On representations of finite W-algebras

Elena Poletaeva

University of Texas Rio Grande Valley

Joint work with

Vera Serganova, UC Berkeley

Quantum Groups, Quantum Symmetric Spaces and Operator Algebras

Kristineberg, Sweden, June 3, 2019
1. Introduction

- A finite W-algebra is a certain associative algebra attached to a pair (\mathfrak{g}, e) where \mathfrak{g} is a complex semi-simple Lie algebra and $e \in \mathfrak{g}$ is a nilpotent element.

- A finite W-algebra is a generalization of the universal enveloping algebra $U(\mathfrak{g})$. For $e = 0$ it coincides with $U(\mathfrak{g})$.

- Finite W-algebra is a quantization of the Poisson algebra of functions on the Slodowy (i.e. transversal) slice at e to the orbit $Ad(G)e$, where $\mathfrak{g} = \text{Lie}(G)$.

- Due to recent results of I. Losev, A. Premet and others, finite W-algebras play a very important role in description of primitive ideals.

- Finite W-algebras for semi-simple Lie algebras were introduced by A. Premet.

Definition. An element $e \in \mathfrak{g}$ is *nilpotent* if ad_e is a nilpotent endomorphism of \mathfrak{g}. A nilpotent element $e \in \mathfrak{g}$ is *regular* nilpotent if the centralizer \mathfrak{g}^e attains the minimal dimension, which is equal to $\text{rank}\mathfrak{g}$.

Theorem. *(B. Kostant, 1978)* For a reductive Lie algebra \mathfrak{g} and a regular nilpotent element $e \in \mathfrak{g}$, the finite W-algebra coincides with the center of $U(\mathfrak{g})$.

- This theorem does not hold for Lie superalgebras, since the finite W-algebra has a non-trivial odd part, while the center of $U(\mathfrak{g})$ is even.

(V. Kac, M. Gorelik, A. Sergeev)
• J. Brown, J. Brundan and S. Goodwin described principal finite W-algebra $W_{m|n}$ for $\mathfrak{gl}(m|n)$ associated with even regular (i.e. principal) nilpotent e as truncation of shifted super-Yangian of $\mathfrak{gl}(1|1)$.

• They proved that simple $W_{m|n}$-modules are finite-dimensional and classified them by highest weight theory using the triangular decomposition

$$W_{m|n} = W^-_{m|n} W^0_{m|n} W^+_{m|n}$$

2. **The Queer Lie Superalgebra** $\mathfrak{g} = \mathcal{Q}(n)$

- Equip $\mathbb{C}^{n|n}$ with the odd operator ζ such that $\zeta^2 = -\text{Id}$.

Let $\mathcal{Q}(n)$ be the centralizer of ζ in the Lie superalgebra $\mathfrak{gl}(n|n)$. Then

$$\mathcal{Q}(n) = \left\{ \begin{pmatrix} A & B \\ B & A \end{pmatrix} \mid A, B \text{ are } n \times n \text{ matrices} \right\}$$

- Supercommutator: $[X, Y] = XY - (-1)^{p(X)p(Y)} YX$.

- Standard bases in A and B respectively:

$$e_{i,j} = \begin{pmatrix} E_{ij} & 0 \\ 0 & 0 \end{pmatrix}, \quad f_{i,j} = \begin{pmatrix} 0 & E_{ij} \\ E_{ij} & 0 \end{pmatrix}$$
• $\mathfrak{g} = Q(n)$ admits an odd non-degenerate \mathfrak{g}-invariant super-symmetric bilinear form

$$(X|Y) := otr(XY) \text{ for } X, Y \in Q(n)$$

$$otr \begin{pmatrix} A & B \\ B & A \end{pmatrix} = trB$$

• $\mathfrak{g}^* \cong \Pi(\mathfrak{g})$, where Π is the change of parity functor.
• We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ to be the set of matrices with diagonal A and B.

$$\mathfrak{h} = \text{Span}\{e_{i,i} \mid f_{i,i}\}, \quad i = 1, \ldots, n$$

• \mathfrak{n}^+ (respectively, \mathfrak{n}^-) is the nilpotent subalgebra consisting of matrices with strictly upper triangular (respectively, low triangular) A and B.

• The Lie superalgebra \mathfrak{g} has the triangular decomposition

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$

Set $\mathfrak{b} = \mathfrak{n}^+ \oplus \mathfrak{h}$.

