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Solutions to some exercises

These notes contain answers/solutions to some of the given problems. In particular there will be comments
and alternative solutions to problems that were presented in the lectures.

e T2.10: The purpose of this was to show a version of Gronwall’s inequality. Lemma 2.7 states that if
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with 5(t) > 0, then
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The statement holds for any interval ¢ € [0, T] where the inequality (1) is holds. The proof of this is
given in the text. But the exercise is to prove that if « is a non-decreasing function, i.e. if a(s) < a(¢)
whenever s < ¢, then
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The proof that was presented to us by Manuel was based on the idea of relating this problem to one
that I had presented earlier, where o« > 0 was a constant. It worked fine, but required some rather
clever tricks to do. Here is an alternative proof that also works fine.

We start by the inequality (2). Because « is non-decreasing, and both 3 and the exponential are

positive, the integral can be estimated as
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Now we plug this into the inequality (2) and find
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and therefore
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which is the announced result.



