Representation theory for Lie algebras of vector fields

Jonathan Nilsson

Chalmers University of Technology

June 5, 2019

Jonathan Nilsson (Chalmers University of Tec Representations for vector fields

Part I

Background

Jonathan Nilsson (Chalmers University of Tec Representations for vector fields

< A

Let \mathfrak{g} be a simple complex finite-dimensional Lie algebra.

Then \mathfrak{g} contains a self-normalizing nilpotent subalgebra \mathfrak{h} , called a **Cartan subalgebra**.

For $\alpha \in \mathfrak{h}^*$ we have a corresponding **root-space**

$$\mathfrak{g}_{\alpha} := \{ x \in \mathfrak{g} \mid [h, x] = \alpha(h) x \text{ for all } h \in \mathfrak{h} \}$$

This yields the **root-space decomposition** $\mathfrak{g} = \bigoplus_{\alpha \in h^*} \mathfrak{g}_{\alpha}$.

The $\alpha \in h^*$ corresponding to nonzero rootspaces $\Phi := \{ \alpha \in \mathfrak{h}^* \mid \mathfrak{g}_{\alpha} \neq 0 \}$ is called the **root system** of \mathfrak{g} .

Classification of simple finite dimensional Lie algebras (Cartan 1894)

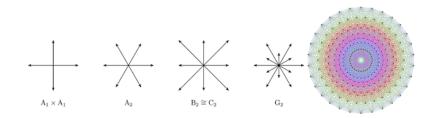
Simple finite-dimensional complex Lie algebras are determined up to isomorphism by their root systems. These consist of four infinite families and five exceptional cases

 $A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$

Classification of simple finite dimensional Lie algebras (Cartan 1894)

Simple finite-dimensional complex Lie algebras are determined up to isomorphism by their root systems. These consist of four infinite families and five exceptional cases

$$A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$$



The most fundamental modules for such Lie algebras \mathfrak{g} are the **weight modules**:

$$M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$$
 where $M_{\lambda} = \{m \in M \mid h \cdot m = \lambda(h)m \text{ for all } h \in \mathfrak{h}^*\}$

Every finite dimensional module is a weight module.

Historically several other categories of modules were studied, for example parabolically induced modules, Whittaker modules, Gelfand-Zetlin modules, $U(\mathfrak{h})$ -free modules.

Part II

Lie algebras of vector fields

Jonathan Nilsson (Chalmers University of Tec Representations for vector fields

Let k be a field with $k = \overline{k}$, char k = 0.

Let $X \subset \mathbb{A}^n$ be an irreducible affine algebraic variety over k.

Let \mathcal{V}_X be the space of vector fields on X, geometrically $\mathcal{V}_X = \Gamma(TX)$.

The vector fields \mathcal{V}_X form a Lie algebra under the Lie derivative:

$$[x,y] := \mathfrak{L}_x \cdot y$$

Let $X \subset \mathbb{A}^n$ be an irreducible affine algebraic variety over k.

Let I_X be the ideal of polynomials vanishing on X.

 $A_X := k[x_1, \ldots, x_n]/I_X$ is the algebra of polynomial functions on X.

Then $\mathcal{V}_X = \text{Der}_k(A_x)$ is the Lie algebra of polynomial vector fields on X. The bracket is given by

$$[x,y] := x \circ y - y \circ x$$

Note that A_X is a \mathcal{V}_X -module and that \mathcal{V}_X is an A_X -module.

Realizations

Example

For $X = \mathbb{A}^n$, we have $A = k[x_1, \dots, x_n]$ and $\mathfrak{L} := \mathcal{V}_X = \bigoplus_{i=1}^n k[x_1, \dots, x_n] \frac{\partial}{\partial x_i}$

Realizations

Example

For $X = \mathbb{A}^n$, we have $A = k[x_1, \dots, x_n]$ and $\mathfrak{L} := \mathcal{V}_X = \bigoplus_{i=1}^n k[x_1, \dots, x_n] \frac{\partial}{\partial x_i}$

For general X we can view \mathcal{V}_X as a subquotient of \mathfrak{L} :

$$\mathcal{V}_X \simeq \frac{\{\mu \in \mathfrak{L} \mid \mu(I_X) \subset I_X\}}{\{\mu \in \mathfrak{L} \mid \mu(k[x_1, \dots, x_n]) \subset I_X\}}$$

Realizations

Example

For $X = \mathbb{A}^n$, we have $A = k[x_1, \dots, x_n]$ and $\mathfrak{L} := \mathcal{V}_X = \bigoplus_{i=1}^n k[x_1, \dots, x_n] \frac{\partial}{\partial x_i}$