3. The finite W-algebra for $Q(n)$

- We define the finite W-algebra associated with the regular even nilpotent element χ in the coadjoint representation of $Q(n)$.
- Choose $\chi \in \mathfrak{g}^*$ such that

$$\chi(f_{i,j}) = 0, \quad \chi(e_{i,j}) = \delta_{i,j+1}. $$

Remark. Let $E = \sum_{i=1}^{n-1} f_{i,i+1}$ (odd). Then $\chi(x) = (x|E)$ for $x \in \mathfrak{g}$.

$$E = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\end{bmatrix}
$$

χ is regular nilpotent \iff E has a single Jordan block.
Let I_{χ} be the left ideal in $U(\mathfrak{g})$ generated by $x - \chi(x)$ for all $x \in \mathfrak{n}^-$, and

$\pi : U(\mathfrak{g}) \to U(\mathfrak{g})/I_{\chi}$ be the natural projection.

Definition. The finite W-algebra associated with χ is

$$W := \{ \pi(y) \in U(\mathfrak{g})/I_{\chi} | \text{ad}(x)y \in I_{\chi} \text{ for all } x \in \mathfrak{n}^- \}.$$

$$\pi(y_1)\pi(y_2) = \pi(y_1y_2)$$

- We identify $U(\mathfrak{g})/I_{\chi}$ with $U(\mathfrak{b})$, then W is a subalgebra of $U(\mathfrak{b})$.
Definition. The *Harish-Chandra homomorphism* is the natural projection
\[\vartheta : U(b) \to U(h) \]
with the kernel \(n^+U(b) \).

\[\vartheta : W \longrightarrow U(h) \]
is injective.

We consider \(W \) as a subalgebra of \(U(h) \).
4. The structure of W-algebra

- The Cartan subalgebra of $\mathfrak{g} = Q(n)$ is

$$\mathfrak{h} = \text{Span}\{e_{i,i} \mid f_{i,i}\}.$$

$$[f_{i,i}, f_{j,j}] = 0 \text{ if } i \neq j, \quad [f_{i,i}, f_{i,i}] = 2e_{i,i}.$$

Set $\xi_i = (-1)^{i+1}f_{i,i}, \quad x_i = \xi_i^2 = e_{i,i}$. Then

- $U(\mathfrak{h}) = \mathbb{C}[\xi_1, \ldots, \xi_n]/(\xi_i\xi_j + \xi_j\xi_i)_{i < j \leq n}$.

- The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}[x_1, \ldots, x_n]$.

- The center of W coincides with $W \cap \mathbb{C}[x_1, \ldots, x_n]$. It is the image of the center of $U(\mathfrak{g})$ under the Harish-Chandra homomorphism. (Adv. Math., 2016).

- The center of $U(\mathfrak{g})$ is generated by Q-symmetric polynomials (A. Sergeev).
• We define the following set of generators of W:

 n odd generators ϕ_k and n even generators z_k.

Set

$$\phi_0 = \sum_{i=1}^{n} \xi_i, \quad \phi_k = T^k(\phi_0), \quad k \geq 0,$$

where the matrix of T in the standard basis ξ_1, \ldots, ξ_n has 0 on the diagonal and

$$t_{ij} = \begin{cases}
 x_j & \text{if } i < j, \\
 -x_j & \text{if } i > j.
\end{cases}$$
For even $k \geq 0$ set
\[
z_k := [\phi_0, \phi_k] \in \text{center of } W
\]

For odd $k < n$ set
\[
z_k := \left[\sum_{i_1 \geq i_2 \geq \ldots \geq i_{k+1}} (x_{i_1} + (-1)^k \xi_{i_1}) \ldots (x_{i_k} - \xi_{i_k})(x_{i_{k+1}} + \xi_{i_{k+1}}) \right]_{\text{even}},
\]

Then
\[
[\phi_i, \phi_j] = \begin{cases}
(-1)^i z_{i+j} & \text{if } i + j \text{ is even} \\
0 & \text{if } i + j \text{ is odd}
\end{cases}
\]

• Elements z_0, \ldots, z_{n-1} are algebraically independent in W and they commute with each other. Together with $\phi_0, \ldots, \phi_{n-1}$ they form a complete set of generators in W.
5. IRREDUCIBLE REPRESENTATIONS OF W

• We proved that all simple W-modules are finite-dimensional (Adv. Math., 2016).
Now we give a classification of simple W-modules.

Restriction from $U(\mathfrak{h})$ to W.

Definition. Let $s = (s_1, \ldots, s_n) \in \mathbb{C}^n$. Then s regular if $s_i \neq 0$ for all $i \leq n$ and typical if $s_i + s_j \neq 0$ for all $i \neq j \leq n$.

