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Part I

Background
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The classical Lie algebras

Let g be a simple complex finite-dimensional Lie algebra.

Then g contains a self-normalizing nilpotent subalgebra h,
called a Cartan subalgebra.

For α ∈ h∗ we have a corresponding root-space

gα := {x ∈ g | [h, x ] = α(h)x for all h ∈ h}

This yields the root-space decomposition g =
⊕

α∈h∗ gα.

The α ∈ h∗ corresponding to nonzero rootspaces Φ := {α ∈ h∗ | gα 6= 0}
is called the root system of g.
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Classification

Classification of simple finite dimensional Lie algebras (Cartan 1894)
Simple finite-dimensional complex Lie algebras are determined up to
isomorphism by their root systems. These consist of four infinite families
and five exceptional cases

An, Bn, Cn, Dn, E6, E7, E8, F4, G2
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Representation theory

The most fundamental modules for such Lie algebras g are the weight
modules:

M =
⊕
λ∈h∗

Mλ where Mλ = {m ∈ M | h ·m = λ(h)m for all h ∈ h∗}

Every finite dimensional module is a weight module.

Historically several other categories of modules were studied, for example
parabolically induced modules, Whittaker modules, Gelfand-Zetlin
modules, U(h)-free modules.
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Part II

Lie algebras of vector fields
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Lie algebras of vector fields, geometrically

Let k be a field with k = k, char k = 0.

Let X ⊂ An be an irreducible affine algebraic variety over k.

Let VX be the space of vector fields on X , geometrically VX = Γ(TX ).

The vector fields VX form a Lie algebra under the Lie derivative:

[x , y ] := Lx · y
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Lie algebras of vector fields, algebraically

Let X ⊂ An be an irreducible affine algebraic variety over k.

Let IX be the ideal of polynomials vanishing on X .

AX := k[x1, . . . , xn]/IX is the algebra of polynomial functions on X .

Then VX = Derk(Ax ) is the Lie algebra of polynomial vector fields on X .
The bracket is given by

[x , y ] := x ◦ y − y ◦ x

Note that AX is a VX -module and that VX is an AX -module.
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Realizations

Example
For X = An, we have
A = k[x1, . . . , xn] and
L := VX =

⊕n
i=1 k[x1, . . . , xn] ∂

∂xi

For general X we can view VX as a subquotient of L:

VX '
{µ ∈ L | µ(IX ) ⊂ IX}

{µ ∈ L | µ(k[x1, . . . , xn]) ⊂ IX}

Another way is to realize V as a subalgebra of
⊕n

i=1 A ∂
∂xi

as follows:
Let I = 〈g1, . . . , gm〉 and take J = (∂gi

∂xj
).

Then
∑

fi ∂
∂xi
∈ V if and only if (f1, . . . , fn) ∈ Ker J .
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Example: The circle

Example
For X = S1 we have

A = k[x , y ]/〈x2 + y2 − 1〉 = k[x ]⊕ yk[x ]

J = (2x 2y) so for f1, f2 ∈ A we have f1
∂
∂x + f2

∂
∂y ∈ V if and only if

xf1 + yf2 = 0 in A. Thus V = A(y ∂
∂x − x ∂

∂y ).

Now assume that k = C, take t = x + iy , s = x − iy . Then s = t−1, so we
have A = k[t, t−1] and V = k[t, t−1] ∂∂t , which is called the Witt algebra.
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Example: The 2-sphere

Example
For X = S2 we have

A = k[x , y , z ]/〈x2 + y2 + z2 − 1〉

J = (2x 2y 2z) so for f1, f2, f3 ∈ A we have f1
∂
∂x + f2

∂
∂y + f3

∂
∂z ∈ V if

and only if xf1 + yf2 + zf3 = 0 in A.

Let

∆12 = y ∂

∂x − x ∂

∂y , ∆23 = z ∂

∂y − y ∂

∂z , ∆31 = x ∂

∂z − z ∂

∂x

Then V is generated over A by {∆12,∆23,∆31}, and

z∆12 + x∆23 + y∆31 = 0
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Properties of VX

Proposition
VX is simple ⇔ X is smooth (D. Jordan 2000).
VX does not admit a Cartan subalgebra in general.
VX may not contain nonzero semisimple or nilpotent elements.