For general X we can view \mathcal{V}_X as a subquotient of \mathfrak{L} :

$$\mathcal{V}_{X} \simeq \frac{\{\mu \in \mathfrak{L} \mid \mu(I_{X}) \subset I_{X}\}}{\{\mu \in \mathfrak{L} \mid \mu(k[x_{1}, \dots, x_{n}]) \subset I_{X}\}}$$

Another way is to realize \mathcal{V} as a subalgebra of $\bigoplus_{i=1}^{n} A \frac{\partial}{\partial x_i}$ as follows: Let $I = \langle g_1, \ldots, g_m \rangle$ and take $J = \left(\frac{\partial g_i}{\partial x_j}\right)$. Then $\sum f_i \frac{\partial}{\partial x_i} \in \mathcal{V}$ if and only if $(f_1, \ldots, f_n) \in Ker J$.

Example

For $X = \mathbb{S}^1$ we have

$$A = k[x, y]/\langle x^2 + y^2 - 1 \rangle = k[x] \oplus yk[x]$$

 $J = (2x \quad 2y)$ so for $f_1, f_2 \in A$ we have $f_1 \frac{\partial}{\partial x} + f_2 \frac{\partial}{\partial y} \in \mathcal{V}$ if and only if $xf_1 + yf_2 = 0$ in A. Thus $\mathcal{V} = A(y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y})$.

Example

For $X = \mathbb{S}^1$ we have

$$A = k[x, y]/\langle x^2 + y^2 - 1 \rangle = k[x] \oplus yk[x]$$

 $J = (2x \quad 2y)$ so for $f_1, f_2 \in A$ we have $f_1 \frac{\partial}{\partial x} + f_2 \frac{\partial}{\partial y} \in \mathcal{V}$ if and only if $xf_1 + yf_2 = 0$ in A. Thus $\mathcal{V} = A(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y})$.

Now assume that $k = \mathbb{C}$, take t = x + iy, s = x - iy. Then $s = t^{-1}$, so we have $A = k[t, t^{-1}]$ and $\mathcal{V} = k[t, t^{-1}]\frac{\partial}{\partial t}$, which is called the **Witt algebra**.

Example: The 2-sphere

Example

For $X = \mathbb{S}^2$ we have

$$A = k[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$$

 $J = (2x \quad 2y \quad 2z)$ so for $f_1, f_2, f_3 \in A$ we have $f_1 \frac{\partial}{\partial x} + f_2 \frac{\partial}{\partial y} + f_3 \frac{\partial}{\partial z} \in \mathcal{V}$ if and only if $xf_1 + yf_2 + zf_3 = 0$ in A.

< 行い

Example: The 2-sphere

Example

For $X = \mathbb{S}^2$ we have

$$A = k[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$$

 $J = (2x \quad 2y \quad 2z)$ so for $f_1, f_2, f_3 \in A$ we have $f_1 \frac{\partial}{\partial x} + f_2 \frac{\partial}{\partial y} + f_3 \frac{\partial}{\partial z} \in \mathcal{V}$ if and only if $xf_1 + yf_2 + zf_3 = 0$ in A.

Let

$$\Delta_{12} = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, \quad \Delta_{23} = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \quad \Delta_{31} = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}$$

Then \mathcal{V} is generated over A by $\{\Delta_{12}, \Delta_{23}, \Delta_{31}\}$, and

$$z\Delta_{12} + x\Delta_{23} + y\Delta_{31} = 0$$

< 行い

< ∃ >

Proposition

- \mathcal{V}_X is simple $\Leftrightarrow X$ is smooth (D. Jordan 2000).
- \mathcal{V}_X does not admit a Cartan subalgebra in general.
- \mathcal{V}_X may not contain nonzero semisimple or nilpotent elements.

Proposition

- \mathcal{V}_X is simple $\Leftrightarrow X$ is smooth (D. Jordan 2000).
- \mathcal{V}_X does not admit a Cartan subalgebra in general.
- V_X may not contain nonzero semisimple or nilpotent elements.

Thus the classical approach to representation theory fails. However, when X is a torus, it has been proved that every \mathcal{V}_X module M has a natural cover $\widehat{M} \to M$ where \widehat{M} is a module over both \mathcal{V}_X and A_X .