• All irreducible representations of $U(\mathfrak{h})$ are enumerated by $s \in \mathbb{C}^n$ up to change of parity.

Let V be an irreducible representation, then every x_i acts by scalar $s_i \text{Id}$.

Let I_s be the ideal in $U(\mathfrak{h})$ generated by $x_i - s_i$.

Then the quotient algebra $U(\mathfrak{h})/I_s$ is isomorphic to the Clifford algebra C_s associated with the quadratic form B_s:

$$C_s = \mathbb{C}[\xi_1, \ldots, \xi_n]/(\xi_i \xi_j + \xi_j \xi_i - 2\delta_{i,j}s_i),$$

and V is a simple C_s-module.
Let $m(s)$ be the number of non-zero coordinates of s. Then

- C_s has **one** simple \mathbb{Z}_2-graded module $V(s)$ for **odd** $m(s)$,

and **two** simple modules $V(s)$ and $\Pi V(s)$ for **even** $m(s)$.

In the case when s is regular, the form B_s is non-degenerate and the dimension of $V(s)$ equals 2^k, where $k = \lceil n/2 \rceil$.

- We denote by the same symbol $V(s)$ the restriction to W.
Proposition 1. Let S be a simple W-module. Then S is a simple constituent of $V(s)$ for some $s \in \mathbb{C}^n$.

Proposition 2. If s is typical, then $V(s)$ is a simple W-module.

Sketch of proof. Consider $U(\mathfrak{h})$ as a free $U(\mathfrak{h}_0)$-module. Note that all ϕ_i belong to the free submodule generated by ξ_1, \ldots, ξ_n, which is equipped with $U(\mathfrak{h}_0)$-valued bilinear symmetric form

$$B(x, y) = [x, y].$$

Let Γ denotes the Gramm matrix $B(\phi_i, \phi_j)$. Then

$$\det \Gamma = cp^2 x_1 \ldots x_n,$$

where $p(x_1, \ldots, x_n) := \prod_{i<j}(x_i + x_j)$ and c is a non-zero constant.

- Assume that s is regular, i.e. $s_i \neq 0$ for all $i = 1, \ldots, n$. Since after specialization $x_i \mapsto s_i$ we have $\det \Gamma(s) \neq 0$, we have an isomorphism of superalgebras C_s and $W/(W \cap I_s)$.

- If s is typical non-regular, then there is exactly one i such that $s_i = 0$, and the statement follows from the regular case for $n - 1$.
Proposition 3. Let $s' = \sigma(s)$ for some permutation of coordinates.

(a) If s is typical, then $V(s)$ is isomorphic to $V(s')$ as a W-module.

(b) If s is arbitrary, then $V(s)$ as a W-module has the same Jorgan-Hölder series as $V(s')$ or $\Pi V(s')$ up to permutation.
6. **Simple W-modules for $Q(2)$**

- The action of $U(\mathfrak{h})$ in $V(s_1, s_2)$ is given by the following formulas in a suitable basis:

$$
\xi_1 \mapsto \begin{pmatrix} 0 & \sqrt{s_1} \\ \sqrt{s_1} & 0 \end{pmatrix}, \quad \xi_2 \mapsto \begin{pmatrix} 0 & \sqrt{s_2 i} \\ -\sqrt{s_2 i} & 0 \end{pmatrix}.
$$

- The generators of W are

$$
\phi_0 = \xi_1 + \xi_2, \quad \phi_1 = x_2 \xi_1 - x_1 \xi_2,
$$

$$
z_0 = x_1 + x_2, \quad z_1 = x_1 x_2 - \xi_1 \xi_2.
$$

and they act by

\begin{align*}
(1) \quad \phi_0 & \mapsto \begin{pmatrix} 0 & \sqrt{s_1 + \sqrt{s_2 i}} \\ \sqrt{s_1 - \sqrt{s_2 i}} & 0 \end{pmatrix}, \quad \phi_1 & \mapsto \sqrt{s_1 s_2} \begin{pmatrix} 0 & \sqrt{s_2 - \sqrt{s_1 i}} \\ \sqrt{s_2 + \sqrt{s_1 i}} & 0 \end{pmatrix}, \\
(2) \quad z_0 & \mapsto s_1 + s_2, \quad z_1 \mapsto \begin{pmatrix} s_1 s_2 + \sqrt{s_1 s_2 i} & 0 \\ 0 & s_1 s_2 - \sqrt{s_1 s_2 i} \end{pmatrix}.
\end{align*}
• $V(s)$ is simple as W-module if and only if $s_1 \neq -s_2$.