Thus the classical approach to representation theory fails. However, when
X is a torus, it has been proved that every VX module M has a natural
cover M̂ → M where M̂ is a module over both VX and AX .
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Part III

Representation theory

Jonathan Nilsson (Chalmers University of Technology)Representations for vector fields June 5, 2019 13 / 37



Papers

Based on joint work with Yuly Billig, Vyasheslav Futorny, André Zaidan

”Representations of the Lie algebra of vector fields on a sphere” (joint
with Y. Billig). Journal of pure and applied algebra (223) 3581–3593.
”Representations of Lie algebras of vector fields on affine varieties”
(joint with Y. Billig and V. Futorny). Accepted for publication in
Israel Journal of Mathematics. Preprint: arXiv:1709.08863.
”Gauge modules for the Lie algebra of vector fields on affine
varieties.” (joint with Y. Billig and A. Zaidan). Submitted. Preprint:
arXiv:1903.02626.

Jonathan Nilsson (Chalmers University of Technology)Representations for vector fields June 5, 2019 14 / 37



AV-modules

Definition
The category of AV-modules has as objects spaces M equipped with A-
and V-module structures that are compatible in the following sense:

η · f ·m = η(f ) ·m + f · η ·m

for all η ∈ V, f ∈ A, and m ∈ M.
Morphisms are maps that preserve both structures.

Examples
AX and VX and Ω1

X belong to AV-Mod.

Proposition

AV-Mod ' A#U(V)-Mod
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Categorical properties

Let M,N ∈ AV-Mod.

Definition
We define M ⊗ N := M ⊗A N with the following A and V-actions

f · (m ⊗ n) := (f ·m)⊗ n and η · (m ⊗ n) = (η ·m)⊗ n + m ⊗ (η · n)

Definition
We define M◦ := HomA(M,A) with the following A and V-actions

(f · ϕ)(m) := ϕ(f ·m) and (η · ϕ)(m) := η(ϕ(m))− ϕ(η ·m)

Then M ⊗ N and M◦ are in AV-Mod too.
So AV is a monoidal abelian catgory equipped with a dual.
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Shen’s modules

Example
Let X = An, let U be a gln-module, and let b = (b1, . . . , bn) with
bi ∈ k[x1, . . . , xn] such that ∂bi

∂xj
= ∂bj

∂xi
.

Then the space k[x1, . . . , xn]⊗ U is a natural A-module and it becomes an
AV-module if we define the following V-action:

n∑
i=1

fi
∂

∂xi
· (g ⊗ u) :=

n∑
i=1

(fi
∂g
∂xi

+ figbi )⊗ u + g
n∑

i ,p=1

∂fi
∂xp
⊗ Ep,i · u

These modules were studied by G. Shen (1986). They appear from
choosing certain natural embeddings

VX ⊂ Cur(X ) := VX n (gln(A)⊕ A).
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An atlas for X

Let X ⊂ An be a smooth irreducible affine variety. For h ∈ A, we define
the corresponding chart as

N(h) := {P ∈ X | h(P) 6= 0}

Let J = (∂gi
∂xj

), let r = rankFrac(A)J , and let Φ be the set of nonzero r × r
minors in J . Then

X =
⋃

h∈Φ
N(h).

We call this the standard atlas for X .
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Chart parameters

Definition
We say that t1, . . . , ts ∈ A are chart parameters in the chart N(h)
provided that the following conditions are satisfied:

t1, . . . , ts are algebraically independent, so that k[t1, . . . , ts ] ⊂ A.
Each element of A is algebraic over k[t1, . . . , ts ].
The derivation ∂

∂ti
of k[t1, . . . , ts ] extends uniquely to a derivation of

the localized algebra A(h).

Remark
s = dim X
We may always pick {t1, . . . , ts} ⊂ {x1, . . . , xn}.
Der(A(h)) =

⊕s
i=1 A(h)

∂
∂ti

Thus each η ∈ Der(A) has a unique representation η =
∑s

i=1 fi ∂∂ti
.
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Example: the 2-sphere

Example
Let X = S2. Then A = k[x , y , z ]/〈x2 + y2 + z2 − 1〉. We have
J = (2x 2y 2z) so our standard atlas is

X = N(x) ∪ N(y) ∪ N(z).

Now x , y are chart parameters in N(z): the derivation ∂
∂x of k[x , y ]

extends uniquely to a derivation of A(z) by defining ∂
∂x (z) = − x

z .
(This is necessary in order that ∂

∂x (x2 + y2 + z2 − 1) = 0 = ∂
∂x (0))

Thus we have an embedding of V into Der(A(z)), where the image is
generated over A by three elements:

Der(A) = A(y ∂

∂x − x ∂

∂y ) + Az ∂

∂x + Az ∂

∂y ⊂ Der(A(z)).