Part III

Representation theory

Jonathan Nilsson (Chalmers University of Tec Representations for vector fields

Based on joint work with Yuly Billig, Vyasheslav Futorny, André Zaidan

- "Representations of the Lie algebra of vector fields on a sphere" (joint with Y. Billig). Journal of pure and applied algebra (223) 3581–3593.
- "Representations of Lie algebras of vector fields on affine varieties" (joint with Y. Billig and V. Futorny). Accepted for publication in Israel Journal of Mathematics. Preprint: arXiv:1709.08863.
- "Gauge modules for the Lie algebra of vector fields on affine varieties." (joint with Y. Billig and A. Zaidan). Submitted. Preprint: arXiv:1903.02626.

$A\mathcal{V}$ -modules

Definition

The category of AV-modules has as objects spaces M equipped with Aand V-module structures that are compatible in the following sense:

$$\eta \cdot f \cdot m = \eta(f) \cdot m + f \cdot \eta \cdot m$$

for all $\eta \in \mathcal{V}$, $f \in A$, and $m \in M$.

Morphisms are maps that preserve both structures.

$A\mathcal{V}$ -modules

Definition

The category of AV-modules has as objects spaces M equipped with Aand V-module structures that are compatible in the following sense:

$$\eta \cdot f \cdot m = \eta(f) \cdot m + f \cdot \eta \cdot m$$

for all $\eta \in \mathcal{V}$, $f \in A$, and $m \in M$.

Morphisms are maps that preserve both structures.

Examples

 A_X and \mathcal{V}_X and Ω^1_X belong to $A\mathcal{V}$ -Mod.

$A\mathcal{V}$ -modules

Definition

The category of AV-modules has as objects spaces M equipped with Aand V-module structures that are compatible in the following sense:

$$\eta \cdot f \cdot m = \eta(f) \cdot m + f \cdot \eta \cdot m$$

for all $\eta \in \mathcal{V}$, $f \in A$, and $m \in M$.

Morphisms are maps that preserve both structures.

Examples

 A_X and \mathcal{V}_X and Ω^1_X belong to $A\mathcal{V}$ -Mod.

Proposition

$A\mathcal{V}\text{-}\mathsf{Mod}\simeq A\#U(\mathcal{V})\text{-}\mathsf{Mod}$

Jonathan Nilsson (Chalmers University of Tec

Categorical properties

Let $M, N \in A\mathcal{V}$ -Mod.

Definition

We define $M \otimes N := M \otimes_A N$ with the following A and \mathcal{V} -actions

 $f \cdot (m \otimes n) := (f \cdot m) \otimes n \text{ and } \eta \cdot (m \otimes n) = (\eta \cdot m) \otimes n + m \otimes (\eta \cdot n)$

Let $M, N \in A\mathcal{V}$ -Mod.

Definition

We define $M \otimes N := M \otimes_A N$ with the following A and \mathcal{V} -actions

 $f \cdot (m \otimes n) := (f \cdot m) \otimes n \text{ and } \eta \cdot (m \otimes n) = (\eta \cdot m) \otimes n + m \otimes (\eta \cdot n)$

Definition

We define $M^{\circ} := \operatorname{Hom}_{A}(M, A)$ with the following A and \mathcal{V} -actions

$$(f \cdot \varphi)(m) := \varphi(f \cdot m)$$
 and $(\eta \cdot \varphi)(m) := \eta(\varphi(m)) - \varphi(\eta \cdot m)$

Let $M, N \in A\mathcal{V}$ -Mod.

Definition

We define $M \otimes N := M \otimes_A N$ with the following A and \mathcal{V} -actions

 $f \cdot (m \otimes n) := (f \cdot m) \otimes n \text{ and } \eta \cdot (m \otimes n) = (\eta \cdot m) \otimes n + m \otimes (\eta \cdot n)$

Definition

We define $M^{\circ} := \operatorname{Hom}_{A}(M, A)$ with the following A and \mathcal{V} -actions

$$(f \cdot \varphi)(m) := \varphi(f \cdot m)$$
 and $(\eta \cdot \varphi)(m) := \eta(\varphi(m)) - \varphi(\eta \cdot m)$

Then $M \otimes N$ and M° are in AV-Mod too. So AV is a monoidal abelian catgory equipped with a dual.

Example

Let
$$X = \mathbb{A}^n$$
, let U be a \mathfrak{gl}_n -module, and let $b = (b_1, \ldots, b_n)$ with $b_i \in k[x_1, \ldots, x_n]$ such that $\frac{\partial b_i}{\partial x_i} = \frac{\partial b_j}{\partial x_i}$.