Let $s_1 = -s_2$. If $s_1 = s_2 = 0$, then $V(s) \cong \mathbb{C} \oplus \Pi(\mathbb{C})$.

If $s_1 \neq 0$, we choose $\sqrt{s_1}, \sqrt{s_2}$ so that $\sqrt{s_2} = \sqrt{s_1}i$. Then the following exact sequence follows from (1) and (2):

$$0 \to \Pi \Gamma_{-s_1^2 + s_1} \to V(s) \to \Gamma_{-s_1^2 - s_1} \to 0,$$

where Γ_t is one-dimensional simple module on which ϕ_0, ϕ_1 and z_0 act by zero and z_1 acts by the scalar t.

Lemma 1. If $n = 2$, then every simple W-module is isomorphic to one of the following

(1) $V(s_1, s_2)$ or $\Pi V(s_1, s_2)$ for $s_1 \neq -s_2, s_1, s_2 \neq 0$;

(2) $V(s, 0)$ if $s \neq 0$;

(3) Γ_t or $\Pi \Gamma_t$.

7. General construction of simple W-modules

Let W be the finite W-algebra for $Q(n)$.

Let $i + j = n$. There is natural embedding of the Lie superalgebras:

$$Q(i) \oplus Q(j) \hookrightarrow Q(n).$$

This induces the isomorphism

$$U(h) \simeq U(h_i) \otimes U(h_j),$$

where h_r denotes the Cartan subalgebra of $Q(r)$.

Lemma 2. Let $i + j = n$. Then W is a subalgebra in the tensor product $W^i \otimes W^j$, where $W^r \subset U(h_r)$ denotes the W-algebra for $Q(r)$.

Corollary. If $i_1 + \cdots + i_p = n$, then W is a subalgebra in $W^{i_1} \otimes \cdots \otimes W^{i_p}$.
Let \(r, p, q \in \mathbb{N} \cup \{0\} \) and \(r + 2p + q = n \),
\[
t = (t_1, \ldots, t_p) \in \mathbb{C}^p, \ t_1, \ldots, t_p \neq 0,
\]
\[
\lambda = (\lambda_1, \ldots, \lambda_q) \in \mathbb{C}^q, \ \lambda_1, \ldots, \lambda_q \neq 0, \text{ such that } \lambda_i + \lambda_j \neq 0 \text{ for any } 1 \leq i \neq j \leq q.
\]
We have an embedding
\[
W \hookrightarrow W^r \otimes (W^2)^{\otimes p} \otimes W^q.
\]
Set
\[
S(t, \lambda) := \mathbb{C} \boxtimes \Gamma_{t_1} \boxtimes \cdots \boxtimes \Gamma_{t_p} \boxtimes V(\lambda).
\]

Theorem 2. (P.–S., 2019)

1. \(S(t, \lambda) \) is a simple \(W \)-module;
2. Every simple \(W \)-module is isomorphic to \(S(t, \lambda) \) up to change of parity.

Idea of proof. Use Propositions (1)–(3).

Proposition 4.

Two simple modules \(S(t, \lambda) \) and \(S(t', \lambda') \) are isomorphic if and only if \(t' = \sigma(t) \) and \(\lambda' = \tau(\lambda) \) for some \(\sigma \in S_p \) and \(\tau \in S_q \).
8. Central characters

• The center Z of W coincides with the image of the center of $U(\mathfrak{g})$ under the Harish-Chandra homomorphism. It is generated by the Q-symmetric polynomials (A. Sergeev):

$$p_k = x_1^{2k+1} + \cdots + x_n^{2k+1} \text{ for all } k \in \mathbb{N}$$

• Every $s \in \mathbb{C}^n$ defines the central character $\chi_s : Z \to \mathbb{C}$. Theorem 2–(2) implies that every simple W-module admits central character χ_s for some s.

Definition. For every $s = (s_1, \ldots, s_n)$ we define the core $c(s) = (s_{i_1}, \ldots, s_{i_m})$ as a subsequence obtained from s by removing all $s_j = 0$ and all pairs (s_i, s_j) such that $s_i + s_j = 0$. The core is well defined up to permutation.

Example. Let $s = (1, 0, 3, -1, -1)$, then $c(s) = (3, -1)$.

Lemma 3. Let $s, s' \in \mathbb{C}^n$. Then $\chi_s = \chi_{s'}$ if and only if s and s' have the same core (up to permutation) (A. Sergeev).

