps in the interval
0 < b ≤ 2.

Assignment 3: Discrete dynamical systems

If f : M →M is a (differentiable) map, we may define a discrete dynamical system by iterations of f . We
define

fk(x) = f(f(f(......f(x))...))︸ ︷︷ ︸
k times

Given a starting point x, we may now generate a sequence of points,

xk = fk(x) .

This sequence is called the orbit of x. It may consist of just one point, x itself, which then a fixed point of
the map (i.e. f(x) = x), or a larger number of points. If there is k > 1 such that fk(x) = x, we say that x
is a periodic point, and if k is the smallest integer such that fk(x) = x, the period is k. The orbit may also
contain infinitely many different points in M . Chapter 11 in the notes by Teschl treats maps of this kind
thoroughly.

In this assignment we first consider a family of maps on the real line called “the quadratic family”: For
µ > 0 we set

fµ(x) = µx(1− x)

You should convince yourself that if 0 ≤ µ ≤ 4, fµ maps the interval [0, 1] to itself,

fµ : [0, 1]→ [0, 1] ,

but that if µ > 4 there are points x ∈ [0, 1] such that fµ(x) /∈ [0, 1]. You should also check that if you plot
the graphs y = fµ(x) and y = x (0 ≤ x ≤ 1), the fixed points of fµ can be found as the values of x where
the two graphs intersect.

ASSIGNMENT:

• Plot the graphs of fkµ(x) for k = 1, 2, 3, 4 and for different values of µ. Use the results to draw
conclusions about how the number of fixed points and periodic points depend on µ.
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• Try to determine which of the fixed (periodic) points that are stable and which ones are unstable.

• Make a bifurcation diagarm similar to the one for the Rössler sysem: for a given µ compute xk =
fkµ(x) for k = 1...kmax (take a large value for kmax), and plot the points (µ, xk) in a µ − x-graph.
You will need to skip a rather large number of points in the beginning of the sequence to get a good
result (why). Repeat this for a large number of µ in the interval 0 < µ ≤ 4.

• Discuss the result in relation to the graphs of fk(x).

One way to estimate the number of points in the orbit of x is the following:

• Compute xk, k = 1, 2, 3, ..... If you are only interested in the asymptotic behaviour, you must then
throw away a (large) number of points in the beginning of the sequence.

• Using the matlab function hist, you can make a histogram of the points, i.e. you can split the
interval [0, 1] (or any other inteval) into subintevals (bins) 0 < X1 < X2, ...., < XN = 1, and
the function hist can tell you how many points xk that belongs to each of the sub intervals. By
checking how many subintervals that are empty, you can get an estimate of the number of different
points that belong to the orbit of x.

• You have to experiment a little with the size of the sub intervals to get good results. Read the matlab
manual to see more.

ASSIGNMENT: Carry out this procedure. Different values of µ will give different results, as we have seen.
You should be able to see that for certain values of µ there is only one bin that is not empty (this corresponds
to one fixed point), for other values of µ there are two non-empty bins (a periodic point with period 2).
How many different periods can you identify in this way? An interesting theorem by Sarkovskii (Theorem
11.2 in the notes by Teschl) says that if there is an orbit with period three then there are orbits of all orders.
Can you find orbits of order three for in the way described above?

If A ⊂ [0, 1] is a subest of the interval [0, 1], we define

f(A) =
⋃
x∈A

f(x) = {y : y = f(x) for some x ∈ A }

In the same way we define fk(A). By f−1(A) we mean

f−1(A) = {x : f(x) ∈ A}

In general we know that the set f({x}), the image of the set consisting only of the point x, consists of only
one point, f(x). But it may very well happen that f−1({x}) is a set consisting of many points.

The measure of an interval [a, b] ⊂ is defined as the length of the interval:

m([a, b]) = b− a

(there are may other possibilities, but this is the most familiar one). If a set A ⊂ R is the union of finitely
many disjoint intervals, A = I1 ∪ I2 ∪ ... ∪ In, then we define

m(A) = m(I1) +m(I2) + ...+m(In) ,

the sum of lengths of the intevals. Note that m([a, b]) = m(]a, b[), the measure of an open interval and the
measure of its closure are equal. This is becuase the length of an “interval” consisting of only one point is
zero. The measure of more complicated sets can be defined in a certain way by approximating with finite
unions of intervals. However, for which it does not make sense to speak about their measure. These are the
“non measurable sets”, and it is not a trivial matter to construct such sets.

Here we are intersted in the following problem: what is the relation between m(A) and m(f(A)), and
m(f−1(A)).
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We say that a map f is measure preserving if for all sets A ⊂M

m(f−1(A)) = m(A)

Our fµ is clearly not measure preserving: The experiments carried out so far does not seem to depend
very much on the starting point, so for example, for 1 < µ < 3 it seems that no matter where you start,
fk(x) → x∞, all orbits converge to the same point (you should try to prove this). Does this mean that
m(fk(]− 1, 1[)→ 0 when k →∞? The next part of the assignment concerns this question.

ASSIGNMENT:

• For the quadratic map one can carry out many calculations explicitly. Try to compute m(f(]0, 1[)).

• A possible approach to estimate m(fµ(]0, 1[) is the following: take a (large) number of points de-
stributed uniformly over the interval, for example yj = (j − 1/2)/n, j = 1....n for some value of
n. Each point then represents one of the n intervals [(j − 1)/n, j/n[. Then compute all the points
fµ(yj) and check how many disjoint intervals of size 1/n that are needed to contain these points.
One can use the hist function of matlab as above. Try this method for a few different values of µ
and for different values of n.

• Discuss how to measure m(fµ(A)) for other sets, and also whether this is a good method.

If µ > 4 there is an interval around 0.5 such that for all points x in this interval, f(x) > 1, and another
set of points x such that f2µ(x) fall outside the interval. The following exercise amounts to finding a set A
such that fk(x) ∈ [0, 1] for all k and all x ∈ A. Of course, we cannot try all x, but a large number of them,
and of course we cannot compute fkµ(x) for all values of k, but a rather large value can be done.
ASSIGNMENT:

• Describe why the set {x ∈ [0, 1] : fk(x) ∈ [0, 1] for all k} is invariant.

• Use the method described above to compute (an approximation) of the set A.

• Try to estimate m(A)

this exercise will contain one more task