Then the space $k[x_1, \ldots, x_n] \otimes U$ is a natural *A*-module and it becomes an AV-module if we define the following V-action:

$$\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}} \cdot (g \otimes u) := \sum_{i=1}^{n} (f_{i} \frac{\partial g}{\partial x_{i}} + f_{i} g b_{i}) \otimes u + g \sum_{i,p=1}^{n} \frac{\partial f_{i}}{\partial x_{p}} \otimes E_{p,i} \cdot u$$

Example

Let
$$X = \mathbb{A}^n$$
, let U be a \mathfrak{gl}_n -module, and let $b = (b_1, \ldots, b_n)$ with $b_i \in k[x_1, \ldots, x_n]$ such that $\frac{\partial b_i}{\partial x_j} = \frac{\partial b_j}{\partial x_i}$.

Then the space $k[x_1, \ldots, x_n] \otimes U$ is a natural *A*-module and it becomes an AV-module if we define the following V-action:

$$\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}} \cdot (g \otimes u) := \sum_{i=1}^{n} (f_{i} \frac{\partial g}{\partial x_{i}} + f_{i} g b_{i}) \otimes u + g \sum_{i,p=1}^{n} \frac{\partial f_{i}}{\partial x_{p}} \otimes E_{p,i} \cdot u$$

These modules were studied by G. Shen (1986). They appear from choosing certain natural embeddings

$$\mathcal{V}_X \subset \operatorname{Cur}(X) := \mathcal{V}_X \ltimes (\mathfrak{gl}_n(A) \oplus A).$$

Let $X \subset \mathbb{A}^n$ be a smooth irreducible affine variety. For $h \in A$, we define the corresponding chart as

$$N(h) := \{P \in X \mid h(P) \neq 0\}$$

Let $X \subset \mathbb{A}^n$ be a smooth irreducible affine variety. For $h \in A$, we define the corresponding chart as

$$N(h) := \{P \in X \mid h(P) \neq 0\}$$

Let $J = (\frac{\partial g_i}{\partial x_j})$, let $r = \operatorname{rank}_{Frac(A)} J$, and let Φ be the set of nonzero $r \times r$ minors in J. Then

$$X=\bigcup_{h\in\Phi}N(h).$$

We call this the standard atlas for X.

Chart parameters

Definition

We say that $t_1, \ldots, t_s \in A$ are **chart parameters** in the chart N(h) provided that the following conditions are satisfied:

- t_1, \ldots, t_s are algebraically independent, so that $k[t_1, \ldots, t_s] \subset A$.
- Each element of A is algebraic over $k[t_1, \ldots, t_s]$.
- The derivation
 <u>∂</u>t_i of k[t₁,..., t_s] extends uniquely to a derivation of the localized algebra A_(h).

Chart parameters

Definition

We say that $t_1, \ldots, t_s \in A$ are **chart parameters** in the chart N(h) provided that the following conditions are satisfied:

- t_1, \ldots, t_s are algebraically independent, so that $k[t_1, \ldots, t_s] \subset A$.
- Each element of A is algebraic over $k[t_1, \ldots, t_s]$.
- The derivation
 <u>∂</u>t_i of k[t₁,..., t_s] extends uniquely to a derivation of the localized algebra A_(h).

Remark

• *s* = dim *X*

• We may always pick
$$\{t_1,\ldots,t_s\} \subset \{x_1,\ldots,x_n\}.$$

•
$$\operatorname{Der}(A_{(h)}) = \bigoplus_{i=1}^{s} A_{(h)} \frac{\partial}{\partial t_i}$$

Definition

We say that $t_1, \ldots, t_s \in A$ are **chart parameters** in the chart N(h) provided that the following conditions are satisfied:

- t_1, \ldots, t_s are algebraically independent, so that $k[t_1, \ldots, t_s] \subset A$.
- Each element of A is algebraic over $k[t_1, \ldots, t_s]$.
- The derivation
 <u>∂</u>t_i of k[t₁,..., t_s] extends uniquely to a derivation of the localized algebra A_(h).

Remark

- *s* = dim *X*
- We may always pick $\{t_1, \ldots, t_s\} \subset \{x_1, \ldots, x_n\}.$

•
$$\operatorname{Der}(A_{(h)}) = \bigoplus_{i=1}^{s} A_{(h)} \frac{\partial}{\partial t_i}$$

Thus each $\eta \in \text{Der}(A)$ has a unique representation $\eta = \sum_{i=1}^{s} f_i \frac{\partial}{\partial t_i}$.