Thus the core depends only on the central character χ_s, we denote it $c(\chi)$.
The category $W - \text{mod}$ of finite dimensional W-modules decomposes into direct sum $\bigoplus W^{\chi} - \text{mod}$, where $W^{\chi} - \text{mod}$ is the full subcategory of modules admitting generalized central character χ.

Lemma 4. A simple W-module S belongs to $W^{\chi} - \text{mod}$ if and only if it is isomorphic to $S(t, \lambda)$ with $\lambda = c(\chi)$.

Proof. We have to compute the central character of $S(t, \lambda)$. For a Q-symmetric polynomial $p_k = x_1^{2k+1} + \cdots + x_n^{2k+1}$ we have $p_k(t, \lambda) = \lambda_1^{2k+1} + \cdots + \lambda_q^{2k+1}$. Since p_k generate the center of W the statement follows.

We plan to describe blocks in the category of finite dimensional W-modules.

We did this for $Q(2)$.

9. Connection with super-Yangians

Super-Yangian $Y(Q(n))$ was introduced by M. Nazarov. *(Lecture Notes in Math. 1992)*

- $Y(Q(n))$ is the associative unital superalgebra over \mathbb{C} with the countable set of generators $T_{i,j}^{(m)}$ where $m = 1, 2, \ldots$ and $i, j = \pm 1, \pm 2, \ldots, \pm n$.

- The \mathbb{Z}_2-grading of the algebra $Y(Q(n))$ is defined as follows:

$$p(T_{i,j}^{(m)}) = p(i) + p(j)$$

where $p(i) = 0$ if $i > 0$ and $p(i) = 1$ if $i < 0$.
• To write down defining relations for these generators we employ the formal series in $Y(Q(n))[[u^{-1}]]$:

$$T_{i,j}(u) = \delta_{i,j} \cdot 1 + T^{(1)}_{i,j} u^{-1} + T^{(2)}_{i,j} u^{-2} + \ldots$$

$$(u^2 - v^2)[T_{i,j}(u), T_{k,l}(v)] \cdot (-1)^{p(i)p(k)+p(i)p(l)+p(k)p(l)} = (u + v)(T_{k,j}(u)T_{i,l}(v) - T_{k,j}(v)T_{i,l}(u))$$

$$- (u - v)(T_{-k,j}(u)T_{-i,l}(v) - T_{k,-j}(v)T_{i,-l}(u)) \cdot (-1)^{p(k)+p(l)}$$

(1)

$$T_{i,j}(-u) = T_{-i,-j}(u)$$

(2)

• We proved that in the regular case the finite W-algebra for $Q(n)$ is a quotient of the super-Yangian of $Q(1)$ (Adv. Math., 2016).

• We generalized this result for $Q(nl)$ when the corresponding nilpotent element has Jordan blocks each of size l. We proved that the finite W-algebra is a quotient of the super-Yangian of $Q(n)$ (J. Math. Phys., 2017).

Our results should have applications to classification of simple modules for super-Yangians of type Q.
10. **Whittaker coinvariants (work in progress)**

- J. Brundan and S. Goodwin studied the *Whittaker coinvariants functor*: an exact functor from category \mathcal{O} for $\mathfrak{gl}(m|n)$ to a certain category of finite-dimensional modules over $W_{m|n}$. (*Adv. Math. 2019*).

- Let $\mathfrak{g} = \mathfrak{gl}(m|n)$, and $e \in \mathfrak{g}_0$ be regular nilpotent.

Consider a good \mathbb{Z}-grading for e: $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$, $e \in \mathfrak{g}_1$. Let

$$p := \bigoplus_{i \geq 0} \mathfrak{g}_i, \ h := \mathfrak{g}_0, \ m := \bigoplus_{i < 0} \mathfrak{g}_i.$$

Let $\chi \in \mathfrak{g}^*$ be given by $\chi(x) := (x|e)$.

Let I_χ be the right ideal of $U(\mathfrak{g})$ generated by $x - \chi(x)$ for all $x \in \mathfrak{m}$.

Define the principal W-algebra by

$$W := \{ u \in U(\mathfrak{p}) \mid uI_\chi \subseteq I_\chi \}.$$

Let M be a left \mathfrak{g}-module. Then there is a well-defined left action of W on $H_0(M) := M/I_\chi M$.

This gives the Whittaker coinvariants functor

$$H_0 : U(\mathfrak{g}) \text{- mod} \longrightarrow W \text{- mod}.$$

We plan to study the Whittaker coinvariants functor for $\mathfrak{g} = Q(n)$.
11. REFERENCES