Jonathan Nilsson (Chalmers University of Technology)Representations for vector fields June 5, 2019 20 / 37



Example: the 2-sphere

Example
Let X = S2. Then A = k[x , y , z ]/〈x2 + y2 + z2 − 1〉. We have
J = (2x 2y 2z) so our standard atlas is

X = N(x) ∪ N(y) ∪ N(z).

Now x , y are chart parameters in N(z): the derivation ∂
∂x of k[x , y ]

extends uniquely to a derivation of A(z) by defining ∂
∂x (z) = − x

z .
(This is necessary in order that ∂

∂x (x2 + y2 + z2 − 1) = 0 = ∂
∂x (0))

Thus we have an embedding of V into Der(A(z)), where the image is
generated over A by three elements:

Der(A) = A(y ∂

∂x − x ∂

∂y ) + Az ∂

∂x + Az ∂

∂y ⊂ Der(A(z)).

Jonathan Nilsson (Chalmers University of Technology)Representations for vector fields June 5, 2019 20 / 37



Generalization of Shen’s modules

Let X ⊂ An, fix a chart N(h) and chart parameters t1, . . . , ts . Let U be a
simple gls -module, and let b = (b1, . . . , bs) with bi ∈ A(h) such that
∂bi
∂xj

= ∂bj
∂xi

.

Then the space A(h) ⊗ U becomes an AV-module as follows:

n∑
i=1

fi
∂

∂ti
· (g ⊗ u) :=

n∑
i=1

(fi
∂g
∂ti

+ figbi )⊗ u + g
n∑

i ,p=1

∂fi
∂tp
⊗ Ep,i · u

Note that these modules are not finitely generated over A.
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Gauge modules

We have a doubly infinite filtration of A(h) ⊗ U:

· · · ⊂ hk+1A⊗ U ⊂ hkA⊗ U ⊂ hk−1A⊗ U ⊂ · · ·

Let M be an AV-submodule of A(h) ⊗ U.
We say that M is bounded if M ⊂ hkA⊗ U for some k ∈ Z.

Definition
A bounded submodule of A(h) ⊗ U is called a local gauge module.
An AV-module which is isomorphic to a local gauge module in each
standard chart N(h) is called a gauge module.
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Examples

Examples
AX ,VX , and Ω1

X are all gauge modules. In a fixed chart N(h) they embed
as follows:

A ' A⊗ k ⊂ A(h) ⊗ k where k is the trivial gls -module

Ω1
X ⊂ A(h) ⊗ N where N is the natural gls -module

VX ⊂ A(h) ⊗ N∗ where N∗ is the co-natural gls -module
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Rank 1 example for the sphere

Example
Let U be one-dimensional, spanned by uα where I · uα = αuα for some
α ∈ k.

In this case we can show that the AV-module A(z) ⊗ uα contains a
bounded submodule if and only if α ∈ 2Z. This local gauge module has
form z−αA⊗ uα.
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Simplicity

Theorem
Let M be a gauge module corresponding to a simple gls -module U.
Then M is simple as an AV-module.

Proof sketch:

Let M ′ ⊂ M be a submodule
Then I = {f ∈ A | f ·M ⊂ M ′} is a (chart independent) ideal of A.
Submodules are closed under the operators h ⊗ Eij .
For each standard chart N(h), we have hk ∈ I for some k.
Hilbert’s weak nullstellensatz gives 1 ∈ I so M = M ′.

Conjecture
Every A-finitely generated simple AV-module is a gauge module.
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Restricting to V

Simplicity of gauge modules in V-Mod
Let M be a gauge-module corresponding to a simple gls -module U.
Then M is simple as a V-module if U 6' ΛkN where N is the natural
gls -module.

When U = ΛkN, reducible gauge modules appear in the de Rham complex:

A→ Ω1
X → Ω2

X → · · · → Ωs−1
X

here each Ωk
X can be embedded in A(h) ⊗ ΛkN for each chart N(h).

Submodules are given by kernels/images of the differential.
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Part IV

Quantum generalization
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Quantum torus

Start with a complex matrix q = (qij)d×d with qii = 1 and qij = q−1
ji . Let

Aq be the unital associative algebra generated by ti and t−1
i subject to the

relations
ti tj = qijtjti and ti t−1

i = 1.