Example: the 2-sphere

Example

Let $X = \mathbb{S}^2$. Then $A = k[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$. We have $J = (2x \ 2y \ 2z)$ so our standard atlas is

$$X = N(x) \cup N(y) \cup N(z).$$

Now x, y are chart parameters in N(z): the derivation $\frac{\partial}{\partial x}$ of k[x, y] extends uniquely to a derivation of $A_{(z)}$ by defining $\frac{\partial}{\partial x}(z) = -\frac{x}{z}$. (This is necessary in order that $\frac{\partial}{\partial x}(x^2 + y^2 + z^2 - 1) = 0 = \frac{\partial}{\partial x}(0)$)

Example: the 2-sphere

Example

Let $X = S^2$. Then $A = k[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$. We have $J = (2x \ 2y \ 2z)$ so our standard atlas is

$$X = N(x) \cup N(y) \cup N(z).$$

Now x, y are chart parameters in N(z): the derivation $\frac{\partial}{\partial x}$ of k[x, y] extends uniquely to a derivation of $A_{(z)}$ by defining $\frac{\partial}{\partial x}(z) = -\frac{x}{z}$. (This is necessary in order that $\frac{\partial}{\partial x}(x^2 + y^2 + z^2 - 1) = 0 = \frac{\partial}{\partial x}(0)$)

Thus we have an embedding of \mathcal{V} into $Der(A_{(z)})$, where the image is generated over A by three elements:

$$\operatorname{Der}(A) = A(y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}) + Az\frac{\partial}{\partial x} + Az\frac{\partial}{\partial y} \subset \operatorname{Der}(A_{(z)}).$$

イロト イヨト イヨト イ

Let $X \subset \mathbb{A}^n$, fix a chart N(h) and chart parameters t_1, \ldots, t_s . Let U be a simple \mathfrak{gl}_s -module, and let $b = (b_1, \ldots, b_s)$ with $b_i \in A_{(h)}$ such that $\frac{\partial b_i}{\partial x_j} = \frac{\partial b_j}{\partial x_i}$.

Then the space $A_{(h)} \otimes U$ becomes an $A\mathcal{V}$ -module as follows:

$$\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial t_{i}} \cdot (g \otimes u) := \sum_{i=1}^{n} (f_{i} \frac{\partial g}{\partial t_{i}} + f_{i} g b_{i}) \otimes u + g \sum_{i,p=1}^{n} \frac{\partial f_{i}}{\partial t_{p}} \otimes E_{p,i} \cdot u$$

Note that these modules are not finitely generated over A.

We have a doubly infinite filtration of $A_{(h)} \otimes U$:

$$\cdots \subset h^{k+1}A \otimes U \subset h^kA \otimes U \subset h^{k-1}A \otimes U \subset \cdots$$

We have a doubly infinite filtration of $A_{(h)} \otimes U$:

$$\cdots \subset h^{k+1}A \otimes U \subset h^kA \otimes U \subset h^{k-1}A \otimes U \subset \cdots$$

Let M be an $A\mathcal{V}$ -submodule of $A_{(h)} \otimes U$. We say that M is **bounded** if $M \subset h^k A \otimes U$ for some $k \in \mathbb{Z}$.

Definition

A bounded submodule of $A_{(h)} \otimes U$ is called a **local gauge module**. An AV-module which is isomorphic to a local gauge module in each standard chart N(h) is called a **gauge module**.

Examples

 A_X, \mathcal{V}_X , and Ω^1_X are all gauge modules. In a fixed chart N(h) they embed as follows:

 $A \simeq A \otimes k \subset A_{(h)} \otimes k$ where k is the trivial \mathfrak{gl}_s -module

 $\Omega^1_X \subset A_{(h)} \otimes N$ where N is the natural \mathfrak{gl}_s -module

 $\mathcal{V}_X \subset A_{(h)} \otimes N^*$ where N^* is the co-natural \mathfrak{gl}_s -module

Example

Let *U* be one-dimensional, spanned by u_{α} where $I \cdot u_{\alpha} = \alpha u_{\alpha}$ for some $\alpha \in k$.

In this case we can show that the $A\mathcal{V}$ -module $A_{(z)} \otimes u_{\alpha}$ contains a bounded submodule if and only if $\alpha \in 2\mathbb{Z}$. This local gauge module has form $z^{-\alpha}A \otimes u_{\alpha}$.

Theorem

Let *M* be a gauge module corresponding to a simple \mathfrak{gl}_s -module *U*. Then *M* is simple as an $A\mathcal{V}$ -module.

Theorem

Let *M* be a gauge module corresponding to a simple \mathfrak{gl}_s -module *U*. Then *M* is simple as an *AV*-module.

Proof sketch:

- Let $M' \subset M$ be a submodule
- Then $I = \{f \in A \mid f \cdot M \subset M'\}$ is a (chart independent) ideal of A.
- Submodules are closed under the operators $h \otimes E_{ij}$.
- For each standard chart N(h), we have $h^k \in I$ for some k.
- Hilbert's weak nullstellensatz gives $1 \in I$ so M = M'.

Theorem

Let *M* be a gauge module corresponding to a simple \mathfrak{gl}_s -module *U*. Then *M* is simple as an $A\mathcal{V}$ -module.

Proof sketch:

- Let $M' \subset M$ be a submodule
- Then $I = \{f \in A \mid f \cdot M \subset M'\}$ is a (chart independent) ideal of A.
- Submodules are closed under the operators $h \otimes E_{ij}$.
- For each standard chart N(h), we have $h^k \in I$ for some k.
- Hilbert's weak nullstellensatz gives $1 \in I$ so M = M'.

Conjecture

Every A-finitely generated simple AV-module is a gauge module.

Image: A matrix and a matrix

Simplicity of gauge modules in \mathcal{V} -Mod

Let M be a gauge-module corresponding to a simple \mathfrak{gl}_s -module U. Then M is simple as a \mathcal{V} -module if $U \not\simeq \Lambda^k N$ where N is the natural \mathfrak{gl}_s -module.

Simplicity of gauge modules in \mathcal{V} -Mod

Let M be a gauge-module corresponding to a simple \mathfrak{gl}_s -module U. Then M is simple as a \mathcal{V} -module if $U \not\simeq \Lambda^k N$ where N is the natural \mathfrak{gl}_s -module.

When $U = \Lambda^k N$, reducible gauge modules appear in the de Rham complex:

$$A o \Omega^1_X o \Omega^2_X o \dots o \Omega^{s-1}_X$$

here each Ω_X^k can be embedded in $A_{(h)} \otimes \Lambda^k N$ for each chart N(h). Submodules are given by kernels/images of the differential.

Part IV

Quantum generalization

Start with a complex matrix $q = (q_{ij})_{d \times d}$ with $q_{ii} = 1$ and $q_{ij} = q_{ji}^{-1}$. Let A_q be the unital associative algebra generated by t_i and t_i^{-1} subject to the relations

$$t_i t_j = q_{ij} t_j t_i$$
 and $t_i t_i^{-1} = 1$.

This algebra is called the **quantum torus** associated to q. Let $\mathcal{V}_q = \text{Der}(A_q)$ be the Lie algebra of derivations of A_q . We can now similarly define the category of $A_q\mathcal{V}_q$ -modules as spaces M with compatible A_q and \mathcal{V}_q module structures.

Differences in the quantum setting

Both A_q and \mathcal{V}_q are \mathbb{Z}^d -graded. For $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$ we write t^n for $t_1^{n_1} \cdots t_d^{n_d}$. For each *i* we have the standard derivations $\partial_i \in \mathcal{V}_q$ satisfying

$$\partial_i(t^n) = n_i t^n$$

Differences in the quantum setting

Both A_q and \mathcal{V}_q are \mathbb{Z}^d -graded. For $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$ we write t^n for $t_1^{n_1} \cdots t_d^{n_d}$. For each *i* we have the standard derivations $\partial_i \in \mathcal{V}_q$ satisfying

$$\partial_i(t^n) = n_i t^n$$

Since A_q is noncommutative we also have inner derivations of form

$$ad t^n : p \mapsto t^n p - pt^n$$

Differences in the quantum setting

Both A_q and \mathcal{V}_q are \mathbb{Z}^d -graded. For $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$ we write t^n for $t_1^{n_1} \cdots t_d^{n_d}$. For each *i* we have the standard derivations $\partial_i \in \mathcal{V}_q$ satisfying

$$\partial_i(t^n) = n_i t^n$$

Since A_q is noncommutative we also have inner derivations of form

ad
$$t^n: p \mapsto t^n p - pt^n$$

Result (Berman, Gau, Krylyuk 1996)

Each graded component $Der(A_q)_n$ is spanned by either ad t^n or $\{t^n\partial_1,\ldots,t^n\partial_d\}$ (depending on the multi-index n).