This algebra is called the quantum torus associated to q.
Let Vq = Der(Aq) be the Lie algebra of derivations of Aq.
We can now similarly define the category of AqVq-modules as spaces M
with compatible Aq and Vq module structures.

Jonathan Nilsson (Chalmers University of Technology)Representations for vector fields June 5, 2019 28 / 37



Differences in the quantum setting

Both Aq and Vq are Zd -graded.
For n = (n1, . . . , nd ) ∈ Zd we write tn for tn1

1 · · · t
nd
d .

For each i we have the standard derivations ∂i ∈ Vq satisfying

∂i (tn) = ni tn

Since Aq is noncommutative we also have inner derivations of form

ad tn : p 7→ tnp − ptn

Result (Berman, Gau, Krylyuk 1996)
Each graded component Der(Aq)n is spanned by either ad tn or
{tn∂1, . . . , tn∂d} (depending on the multi-index n).
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Vq-modules

Result (W. Lin and S. Tan 2003)
There exists a family of functors

Fαg : gld -mod→ Der(Aq)-Mod

Fαg : V 7→ V ⊗ Aq

parametrized by α ∈ Cd and group homomorphisms g : Zd → C∗.

The action of Vq on V ⊗ Aq can be written down explicilty.
These modules are all weight modules with respect to the
Cartan-subalgebra spanned by the ∂i .
These modules are also generically completely reducible.
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Vq n Aq-modules

Given a finite-dimensional simple Lie algebra g we have the corresponding
toroidal Lie algebra

ĝ = g⊗ C[t±1
1 , . . . t±1

d ].

In the classical work of E. Rao and others, it was shown that the
classification of irreducible modules for ĝ could be reduced to the
classification of irreducible modules over the Lie algebra Der(A) n A.

Working towards a similar results in the quantum setting, E. Rao,
P. Batra, and S. Sharma classified irreducible Der(Aq) n Aq modules with
finite dimensional weight spaces when all qij are roots of unity. These
modules all turned out to have form V ⊗ Aq.
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Part V

Rudakov modules
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Rudakov’s modules

Let X = An, A = k[x1, . . . , xn], L := V =
⊕

i k[x1, . . . , xn] ∂
∂xi

.
Define deg f ∂

∂xi
= deg(f )− 1, and

let L(k) ⊂ L consist of derivations with no term of degree less than k.
This gives a filtration

L = L(−1) ⊃ L(0) ⊃ L(1) ⊃ L(2) ⊃ · · ·

Since [L(i),L(k)] ⊂ L(i + k), each L(k) is an ideal of L(0).

We have L(0)/L(1) ' gls (with Eij 7→ xi
∂
∂xj

). Thus L(0)-modules with
trivial L(1)-action corresponds to gls modules, and we get a functor

gls -mod→ L-Mod U 7→ IndL
L(0)U.

Rudakov showed in 1974 that these induced modules are simple V-modules
except in a finite number of cases.
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Generaliziations of Rudakov’s work

Now let X ⊂ An be an affine smooth irreducible variety of dimension s.
Fix a point P ∈ X and a simple gls -module U.
We define V(k) := {η ∈ V|η(A) ⊂ mk+1

P }. Then we have

V = V(−1) ⊃ V(0) ⊃ V(1) ⊃ V(2) ⊃ · · ·

Proposition
We have V(0)/V(k) ' L(0)/L(k) for each k ≥ 0.

In particular, V(0)/V(1) ' gls .
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Rudakov modules

Thus a gls -module U is a V(0)-module. For f ∈ A, define

f · u = f (P)u.

This action is compatible with the V-action, so U is an AV(0)-module.

Definition
Given U ∈ gls -mod and P ∈ X we define the corresponding Rudakov
module

RP(U) := A#U(V)
⊗

A#U(V(0))
U.

Theorem
When U is a simple gls -module, RP(U) is a simple AV-module.
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Gauge-Rudakov correspondance

Proposition
Let M be a gauge module and define U := M/mPM. Then U is a finite
dimensional AV(0)-module, and there exists a natural pairing between the
gauge module M and the Rudakov module RP(U∗).

The dual of the projection π : M → U is π∗ : U∗ → M∗. Write π∗ for the
canonical extension of π∗ to RP(U∗).

Then the pairing is given by 〈m, r〉 = π∗(r)(m). The pairing satisfies

〈f ·m, r〉 = 〈m, f · r〉 and 〈η ·m, r〉 = −〈m, η · r〉

for all f ∈ A, η ∈ V, m ∈ M, and r ∈ RP(U∗).
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Thanks!
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