Result (W. Lin and S. Tan 2003)

There exists a family of functors

$$F_g^{lpha}:\mathfrak{gl}_d\operatorname{\mathsf{-mod}} o\operatorname{Der}(A_q)\operatorname{\mathsf{-Mod}}$$

$$F_g^{\alpha}: V \mapsto V \otimes \mathbb{A}_q$$

parametrized by $\alpha \in \mathbb{C}^d$ and group homomorphisms $g : \mathbb{Z}^d \to \mathbb{C}^*$.

Result (W. Lin and S. Tan 2003)

There exists a family of functors

$$\mathcal{F}^lpha_{g}:\mathfrak{gl}_d\operatorname{\mathsf{-mod}} o\operatorname{Der}(\mathcal{A}_q)\operatorname{\mathsf{-Mod}}$$

$$F_{g}^{\alpha}: V \mapsto V \otimes \mathbb{A}_{q}$$

parametrized by $\alpha \in \mathbb{C}^d$ and group homomorphisms $g : \mathbb{Z}^d \to \mathbb{C}^*$.

The action of \mathcal{V}_q on $V \otimes A_q$ can be written down explicitly. These modules are all weight modules with respect to the Cartan-subalgebra spanned by the ∂_i . These modules are also generically completely reducible. Given a finite-dimensional simple Lie algebra ${\mathfrak g}$ we have the corresponding toroidal Lie algebra

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t_1^{\pm 1}, \dots t_d^{\pm 1}].$$

In the classical work of E. Rao and others, it was shown that the classification of irreducible modules for $\hat{\mathfrak{g}}$ could be reduced to the classification of irreducible modules over the Lie algebra $\operatorname{Der}(A) \ltimes A$.

Given a finite-dimensional simple Lie algebra ${\mathfrak g}$ we have the corresponding toroidal Lie algebra

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t_1^{\pm 1}, \dots t_d^{\pm 1}].$$

In the classical work of E. Rao and others, it was shown that the classification of irreducible modules for $\hat{\mathfrak{g}}$ could be reduced to the classification of irreducible modules over the Lie algebra $\operatorname{Der}(A) \ltimes A$.

Working towards a similar results in the quantum setting, E. Rao, P. Batra, and S. Sharma classified irreducible $Der(A_q) \ltimes A_q$ modules with finite dimensional weight spaces when all q_{ij} are roots of unity. These modules all turned out to have form $V \otimes A_q$.

$\mathsf{Part}\ \mathsf{V}$

Rudakov modules

Jonathan Nilsson (Chalmers University of Tec Representations for vector fields

June 5, 2019 32 / 37

Rudakov's modules

Let $X = \mathbb{A}^n$, $A = k[x_1, \dots, x_n]$, $\mathfrak{L} := \mathcal{V} = \bigoplus_i k[x_1, \dots, x_n] \frac{\partial}{\partial x_i}$. Define deg $f \frac{\partial}{\partial x_i} = deg(f) - 1$, and let $\mathfrak{L}(k) \subset \mathfrak{L}$ consist of derivations with no term of degree less than k. This gives a filtration

$$\mathfrak{L}=\mathfrak{L}(-1)\supset\mathfrak{L}(0)\supset\mathfrak{L}(1)\supset\mathfrak{L}(2)\supset\cdots$$

Since $[\mathfrak{L}(i),\mathfrak{L}(k)] \subset \mathfrak{L}(i+k)$, each $\mathfrak{L}(k)$ is an ideal of $\mathfrak{L}(0)$.

Rudakov's modules

Let $X = \mathbb{A}^n$, $A = k[x_1, \dots, x_n]$, $\mathfrak{L} := \mathcal{V} = \bigoplus_i k[x_1, \dots, x_n] \frac{\partial}{\partial x_i}$. Define deg $f \frac{\partial}{\partial x_i} = deg(f) - 1$, and let $\mathfrak{L}(k) \subset \mathfrak{L}$ consist of derivations with no term of degree less than k. This gives a filtration

$$\mathfrak{L} = \mathfrak{L}(-1) \supset \mathfrak{L}(0) \supset \mathfrak{L}(1) \supset \mathfrak{L}(2) \supset \cdots$$

Since $[\mathfrak{L}(i),\mathfrak{L}(k)] \subset \mathfrak{L}(i+k)$, each $\mathfrak{L}(k)$ is an ideal of $\mathfrak{L}(0)$.

We have $\mathfrak{L}(0)/\mathfrak{L}(1) \simeq \mathfrak{gl}_s$ (with $E_{ij} \mapsto x_i \frac{\partial}{\partial x_j}$). Thus $\mathfrak{L}(0)$ -modules with trivial $\mathfrak{L}(1)$ -action corresponds to \mathfrak{gl}_s modules, and we get a functor

$$\mathfrak{gl}_{\mathfrak{s}}\operatorname{\mathsf{-mod}} o \mathfrak{L}\operatorname{\mathsf{-Mod}} \qquad U\mapsto \operatorname{Ind}_{\mathfrak{L}(0)}^{\mathfrak{L}}U.$$

Rudakov showed in 1974 that these induced modules are simple \mathcal{V} -modules except in a finite number of cases.

イロト イポト イヨト イヨト 二日

Now let $X \subset \mathbb{A}^n$ be an affine smooth irreducible variety of dimension *s*. Fix a point $P \in X$ and a simple \mathfrak{gl}_s -module *U*. We define $\mathcal{V}(k) := \{\eta \in \mathcal{V} | \eta(A) \subset \mathfrak{m}_P^{k+1}\}$. Then we have

$$\mathcal{V}=\mathcal{V}(-1)\supset\mathcal{V}(0)\supset\mathcal{V}(1)\supset\mathcal{V}(2)\supset\cdots$$

Now let $X \subset \mathbb{A}^n$ be an affine smooth irreducible variety of dimension *s*. Fix a point $P \in X$ and a simple \mathfrak{gl}_s -module *U*. We define $\mathcal{V}(k) := \{\eta \in \mathcal{V} | \eta(A) \subset \mathfrak{m}_P^{k+1}\}$. Then we have

$$\mathcal{V} = \mathcal{V}(-1) \supset \mathcal{V}(0) \supset \mathcal{V}(1) \supset \mathcal{V}(2) \supset \cdots$$

Proposition

We have $\mathcal{V}(0)/\mathcal{V}(k) \simeq \mathfrak{L}(0)/\mathfrak{L}(k)$ for each $k \ge 0$.

In particular, $\mathcal{V}(0)/\mathcal{V}(1) \simeq \mathfrak{gl}_s$.

Thus a \mathfrak{gl}_s -module U is a $\mathcal{V}(0)$ -module. For $f \in A$, define

$$f\cdot u=f(P)u.$$

This action is compatible with the V-action, so U is an AV(0)-module.

Thus a \mathfrak{gl}_s -module U is a $\mathcal{V}(0)$ -module. For $f \in A$, define

 $f \cdot u = f(P)u.$

This action is compatible with the V-action, so U is an AV(0)-module.

Definition

Given $U \in \mathfrak{gl}_s$ -mod and $P \in X$ we define the corresponding **Rudakov** module

$$R_P(U) := A \# \mathcal{U}(\mathcal{V}) \bigotimes_{A \# \mathcal{U}(\mathcal{V}(0))} U.$$

Thus a \mathfrak{gl}_s -module U is a $\mathcal{V}(0)$ -module. For $f \in A$, define

 $f \cdot u = f(P)u.$

This action is compatible with the V-action, so U is an AV(0)-module.

Definition

Given $U \in \mathfrak{gl}_s$ -mod and $P \in X$ we define the corresponding **Rudakov** module

$$R_P(U) := A \# \mathcal{U}(\mathcal{V}) \bigotimes_{A \# \mathcal{U}(\mathcal{V}(0))} U.$$

Theorem

When U is a simple \mathfrak{gl}_s -module, $R_P(U)$ is a simple $A\mathcal{V}$ -module.

Proposition

Let M be a gauge module and define $U := M/\mathfrak{m}_P M$. Then U is a finite dimensional $A\mathcal{V}(0)$ -module, and there exists a natural pairing between the gauge module M and the Rudakov module $R_P(U^*)$.

Proposition

Let M be a gauge module and define $U := M/\mathfrak{m}_P M$. Then U is a finite dimensional $A\mathcal{V}(0)$ -module, and there exists a natural pairing between the gauge module M and the Rudakov module $R_P(U^*)$.

The dual of the projection $\pi : M \to U$ is $\pi^* : U^* \to M^*$. Write $\overline{\pi^*}$ for the canonical extension of π^* to $R_P(U^*)$.

Then the pairing is given by $\langle m,r
angle=\overline{\pi^*}(r)(m)$. The pairing satisfies

$$\langle f \cdot m, r \rangle = \langle m, f \cdot r \rangle$$
 and $\langle \eta \cdot m, r \rangle = -\langle m, \eta \cdot r \rangle$

for all $f \in A$, $\eta \in \mathcal{V}$, $m \in M$, and $r \in R_P(U^*)$.

Thanks!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで