Geometry and Analysis on Kepler Manifolds

Harald Upmeier

University of Marburg, Germany

5. Juni 2019
A **hermitian Jordan triple** is a complex vector space Z, endowed with a ternary composition $Z \times Z \times Z \to Z$, denoted by

$$(x, y, z) \mapsto \{x; y; z\},$$

which is bilinear symmetric in (x, z) and anti-linear in the inner variable, and satisfies the Jordan triple identity

$$[L(x, y), L(u, v)] = L(\{x; y; u\}, v) - L(u, \{v; x; y\})$$

where

$$L(x, y)z := \{x; y; z\}.$$

Moreover, the hermitian form

$$(x, y) \mapsto \text{trace } L(x, y)$$

is positive definite. Let K denote the compact group of all linear transformations of Z preserving the triple product

$$k\{u; v; w\} = \{ku; kv; kw\}.$$
Define the **quadratic representation**

\[Q_z w := \frac{1}{2} \{ z; w; z \} \]

and the **Bergman endomorphisms**

\[B(u, v) z = z - \{ u; v; z \} + \frac{1}{4} \{ u; \{ v; z; v \}; u \} \]

for \(u, v, z \in Z \). Thus

\[B(u, v) = \text{id} - L(u, v) + Q_u Q_v \]

This is a complex-linear endomorphism of \(Z \), although \(Q_u \) and \(Q_v \) are conjugate-linear. Later we will use the **Jordan triple determinant**

\[\Delta(u, v) = \det B(u, v)^{1/p} \]
Consider the matrix triple $Z = \mathbb{C}^{r \times s}$, with $r \leq s$.

\[\{x; y; z\} = xy^*z + zy^*x \]

\[Qzw = zw^*z \]

\[B(u, v)z = z - uv^*z - zv^*u + u(vz^*)^*u = (1 - uv^*)z(1 - v^*u) \]

\[B(u, v) = L_{1-uv^*} R_{1-v^*u}. \]

\[\Delta(z, w) = \det (I_r - zw^*) = \det (I_s - w^*z) \]

$K = U(r) \times U(s) : z \mapsto u z v, \ u \in U(r), \ v \in U(s)$

$\text{rank} = r \leq s, \ a = 2 \text{ complex case}, \ b = s - r$

$r = 1, \ Z = \mathbb{C}^{1 \times d}, \ \{x; y; z\} = (x|y)z + (z|y)x$

$K = U(d) \text{ unitary group}$

$d = 1, \ Z = \mathbb{C}, \ \{x; y; z\} = 2x\overline{y}z$

$K = U(1) \text{ 1-torus}$
A real vector space X is called a **Jordan algebra** iff X has a non-associative product $x, y \mapsto x \circ y = y \circ x$, satisfying the Jordan algebra identity

$$x^2 \circ (x \circ y) = x \circ (x^2 \circ y).$$

The **anti-commutator product**

$$x \circ y = (xy + yx)/2$$

of self-adjoint operators on a Hilbert space satisfies the Jordan identity. Every euclidean Jordan algebra X has a **symmetric cone**

$$\Omega = \{x^2 : x \in X \text{ invertible}\}.$$
By a fundamental result of Jordan/v. Neumann/Wigner (1934), every (euclidean) Jordan algebra have a **classification** as **self-adjoint matrices**

\[X \approx \mathcal{H}_r(K) = \{(x_{ij}) \in K^{r \times r}, \; x_{ij}^* = x_{ji}\} \]

endowed with the anti-commutator product. Here \(K = \mathbb{R}, \mathbb{C}, \mathbb{H} \) (quaternions), or \(K = \mathbb{O} \) (octonions) if \(r \leq 3 \). For \(r = 2 \) we obtain formal \(2 \times 2 \)-matrices **real spin factor**

\[\mathcal{H}_2(K) = \left\{ \begin{pmatrix} \alpha & b \\ b^* & \delta \end{pmatrix} : \; \alpha, \delta \in \mathbb{R}, \; b \in K := \mathbb{R}^{d-2} \right\}. \]

Thus \(X \) is characterized by the **rank** \(r \) and the **multiplicity**

\[a = \dim_{\mathbb{R}} K \]

The symmetric cone \(\Omega \) corresponds to the positive definite matrices \(\mathcal{H}_r^+(K) \).
For a (euclidean) Jordan algebra X, the **complexification**

$$Z := X^\mathbb{C} = X \oplus iX$$

becomes a hermitian Jordan triple via

$$\{u; v; w\} = (u \circ v^*) \circ w + (w \circ v^*) \circ u - v^* \circ (u \circ w).$$

The Jordan triples arising this way are called of **tube type**. For example, the matrix triple $\mathbb{C}^{r \times s}$ is of tube type if and only if $r = s$. For the spin factor of rank $r = 2$ we obtain $Z = \mathbb{C}^d$ with triple product

$$\{u; v; w\} = (u|v)w + (w|v)u - \overline{v}(u|\overline{w}).$$

$$K = T \cdot SO(n + 1)$$
Classification of hermitian Jordan triples:

- **Matrix triple** \(Z = \mathbb{C}^{r \times s} \) \(\text{rank} = r \leq s, \ a = 2 \) complex case, \(b = s - r \)
- **Symmetric matrices** \(a = 1 \) (real case)
- **Anti-symmetric matrices** \(a = 4 \) (quaternion case)
- **Spin factor** \(Z = \mathbb{C}^{n+1}, \ r = 2, \ a = n - 1, \ b = 0 \)
- **Exceptional Jordan triples** of dimension 16 \((r = 2) \) and 27 \((r = 3) \), \(a = 8 \) (octonion case), \(K = T \cdot E_6 \).

\[
d := \dim Z = r \left(1 + \frac{a}{2}(r - 1) + b \right)
\]

\(r = \text{rank}(Z), \)

\(a, b \) characteristic multiplicities

\(b = 0 \) tube type
For every hermitian Jordan triple Z the **spectral unit ball**

$$D = \{ z \in Z : B(z, z) > 0 \} = \{ z \in Z : \| z \|_\infty < 1 \}$$

is a symmetric domain in its Harish-Chandra realization. This means that the group $G = \text{Aut}(D)$ of all biholomorphic automorphisms of D acts transitively on D. The stabilizer subgroup K at the origin $0 \in D$ consists of all linear transformations preserving the Jordan triple product. A basic theorem of M. Koecher asserts that, conversely, every symmetric domain can be realized as the unit ball of a unique hermitian Jordan triple Z. For matrices we obtain the matrix ball

$$D = \{ z \in \mathbb{C}^{r \times s} : I_r - zz^* > 0 \}.$$

The domain D (or the Jordan triple Z) is said to be of **tube type** if D is biholomorphically equivalent to a tube domain over a symmetric cone Ω.

Harald Upmeier

Geometry and Analysis on Kepler Manifolds
The G-invariant **Bergman metric** on the tangent spaces $T_{z}D = Z$ is given by

$$(u|v)_{z} = (B(z, z)^{-1}u|v)_{0},$$

using the K-invariant inner product $(u|v)_{0}$ on $T_{0}D = Z$ given by

$$(u|v)_{0} := \text{tr} \ L(u, v).$$

For matrices, we have

$$(u|v)_{0} = \text{tr} \ L(u, v) = \text{trace} \ (L_{uv} + R_{v}u) = (r + s) \ \text{tr} \ uv^{*},$$

and the Bergman metric at $z \in D$ is

$$(u|v)_{z} = (r + s) \ \text{tr} \ (1 - zz^{*})^{-1} \ u(1 - z^{*}z)^{-1} \ v^{*}. $$
Boundary of symmetric domains
An element \(c \in Z \) is called a **tripotent** if

\[
\{ c; c; c \} = 2c
\]

or, equivalently, \(Q_c c = c \). For \(Z = C^{r \times s} \) tripotents satisfy \(c c^* c = c \) and are called partial isometries. Every tripotent \(c \) induces a **Peirce decomposition**

\[
Z = Z^c_2 \oplus Z^c_1 \oplus Z^c_0,
\]

where

\[
Z^c_j = \{ z \in Z : \{ c; c; z \} = 2jz \}
\]

is an eigenspace of \(L(c, c) \). Moreover, the Peirce 2-space \(Z^c_2 \) becomes a Jordan *-algebra with unit element \(c \), multiplication

\[
(z, w) \mapsto \frac{1}{2} \{ z; c; w \}
\]

and involution

\[
z \mapsto z^* = \frac{1}{2} \{ c; z; c \} = Q_c z
\]
The set of all tripotents is a (non-connected) real-analytic compact manifold, whose connected components

\[S_\ell := \{ c \in Z \text{ tripotent} : \text{rank } c = \ell \}, \]

for \(0 \leq \ell \leq r \), are \(K \)-homogeneous. Here the rank of a tripotent \(c \) is the rank of its Peirce 2-space \(Z_2^c \). We have \(S_0 = \{0\} \) and \(S_1 \) consists of all minimal (rank 1) tripotents. The maximal tripotents

\[S := S_r = \partial_{ex} D \]

form the **Shilov (extreme) boundary** of \(D \).
One can show that the spectral norm satisfies

$$\|u + w\| = \max(\|u\|, \|w\|)$$

whenever $u \in Z_2^c$, $w \in Z_0^c$. Therefore, if $c \neq 0$, the set

$$c + D_0^c := \{c + w : w \in D \cap Z_0^c\}$$

belongs to the boundary ∂D, since $\|c\| = 1$. These are the so-called **boundary components** of D. They are pairwise disjoint and cover the whole boundary. The boundary components are precisely the (open) faces of ∂D in the sense of convex geometry. Thus we have a disjoint union

$$\partial D = \bigcup (c + D_0^c).$$

over all non-zero tripotents c. The tripotent $c = 0$ gives the interior D.
For any $1 \leq k \leq r$ the disjoint union

$$\partial_k D = \bigcup_{c \in S_k} (c + D_0^c)$$

is a G-orbit contained in the boundary. Thus

$$\partial D = \bigcup_{1 \leq k \leq r} \partial_k D$$

is a disjoint union of G-orbits, called the **boundary orbits**. If $k = r$ then

$$\partial_r D = S_r = S$$

is the **Shilov boundary** (realized as a G-orbit $S = G/P$) and the corresponding boundary components are the extreme points, since $Z_0^c = (0)$. For higher rank, the boundary is not smooth.
In the rank 1 case $Z = C^{1 \times d}$

$$S_1 = \{ u \in Z : (u|u) = 1 \} = S^{2d-1} = S$$

is the full boundary. For the spin factor $Z = C^d$ of $r = 2$, we have

$$\{ uv^* w \} = (u|v)w + (w|u)v - (u|w)v.$$

$$S = S_2 = T \cdot S^{d-1}$$

is called the **Lie sphere**, and the minimal tripotents

$$S_1 \approx S^*(S^n) = \{ (x, \xi) : \|x\| = 1, \|\xi\| = 1, (x|\xi) = 0 \}$$

form the **cosphere bundle** of S^n, which is a contact manifold.
Kepler varieties
A Jordan algebra X has a **determinant function** $N(x)$ satisfying Cramer’s rule

$$x^{-1} = \frac{\text{grad}_x N}{N(x)}.$$

The Jordan algebra determinant $N : X \to \mathbb{R}$ is a **homogeneous** polynomial of degree r. For square matrices over $K = \mathbb{R}, \mathbb{C}$ we have

$$N(x) = \det(x).$$

For the rank 2 case,

$$N\begin{pmatrix} \alpha & b \\ b^* & \delta \end{pmatrix} = \alpha\delta - (b|b)$$

is the Lorentz metric on $\mathbb{R}^{1,d-1}$.

Harald Upmeier
Geometry and Analysis on Kepler Manifolds
For $\ell \leq r$ define the **Kepler variety**

$$Z_\ell = \{ z \in Z : \text{rank}(z) \leq \ell \}.$$

Here $\text{rank}(z) \leq \ell$ if $N(z) = 0$ for all Jordan determinants of degree $> \ell$. Its regular part (**Kepler manifold**)

$$\mathring{Z}_\ell = \{ z \in Z_\ell : \text{rank}(z) = \ell \}$$

is a K^C-homogeneous manifold, not compact or symmetric. The Kepler manifolds \mathring{Z}_ℓ are precisely the **Matsuki dual** K^C-orbits of the boundary G-orbits $\partial_\ell D$, with common intersection

$$\mathring{Z}_\ell \cap \partial_\ell D = S_\ell$$

being the K-orbit of tripotents.
For matrix spaces $Z = \mathbb{C}^{r \times s}$, $r \leq s$ and $1 \leq \ell \leq r$, we obtain the determinantal varieties

$$Z_{\ell} := \{ z \in Z : \text{rank}(z) \leq \ell \}$$

defined by vanishing of all $(\ell + 1) \times (\ell + 1)$-minors. The regular part is

$$\check{Z}_{\ell} = \{ z \in Z : \text{rank}(z) = \ell \} = Z_{\ell} \setminus Z_{\ell-1}.$$

In particular

$$Z_1 := \{ z \in Z : \text{rank}(z) \leq 1 \} \quad \text{vanishing of all } 2 \times 2 - \text{minors}$$

$$\check{Z}_1 := \{ z \in Z : \text{rank}(z) = 1 \} = Z_1 \setminus \{0\}$$

$$S_1 = \{ \xi \otimes \eta^* : \xi \in \mathbb{C}^r, \eta \in \mathbb{C}^s, \|\xi\| = 1 = \|\eta\| \}$$
For the spin factor $Z = \mathbb{C}^{n+1}$ of $r = 2$, the Jordan determinant

$$N(z) = \frac{1}{2}(z|\bar{z})$$

is the (complexified) Lorentz metric, and we recover the classical Kepler variety

$$Z_1 = \{ z \in \mathbb{C}^d : N(z) = 0 \} = \{ z = (z_0, \ldots, z_n) \in Z : z_0^2 + \ldots + z_n^2 = 0 \}$$

(complex light cone). Symplectic interpretation as cotangent bundle

$$\tilde{Z}_1 \approx T^*(S^n) \setminus \{ 0 \} = \{ (x, \xi) : \|x\| = 1, \xi \neq 0, (x|\xi) = 0 \}, \quad z = \frac{x + i\xi}{2}$$

$$n = \dim_{\mathbb{C}} Z_1 = p - 1 = d - 1$$

$$S_1 = \{ \frac{x + i\xi}{2} : |x| = |\xi| = 1, x \cdot \xi = 0 \} = S^*(S^{d-1})$$

cosphere bundle.

$$\dim S_1 = 2(d - 1) - 1 = 2n - 1$$
In joint work with M. Englis, we have studied reproducing kernels and their asymptotic expansion on Kepler manifolds.

Theorem: The Kepler variety \mathcal{Z}_ℓ is a normal variety having only rational singularities.

This result is classical for spin factors ($r = 2$) and proved by Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on Kempf’s collapsing vector bundle theorem.
Two tripotents \(u, v \in Z \) of the same rank \(\ell \) are said to be \textbf{Peirce equivalent} if

\[
Z^u_\lambda = Z^v_\lambda
\]

for all \(\lambda = 0, 1, 2 \). It is enough to consider the Peirce 2-space, since this determines the other two Peirce subspaces. The \(\ell \)-th \textbf{Peirce manifold} \(M_\ell \) associated with the Jordan triple \(Z \) is defined as the quotient space

\[
M_\ell := S_\ell / \sim
\]

of \(S_\ell \) under the Peirce equivalence relation. Thus \(M_\ell \) is the set of all Peirce 2-spaces \(U \subset Z \) having rank \(\ell \), in analogy with the classical Grassmann manifolds. It is known that \(M_\ell \) is a compact hermitian symmetric space for the semi-simple compact Lie group \(\dot{K} \) generated by the commutators in \(K \). Being a complex manifold, \(M_\ell \) is both a \(K \)-orbit and a \(K^C \)-orbit. The Peirce manifolds are the \textbf{Matsuki duals} of the open \(G \)-orbits (in general non-convex) in the conformal compactification \(\hat{Z} \).

Harald Upmeier
Geometry and Analysis on Kepler Manifolds
Clearly, M_0 consists only of $\{0\}$ and in the tube case $Z = X^C M_r = \{Z\}$, since Z is the only Peirce 2-space of maximal rank. For non-tube domains, M_r has higher dimension. For example, if $r = 1$, i.e., $Z = C^{1 \times d}$ viewed as row vectors, M_1 coincides with complex projective space \mathbb{P}^{d-1}. More generally, for $c \in S_\ell$ we may identify

$$M_\ell = \hat{Z}_1^C$$

with the compact dual space (conformal compactification) for the Peirce 1-space Z_1^C, viewed as a hermitian Jordan subtriple of Z.
The first class of non-tube type Jordan triples are the rectangular matrix spaces

\[Z = \mathbb{C}^{r \times (r+b)} \]

of rank \(r \), where \(b > 0 \). Choosing the maximal tripotent \(e = (1_r, 0) \) of rank \(r \), we obtain the Peirce 1-space

\[Z_1^e = \{ (0, w) \mid w \in \mathbb{C}^{r \times b} \} \approx \mathbb{C}^{r \times b} \]

Its conformal hull gives the Grassmann manifold

\[M_r = \hat{Z}_1^e = \text{Grass}_r(\mathbb{C}^{r+b}) \]

of all \(r \)-dimensional subspaces in \(\mathbb{C}^{r+b} \).
In the special case $r = 1$, corresponding to the unit ball in $Z = \mathbb{C}^{1+b}$, $e = (1, 0)$ is a unit vector and we have $Z^e_1 = \mathbb{C}^b$. Thus

$$M_1 = \text{Grass}_1(\mathbb{C}^{1+b}) = \mathbb{P}^b(\mathbb{C})$$

is the projective space. This is not the compact dual of the unit ball, which is

$$\hat{Z} = \text{Grass}_1(\mathbb{C}^{2+b}) = \mathbb{P}^{1+b}(\mathbb{C}).$$
For $U \in G_j(Z)$, the fibre

$$\pi_j^{-1}(U) = S(U) = S_j(Z) \cap U$$

coincides with the Shilov boundary of the unit ball $D \cap U$. One can show that different Peirce 1-spaces U and V of the same rank have disjoint Shilov boundaries:

$$U \neq V \implies S(U) \cap S(V) = \emptyset$$

We call the disjoint union

$$S_j(Z) = \bigcup_{U \in G_j(Z)} S(U),$$

the *tautological bundle* over $G_j(Z)$. Note that in Section 2, we realized $S_j(Z)$ as the base manifold of a bundle instead.
The Jordan triple automorphism group of Z is given by

$$K = \text{Aut}(Z) = U(r) \times U(r + b)$$

acting on Z by left and right multiplication $(a, d)(z) := azd^{-1}$ for $a \in U(r), \ d \in U(r + b)$ and $z \in \mathbb{C}^{r \times (r+b)}$. The complexification $K^\mathbb{C} = \text{GL}_r(\mathbb{C}) \times \text{GL}_{r+b}(\mathbb{C})$ acts in the same way. It follows that the action of K on $G_r(Z)$ can be realized as the **collineation action**

$$K^\text{pr}_{2} \hookrightarrow U(r + b) \twoheadrightarrow \text{Aut}(\text{Grass}_r(\mathbb{C}^{r+b}))$$

of the second factor.
Define the **tautological vector bundle**

\[T_\ell := \bigcup_{U \in M_\ell} U \to M_\ell. \]

Fix a base point \(c \in S_\ell \), put \(V := Z_c^2 \) and let \(L := \{ k \in K^C : kV = V \} \). Then \(T_\ell = K^C \times_L V \) becomes a **homogeneous vector bundle**, and

\[T_\ell \to Z_\ell : U \ni z \mapsto z \in Z_\ell \]

is a collapsing map. By **Kempf’s Theorem**, the range of a collapsing map of a homogeneous vector bundle is a normal variety. Let \(\hat{U} \) denote the invertible elements of the Jordan algebra \(U = Z_2^u \). Then

\[\bigcup_{U \in M_\ell} \hat{U} \to Z_\ell \]

is a birational isomorphism. This proves the normality theorem.
For any $\ell \leq r$, the **Kepler ball** is the intersection

$$\{z \in \hat{Z}_\ell : \|z\|_\infty < 1\} = \hat{Z}_\ell \cap D$$

of \hat{Z}_ℓ with the bounded symmetric domain $D := \{z \in Z : \|z\|_\infty < 1\}$. The compact K-homogeneous manifold S_ℓ of all rank ℓ tripotents can be regarded as the Shilov boundary of the Kepler ball D_ℓ. It carries the normalized K-invariant measure

$$d\mu_\ell(u) = du.$$
Let $B(u, v)$ denote the Bergman operators on a hermitian Jordan triple Z.

Proposition For any tripotent $c \in S_\ell$, the holomorphic map

$$Z_1^c \to M_\ell, \quad v \mapsto [B(v, -c)c]$$

is a local chart of M_ℓ. Here $[z]$ means the Peirce 2-space of an element $z \in \hat{Z}_\ell$ of rank ℓ.

Proposition For any tripotent $c \in S_\ell$, the holomorphic map

$$Z_2^c \times Z_1^c \to T_\ell, \quad (u, v) \mapsto B(v, -c)u$$

becomes a vector-bundle chart of T_ℓ.
The above construction generalizes the well-known charts

$$\sigma_j(v_0, \ldots, \hat{v}_j, \ldots, v_d) := [v_0 : \ldots : 1 : \ldots : v_d] \in \mathbb{P}^d$$

for projective space, where $Z = \mathbb{C}^d$ and $0 \leq j \leq d$. In fact, putting $j = 0$ for simplicity, we choose $c = (1, 0, \ldots, 0) \in S_1$, with Peirce 1-space $Z_1^c = (0, \mathbb{C}^{d-1})$. Then for all $v \in \mathbb{C}^{d-1}$ we have

$$B(v, -c)c = (1 + (v|c))c(I_d + c^*v) = (1, 0) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}(0, v) = (1, v).$$

Passing to homogeneous coordinates we obtain $[1 : v] = \sigma_0(v)$.
The classical **blow-up process** used in algebraic geometry replaces a point in a complex manifold of dimension n by a projective space \mathbb{P}^{n-1}. It is based on the incidence space

$$\mathcal{T} := \{(z, U) : z \in \mathbb{C}^n, U \in \mathbb{P}^{n-1}, z \in U\}$$

and the projection map

$$\pi : \mathcal{T} \to \mathbb{C}^n, \quad (z, U) \mapsto z,$$

whose fibre over $z \neq 0$ is the singleton $(z, [z])$, whereas the fibre over $0 \in \mathbb{C}^n$ is \mathbb{P}^{n-1}, regarded as a compact hermitian symmetric space of rank 1. For the Kepler varieties, we construct a blow-up process using compact hermitian symmetric spaces of higher rank.
Theorem The Kepler variety Z_ℓ of all elements of rank $\leq \ell$ has the regular (smooth part)

$$\check{Z}_\ell = \{ z \in Z : \text{rank}(x) = \ell \}.$$

Thus $Z_{\ell-1}$ is exactly the singular part of Z_ℓ. Consider the incidence space

$$T_\ell = \{ (z, U) \in Z_\ell \times M_\ell : z \in U \}$$

endowed with the local charts constructed via the Bergman operators. Then the projection

$$\pi : T_\ell \rightarrow Z_\ell, \quad (z, U) \mapsto z,$$

is a proper holomorphic modification in the sense that for $z \in \check{Z}_\ell$ the fibre of π is the singleton $(z, Z_z^\check{z})$, whereas for $z \in Z_{\ell-1}$ the fibres have higher dimension, in particular, the fibre over 0 is the full Peirce manifold M_ℓ, which is a compact hermitian space of rank ℓ.
For a hermitian Jordan triple Z, consider the algebra $\mathcal{P}(Z)$ of all polynomials $p : Z \to \mathbb{C}$ and the natural action

$$(k^{-1} p)(z) := p(kz)$$

of $K = \text{Aut}(Z)$. Then there is a multiplicity-free Hua-Schmid-Kostant decomposition

$$\mathcal{P}(Z) = \sum_{m \in \mathbb{N}_+^r} \mathcal{P}_m(Z)$$

into pairwise inequivalent irreducible K-modules $\mathcal{P}_m(Z)$, where

$$m = m_1 \geq m_2 \geq \ldots \geq m_r \geq 0$$

ranges over all integer partitions (Young diagrams). For $r = 1$ (Hilbert ball) $\mathcal{P}_m(Z)$ consists of all m-homogeneous polynomials.
The highest weight vector \(N_m \in \mathcal{P}_m(Z) \) can be described in terms of Jordan theoretic minors. Let \(e_1, \ldots, e_r \) be a frame of minimal tripotents of \(Z \), with joint Peirce decomposition

\[
Z = \sum_{0 \leq i \leq j \leq r} Z_{ij}.
\]

Then \(\mathcal{P}_m(Z) \) has the highest weight vector

\[
N_m(z) = N_1(z)^{m_1-m_2} N_2(z)^{m_2-m_3} N_r(z)^{m_r},
\]

where \(N_1, \ldots, N_r \) are the Jordan theoretic minors. For the simplest partition \(m = (1,0,\ldots,0) \), \(\mathcal{P}_m(Z) \) is the dual space of linear forms on \(Z \). In this case \(N_m(z) = (e_1|z) \).
In the trivial case, where $\ell = r$ is maximal and Z is a Jordan algebra, negative powers of the (Jordan) determinant have no holomorphic extension beyond \hat{Z}. Apart from this we have

Extension Theorem: Every holomorphic function on \hat{Z}_ℓ has a unique extension to the closure Z_ℓ

Proof: Singular set

$$Z_\ell \setminus \hat{Z}_\ell = \bigcup_{j < \ell} Z_j$$

has codimension ≥ 2. By the Normality Theorem (and using Lojasiewicz), the **second Riemann extension theorem** holds for holomorphic functions on \hat{Z}_ℓ. As a consequence, all K-invariant Hilbert spaces of holomorphic functions on Z_ℓ are completions of

$$\mathcal{P}^\ell(Z) = \sum_{m_1, \ldots, m_\ell, 0, \ldots, 0} \mathcal{P}_m(Z)$$

involving only partitions of length $\leq \ell$.

Harald Upmeier
Geometry and Analysis on Kepler Manifolds
The classical Fock (or Segal-Bargmann) space $H^2(Z)$ of entire functions on $Z = \mathbb{C}^d$ has the inner product

$$(\phi|\psi)_Z := \frac{1}{\pi^d} \int_Z dz \ e^{-(z|z)} \overline{\phi(z)} \psi(z).$$

The polynomials $\mathcal{P}(Z)$ are dense in $H^2(Z)$ and we have

$$(p|q)_Z = (\partial_p q)(0)$$

where ∂_p is the constant-coefficient differential operator associated with p via the normalized inner product. The multi-variable Pochhammer symbol is

$$(\nu)_m = \prod_{j=1}^r (\nu - \frac{a}{2}(j - 1))_{m_j} = \frac{\Gamma_{\Omega}(\nu + m)}{\Gamma_{\Omega}(\nu)}$$

where Γ_{Ω} denotes the Gindikin Gamma-function.
Let $\Sigma \subset Z$ be a K-invariant set of uniqueness for holomorphic functions. A K-invariant measure μ with support Σ is called **hypergeometric** of type (x_0, \ldots, x_h), if for all partitions m and all $\phi, \psi \in P_m(Z)$ we have

$$(\phi|\psi)_\mu := \int \mu(dz) \frac{\phi(z)}{\bar{\phi}(z)} \psi(z) = \frac{(y_1)_m \cdots (y_h)_m}{(x_0)_m \cdots (x_h)_m} (\phi|\psi)_Z.$$

The measure is uniquely determined by this property, since the spaces $P_m(Z)$ are mutually orthogonal.

If $\Sigma \subset Z_\ell$ and the identity holds only for partitions m of length $\leq \ell$, we say that μ is ℓ-hypergeometric.

Finding a hypergeometric measure μ of a given type amounts to solving a **moment problem** involving all partitions m.
For each partition \(m \) choose an orthonormal basis \(p_\alpha \in \mathcal{P}_m(Z) \) and define the **Fischer-Fock reproducing kernel**

\[
E^m(z, w) = \sum_\alpha p_\alpha(z) p_\alpha(w).
\]

In the rank 1 case \(Z = C^{1 \times d} \) we have

\[
E^m(z, w) = \frac{(z \mid w)^m}{m!}.
\]

The condition above is equivalent to saying that the Hilbert space \(H^2_\mu(\Sigma) \) of all square-integrable holomorphic functions determined by \(\mu \) has the **reproducing kernel**

\[
q \mathcal{F}_p \left(\begin{array}{c} x_0, \ldots, x_h \\ y_1, \ldots, y_h \end{array} \right)(z, w) := \sum_m \frac{(x_0)^m \cdots (x_h)^m}{(y_1)^m \cdots (y_h)^m} E^m(z, w),
\]

given by a **hypergeometric series**. For \(z, w \in Z_\ell \), only partitions of length \(\leq \ell \) occur.
The Gauss measure

\[\mu(dz) = dz \ e^{-(z|z)} \]

on \(\Sigma = \mathbb{Z} \) is hypergeometric of type \((\nu)\), since the Fock space (or Segal-Bargmann space) \(H^2_\mu(\mathbb{Z}) \) of entire functions on \(\mathbb{Z} \) has the \(0\mathcal{F}_0 \)-type reproducing kernel

\[e^{(z|w)} = \sum_m E^m(z,w). \]

Let \(\Delta \) be the Jordan triple determinant and \(\nu > p - 1 \). The measure

\[\mu(dz) = dz \ \Delta(z,z)^{\nu-p} \]

on \(\Sigma = D \) (bounded symmetric domain) is hypergeometric of type \((\nu)\), since the weighted Bergman spaces \(H^2_\mu(D) \) has the reproducing kernel

\[\Delta(z,w)^{-\nu} = \sum_m (\nu)_m \ E^m(z,w) \]

of type \(1\mathcal{F}_0 \). This follows from the well-known Faraut-Korányi formula.
Let $\Sigma = \partial_k D$ be the k-th boundary orbit ($1 \leq k \leq r$). In joint work with J. Arazy, a measure μ on Σ was defined in terms of polar decomposition, which is hypergeometric of type $\left(\nu_k \right)$, where

$$\nu_k = \frac{d}{r} + \frac{a}{2}(r - k)$$

are the so-called embedded Wallach parameters.

The case $\nu_r = \frac{d}{r}$ corresponds to the Hardy space, where $\Sigma = S = \partial_r D$ is the Shilov (extreme) boundary and μ is the K-invariant probability measure.

The case $\nu_1 = p - 1$, the left endpoint of the discrete series of weighted Bergman spaces, corresponds to the open boundary orbit $\partial_1 D$.
For the Kepler manifold $\ell \leq r$ we obtain (joint with M. Englis)

- Let $\Sigma = \hat{Z}_\ell$ be the Kepler manifold, endowed with the K-invariant measure λ_ℓ induced by the Riemannian structure. Then the measure

$$\mu(dz) = e^{-(z|z)} \lambda_\ell(dz)$$

on Σ is ℓ-hypergeometric of type (d_ℓ/n_ℓ), where $n = \dim Z_\ell$ and $d_\ell = \dim Z^c_2$ for $c \in S_\ell$. Thus the Fock-type space $H^2_{\mu}(Z_\ell)$ has a reproducing kernel of type $1F_1$.

- Let $\Sigma = D \cap Z_\ell$ be the Kepler ball. Then the (restricted) measure

$$\mu(dz) = \Delta(z, z)^{\nu-p} d\lambda_\ell(z)$$

is ℓ-hypergeometric of $3F_2$-type $(r \frac{\alpha}{2}, \nu, \frac{\hat{d}}{\ell}, \frac{\hat{v}}{\nu_\ell})$.
Finally, one may combine Kepler manifolds and boundary orbits (joint with G. Misra)

- The boundary orbit $\Sigma = \partial_k D \cap Z_\ell$ of the Kepler ball ($k \leq \ell$) supports a K-invariant measure μ which is ℓ-hypergeometric of type $(r^{\frac{a}{2}}, \nu_k, \frac{d}{r^\ell})$.

- For integration over the **partial Shilov boundary** $\Sigma = S_\ell$ of $D \cap Z_\ell$ ($k = \ell$) we obtain $(r^{\frac{a}{2}}, \frac{d}{r^\ell})$
Fock space on $Z = \mathbb{C}^d$, $\mathcal{K}_\nu = e^{(z|w)} = 0\mathcal{F}_0(z, w)$

Bergman space on D, $\mathcal{K}_\nu = \Delta(z, w)^{-\nu} = 1\mathcal{F}_0(z, w)$

Faraut-Koranyi formula

Kepler manifold \tilde{Z}_ℓ, $\mathcal{K}_\nu = D_\ell 1\mathcal{F}_1$

Kepler ball $D \cap \tilde{Z}_\ell$, $\mathcal{K}_\nu = D_\ell 2\mathcal{F}_1$
For a given measure μ on Σ, consider the Hilbert space $H^2_\mu(\Sigma)$ of all square-integrable holomorphic functions, restricted to Σ, and denote by $P_\mu : L^2_\mu(\Sigma) \to H^2_\mu(\Sigma)$ the orthogonal projection. For continuous symbol function $f \in C(\Sigma)$ define the **Toeplitz operator**

$$T_f(\phi) := P_\mu(f \phi)$$

for all $\phi \in H^2_\mu(\Sigma)$. These operators are highly non-commutative and not essentially normal if the rank $r > 1$. Let

$$\mathcal{T}_\mu(\Sigma) = C^*(T_f : f \in C(\Sigma))$$

denote the **Toeplitz C^*-algebra**
Let μ be a ℓ-hypergeometric measure on $\Sigma \subset \overline{D} \cap V_\ell$ (closed Kepler ball), of type $\left(\frac{x_0}{2}, \ldots, \frac{x_h}{2}, \frac{y_1}{2}, \ldots, \frac{y_h}{2}\right)$. Consider the stratification

$$\Sigma = \bigcup_{0 \leq i \leq \ell} \bigcup_{c \in S_i} c + \Sigma^c, \quad \Sigma^c := \Sigma \cap Z_0^c.$$

For $c \in S_\ell$ define a $H_c(z) := \exp(z|c)$. We regard H^n_c as a peaking function on $c + \Sigma^c$.

Theorem

For any tripotent $c \in S_1$ the sequence of probability measures

$$\mu(dz) \frac{|H_c(z)|^{2n}}{\|H^n_c\|_\mu^2}$$

converges to a measure μ^c supported on the boundary component Σ^c which is $(\ell - 1)$-hypergeometric of type $\left(\frac{x_0}{2} - \frac{a}{2}, \ldots, \frac{x_h}{2} - \frac{a}{2}, \frac{y_1}{2} - \frac{a}{2}, \ldots, \frac{y_h}{2} - \frac{a}{2}\right)$.
Let $\mathcal{T}_\mu(\Sigma)$ be the Toeplitz C^*-algebra on $H^2_\mu(\Sigma)$, associated with an ℓ-hypergeometric measure supported on $\Sigma \subset \overline{D} \cap V_\ell$. Then for every $c \in S_i$, for $0 \leq i \leq \ell$, there is an irreducible C^*-representation

$$\sigma^c : \mathcal{T}_\mu(\Sigma) \to \mathcal{T}_\mu^c(\Sigma^c)$$

acting on $H^2_{\mu^c}(\Sigma^c)$, which is uniquely determined by the property

$$\sigma^c(T_\mu(f)) = T_\mu^c(f^c)$$

for all $f \in \mathcal{C}(\Sigma)$, where $f^c \in \mathcal{C}(\Sigma^c)$ is defined by

$$f^c(\zeta) := f(c + \zeta).$$

These representations are pairwise inequivalent and constitute the full spectrum of $\mathcal{T}_\mu(\Sigma)$.
For the Hardy space $H^2(S)$, we obtain representations on the 'little' Hardy spaces $H^2(S^c)$ on the Shilov boundaries S^c_0 of rank $r - i$.

For the weighted Bergman spaces $H^2_{\nu}(D)$, $\nu > p - 1$, we obtain representations on the 'little' weighted Bergman spaces $H^2_{\nu - i\alpha/2}(D^c_0)$ on the boundary components D^c_0 of rank $r - i$.

For the boundary orbit spaces $H^2_{\nu_k}(\partial_k D)$, $k \leq \ell$ we obtain representations on the 'little' boundary orbit spaces if $i \leq k$ and 'little' weighted Bergman spaces if $k < i \leq \ell$. Thus some boundary orbits 'disappear' in the discrete series when passing to the boundary.
Let \((M, \omega)\) be a compact Kähler \(n\)-manifold, with a quantizing line bundle \(\mathcal{L} \rightarrow M\). Consider holomorphic sections \(\Gamma(M, \mathcal{L}^\nu)\) of a (high) tensor power \(\mathcal{L}^\nu\). **Kodaira (coherent state) embedding**

\[
\kappa_\nu : M \rightarrow \mathbf{P}(\Gamma(M, \mathcal{L}^\nu)), \quad z \mapsto [s_\nu^0(z), \ldots, s_\nu^N(z)]
\]

\[
D_\nu = \frac{i}{2} \partial \overline{\partial} \log \sum_{i=0}^{\nu N} |\zeta_i|^2 \text{ Fubini-Study metric on } \mathbf{P}^N
\]

\[
\kappa_\nu^*(D_\nu) = \nu \omega + \frac{i}{2} \partial \overline{\partial} \log T_\nu
\]

\[
T_\nu(z) = \sum_{i=0}^{d_\nu} h_z(s_\nu^i(z), s_\nu^i(z)) \text{ Kempf distortion function}
\]

TYZ (Tian-Yau-Zelditch) expansion

\[
\left| \frac{T_\nu(z)}{\nu^n} - \sum_{j=0}^{N-1} \frac{a_j(z)}{\nu^j} \right| \leq \frac{c_N}{\nu^N} \quad \text{as } \nu \rightarrow \infty
\]
Theorem: Consider the Fock-type situation, $\alpha = 1$, ℓ arbitrary. There exist polynomials $p_j(x)$, with $p_0 = \text{const}$, such that

$$
\frac{1}{\nu^n} K_\nu(\sqrt{x}, \sqrt{x}) \approx \frac{e^{\nu \text{tr}(x)}}{N_c(x)^n/\ell} \sum_{j=0}^{n} \frac{p_j(x)}{\nu^j},
$$

as $|x| \to +\infty$, uniformly for x in compact subsets of D_c.

Proof: For $\text{Re}(\mu) > \frac{d}{\ell} - 1$ and $\text{Re}(\gamma) > \frac{d}{\ell} - 1$, there is an asymptotic expansion

$$
_1F_1\left(\begin{array}{c}
\mu \\
\gamma
\end{array}\right)(z) \approx \frac{\Gamma_r(\gamma)}{\Gamma_r(\mu)} \frac{e^{\text{tr}(z)}}{N(z)^{\gamma-\mu}} \, _2F_0\left(\begin{array}{c}
\frac{d}{\ell} - \mu; \gamma - \mu
\end{array}\right)(z^{-1})
$$

as $|z| \to +\infty$ while $\frac{z}{|z|}$ stays in a compact subset of D_c. This expansion can be differentiated termwise any number of times. Similar expansion for Kepler ball, based on asymptotics of $_2F_1$.

Harald Upmeier
Geometry and Analysis on Kepler Manifolds
Let Z be an irreducible Jordan triple of rank r. For $1 \leq i < j \leq r$ put

$$a := \dim Z_{ij}, \quad b := \dim Z_{0j}$$

These **characteristic multiplicities** are determined by

$$\frac{d}{r} = 1 + \frac{a}{2}(r - 1) + b,$$

$$p = 2 + a(r - 1) + b,$$

where p is the genus. In the matrix case $Z = \mathbb{C}^{r \times s}$ we have $a = 2, \ b = s - r$, and hence $d/r = s, \ p = r + s$. The **tube type** case corresponds to $b = 0$ or, equivalently, to $\frac{p}{2} = \frac{d}{r}$. Let

$$(u | v) = \frac{1}{p} \ tr_Z \ L(u, v)$$

be the normalized K-invariant inner product.
Segal-Bargmann-Fock space

Consider the **Fischer-Fock inner product**

\[
(\phi | \psi)_Z := \frac{1}{\pi^d} \int_Z d\pi \; e^{-(z|z)} \; \overline{\phi(z)} \; \psi(z) = (\partial \phi, \psi)(0)
\]

for all \(\phi, \psi \in \mathcal{P}(Z) \). Here \(\partial \phi \) denotes the constant coefficient differential operator on \(Z \) induced by \(\phi \) via the inner product \((z|w) \). The Hilbert space completion of \(\mathcal{P}(Z) \) is the **Segal-Bargmann-Fock space**

\[
H^2(Z) = \{ \psi : Z \to \mathbb{C} \text{ holomorphic} : \int_Z \frac{d\pi}{\pi^d} \; e^{-(z|z)} |\psi(z)|^2 < \infty \}
\]

of entire functions, which has the reproducing kernel

\[
E(z, w) = e^{(z|w)}.
\]
(M, ω) compact Kähler n-manifold

$L \to M$ quantizing line bundle

$\mathcal{O}(M, L^\nu)$ holomorphic sections of power L^ν

$\sigma_\nu : U \to L^\nu \setminus 0$ local trivializing section

$\nu \omega(z) = -\frac{i}{2} \overline{\partial} \partial \log h_\nu(\sigma_\nu(z), \sigma_\nu(z))$ Ricci form

$P(\mathcal{O}(M, L^\nu)), (s_0^\nu, \ldots, s_d^\nu)$ ONB of sections
\(\mathbb{P}^{d_{\nu}} : [Z^0, \ldots, Z^{d_{\nu}}] \) homogeneous coordinates

\(\kappa_{\nu} : M \ni z \mapsto [s^0_{\nu}(z), \ldots, s^{d_{\nu}}_{\nu}(z)] \in \mathbb{P}(\mathcal{O}(M, \mathcal{L}^\nu)) \) coherent state embedding

\[
D_{\nu} = \frac{i}{2} \partial \overline{\partial} \log \sum_{j=0}^{d_{\nu}} |Z^j|^2 \quad \text{Fubini-Study metric on } \mathbb{P}^{d_{\nu}}
\]

\[
\kappa_{\nu}^*(D_{\nu}) = \nu \omega + \frac{i}{2} \partial \overline{\partial} \log T_{\nu} = \frac{i}{2} \partial \overline{\partial} \log \frac{T_{\nu}}{h_{\nu}}
\]

\[
T_{\nu}(z) = \sum_{i=0}^{d_{\nu}} h_z(s^i_{\nu}(z), s^i_{\nu}(z)) \quad \text{distortion function}
\]

TYZ (Tian-Yau-Zelditch) expansion

\[
\frac{T_{\nu}(z)}{\nu^n} \approx \sum_{j \geq 0} \frac{a_j(z)}{\nu^j} \quad \text{as } \nu \to \infty
\]

\[
\left| \frac{T_{\nu}(z)}{\nu^n} - \sum_{j=0}^{N-1} \frac{a_j(z)}{\nu^j} \right| \leq \frac{c_N}{\nu^N}
\]
The 'partial' Hardy space, denoted by \(\mathcal{H}_{S_\ell} \), consists of all holomorphic functions on \(D_\ell \) having boundary values on \(S_\ell \) which are square-integrable for \(\mu_\ell \). The inner product is

\[
(\phi|\psi)_{S_\ell} := \int_{S_\ell} d\mu_\ell(u) \overline{\phi(u)} \psi(u).
\]

Passing to a Bergman type setting, consider the Kepler ball endowed with the probability measure

\[
d\mu_\ell(z) = d\mu_{\ell,\nu}(z) := c_\nu \Delta(z,z)^{\nu-p} d\lambda_\ell(z).
\]

Here \(d\lambda_\ell(z) \) is the 'Riemannian' measure on \(D_\ell \) induced by the normalized \(K \)-invariant hermitian metric \((z|w)\). The dependence on the spectral parameter \(\nu \) is tacitly understood. The 'partial' weighted Bergman space \(\mathcal{H}_{D_\ell} \) is defined as the Hilbert space of all holomorphic functions on the Kepler ball \(D_\ell \) which are square-integrable for \(\mu_\ell \). The inner product is

\[
(\phi|\psi)_{D_\ell} := \int_{D_\ell} d\mu_\ell(z) \overline{\phi(z)} \psi(z).
\]
Since the underlying measure is K-invariant, the second Riemann extension theorem (a consequence of the normality theorem) implies that a Hilbert space \mathcal{H} of holomorphic functions on the Kepler variety is a Hilbert sum

$$\mathcal{H} = \sum \mathcal{P}_{m_1, m_\ell, 0, \ldots, 0}(Z)$$

involving only (non-negative) partitions of length $\leq \ell$, since all other components vanish on Z_ℓ.

Proposition: Let $m \in \mathbb{N}_\ell^\ell$. Then we have for all $p_m, q_m \in \mathcal{P}_Z^m$

$$ (p_m | q_m)_{S_\ell} = \frac{(\frac{a}{2} \ell)^m}{(\frac{a}{2} r)^m} \frac{(p_m | q_m)}{(1 + \frac{a}{2}(r - 1) + b)^m}, $$

$$ (p_m | q_m)_{D_\ell} = \frac{(\frac{a}{2} \ell)^m}{(\frac{a}{2} r)^m} \frac{(1 + \frac{a}{2} (2r - \ell - 1) + b)^m}{(1 + \frac{a}{r} - 1) + b)^m} \frac{(p_m | q_m)}{(\nu)^m} $$
Choose a base point $c = e_1 + \ldots + e_\ell \in S_\ell$. Every positive density function $\rho(t)$ on symmetric cone Ω_c induces a K-invariant radial measure

$$\int_{\mathcal{Z}_\ell} d\tilde{\rho}(z) \ f(z) = \int_{\Omega_c} dt \ \rho(t) \int_{K} dk \ f(k\sqrt{t}).$$

For $\ell = 1$ this simplifies to

$$\int_{\mathcal{Z}_1} d\tilde{\rho}(z) \ f(z) = \int_{0}^{\infty} dt \ \rho(t) \int_{S_1} du \ f(u\sqrt{t}).$$

Define a Hilbert space of holomorphic functions

$$\mathcal{H}_\rho := \{ f : \mathcal{Z}_\ell \rightarrow \mathbb{C} \text{ holomorphic} : \int_{\mathcal{Z}_\ell} d\tilde{\rho}(z) \ |f(z)|^2 < +\infty \}.$$

Theorem: The Hilbert space \mathcal{H}_ρ has the reproducing kernel

$$K_\rho(z, w) := \sum_{m \in \mathbb{N}_+^\ell} \frac{d_m}{\int_{\Omega_c} d\rho(t) E^m(t, e) E^m(z, w)} = \sum_{m \in \mathbb{N}_+^\ell} \frac{(d_\ell/\ell)m}{\int_{\Omega_c} d\rho(t) N_m(t)} \frac{d_m}{d_c m} E^m(z, w).$$
Every euclidean Jordan algebra X has a **Jordan algebra determinant** $N(x)$ which is a r-homogeneous polynomial defined via Cramer's rule

$$x^{-1} = \frac{\nabla x N}{N(x)}.$$

For real or complex matrices, this is the usual determinant. For even anti-symmetric matrices, it is the Pfaffian. In the rank 2 case, $N(x_0, x) = x_0^2 - (x|x)$ is the Lorentz metric.

Let $\partial_N = N(\frac{\partial}{\partial x})$ be the associated constant coefficient differential operator on X. Then $N(x)\partial_N$ is a kind of Euler operator, of order r.

Applying these concepts to the Jordan algebra $Z_c^{(2)}$ of rank ℓ, we define a universal differential operator

$$D_{\ell} := N_{\frac{a}{2}}^{\ell-r} \partial_N^{b} N_{\frac{a}{2}}^{\ell-\ell+1+b+1} \left(\partial_N N_{\frac{a}{2}}^{\ell-1} \partial_N^{\ell-1} \right)^{r-\ell} N_{\frac{a}{2}}^{\ell-\ell+1-b-1}$$

of order $\ell((r-\ell)a+b)$ on the symmetric cone D_c. For $\ell = 1$, $N(t) = t$ and D_1 becomes a polynomial differential operator of order $(r-1)a+b$ on the half-line.
Our main result is that the reproducing kernel $K_\rho(z, w)$ can be expressed in closed form, by

$$K_\rho(\sqrt{t}, \sqrt{t}) = (D_\ell F_\rho)(t)$$

for all $t \in D_c$, where F_ρ is a special function of hypergeometric type. Since hypergeometric functions have good asymptotic expansions (quite difficult for $\ell > 1$), this will lead to the desired TYZ-expansions. Generalizing the 1-dimensional case,
Consider first a Fock type situation. For $\alpha > 0$ consider the 'pluri-subharmonic' function $\phi = (z|z)^{\alpha}$ on Z_{ℓ}. Let $\omega := \partial \overline{\partial} \phi$ denote the associated Kähler form. Then we have the polar decomposition

$$\int_{Z_{\ell}} \frac{\omega^n}{n!} (z) \ e^{-\nu \phi(z)} f(z) = \int_{D_c} dt \ N_c(t)^{a(r-\ell)+b} (t|c)^{n(\alpha-1)} \ e^{-\nu (t|c)^{\alpha}},$$

where $N_c(t)$ is the rank ℓ determinant function on D_c. Let $\alpha = 1$.

Theorem: The Hilbert space $\mathcal{H}_\nu = H^2(e^{-\nu \phi}|\omega^n|/n!)$ has the reproducing kernel

$$K_\nu(t, e) = D_\ell \ _1F_1\left(\frac{d_{\ell}/\ell}{n/\ell}\right)(\nu t)$$

for the **confluent hypergeometric function**

$$\ _1F_1\left(\frac{\sigma}{\tau}\right)(z, w) = \sum_m \frac{(\sigma)_m}{(\tau)_m} E^m(z, w).$$
In the bounded setting (Kepler ball) consider the pluri-subharmonic function

$$\phi(z) = \log \Delta(z, z)^{-p} = \log \det B(z, z)^{-1}$$

on the Kepler ball, given by the Bergman kernel. As before, the associated radial measure $e^{-\nu \phi} |\omega^n|/n!$ has a nice polar decomposition, this time involving the unit interval $D_c \cap (c - D_c)$.

Theorem: For the Kepler ball, $\mathcal{H}_\nu = H^2(e^{-\nu \phi} |\omega^n|/n!)$ has the reproducing kernel

$$\mathcal{K}_\nu(t, e) = D_\ell \, _2F_1\left(\frac{d_\ell}{\ell}; \nu \frac{n_\ell}{\ell}\right)(t)$$

involving a *Gauss hypergeometric function* $\, _2F_1$ on Ω_c.
Special case, Lie ball $r = 2, \ell = 1$ (Englis et al, Gramchev-Loi)
non-compact Kähler manifold, homogeneous, non-symmetric

$$T^*(S^n) \setminus \{0\} = \{(x, \xi) : \|x\| = 1, (x|\xi) = 0, \xi \neq 0\}$$

\mathbb{C}^{n+1} hermitian Jordan triple, rank 2

$$\{uv^* w\} = (u|v)w + (w|v)u + (u|\overline{w})\overline{v}$$ Jordan triple product

$$N(z) = (z|\overline{z})$$ Jordan algebra determinant

$$T^*(S^n) \setminus \{0\} = \{z \in \mathbb{C}^{n+1} : N(z) = 0\}$$ rank 1 elements

$$\frac{T_\nu(z)}{\nu^n} = 1 + \frac{(n-1)(n-2)}{2|\nu z|} + \sum_{j=2}^{n-2} \frac{2a_j}{|\nu z|^j} + R_\nu(|z|)$$ exponentially small error term
For $\ell = 1$ (minimal Kepler varieties) consider Fock space asymptotic expansion, with α arbitrary

Theorem: Radial measure $d\rho(t) = \alpha e^{-\nu t^\alpha} t^{\alpha(p-1)-1} \, dt$ on half-line. Then, as $\nu \to +\infty$

$$e^{-\nu(z|z)^\alpha} \frac{1}{\nu^{p-1}} K_\nu(z, z) = \sum_{j=0}^{p-2} b_j \frac{\nu^j (z|z)^{j\alpha}}{\nu j^{\alpha}} + O(e^{-\eta \nu(z|z)^\alpha}), \quad \eta > 0$$

Proof: The measure $d\rho$ has moments

$$\alpha \int_0^\infty dt \ e^{-\nu t^\alpha} t^{\alpha(p-1)+m-1} = \frac{\Gamma(p - 1 + \frac{m}{\alpha})}{\nu^{p-1+\frac{m}{\alpha}}}.$$

Therefore $K_\nu = D_1 F_\rho$ with

$$F_\rho(t) = \nu^{p-1} \sum_{m=0}^{\infty} \frac{(\nu^{1/\alpha} t)^m}{\Gamma(p - 1 + \frac{m}{\alpha})} = \nu^{p-1} E_{1/\alpha, p-1}(\nu^{1/\alpha} t),$$

for the **Mittag-Leffler function**

$$E_{A, B}(t) = \sum_{m=0}^{\infty} \frac{t^m}{\Gamma(Am + B)}.$$
Theorem:

For \(t \in D_c \) define the function
\[
F_\rho(t) = \sum_{m \in \mathbb{N}_+} \left(\frac{d_\ell/\ell}{\ell} \right)^m \int_{D_c} d\rho \, N_m(t, c).
\]

Every euclidean Jordan algebra \(X \) has a **positive cone**
\[
\Omega = \{ x^2 : x \in X \setminus \{0\} \},
\]
corresponding to the positive definite matrices \(\mathcal{H}^+_r(K) \). The **Jordan algebra determinant** \(N : X \to \mathbb{R} \) is a \(r \)-homogeneous polynomial defined via Cramer’s rule
\[
x^{-1} = \frac{\nabla_x N}{N(x)}.
\]

For the rank 2 case,
\[
N \begin{pmatrix} \alpha & b \\ b^* & \delta \end{pmatrix} = \alpha \delta - (b|b)
\]
is the Lorentz metric on \(\mathbb{R}^{1,1+a} \). The complexification \(Z := X^\mathbb{C} \) becomes a (complex) Jordan triple (of tube type)
\[
\{uv^*w\} = (u \circ v^*) \circ w + (w \circ v^*) \circ u - v^* \circ (u \circ w).
\]

For the spin factor we obtain...
\[
\phi = (z | z)^\alpha, \quad \alpha > 0 \text{ pluri-subharmonic function on } Z_\ell \\
\omega := \partial \bar{\partial} \phi \text{ K"ahler form}
\]

\[
\int_{\hat{Z}_\ell} \frac{|\omega^n|}{n!}(z) e^{-\nu \phi(z)} f(z) = \int_{D_c} dt \ N_c(t)^{a(r-\ell)+b} (t|c)^n(\alpha-1) e^{-\nu(t|c)^\alpha}.
\]

Theorem: \(\mathcal{H}_\nu = H^2(e^{-\nu \phi}|\omega^n|/n!) \) has kernel \(\mathcal{K}_\nu(\sqrt{t}, \sqrt{t}) = D_\ell F_\nu(t) \)

\[
F_\nu(t) = \text{const} \sum_{m \in \mathbb{N}_+} \frac{(d_\ell/\ell)_m}{\Gamma_D(c)(m + n/\ell)} \frac{\Gamma(n + |m|)}{\Gamma(n + \frac{|m|}{\alpha})} E^m(\nu^{1/\alpha} t, c)
\]

confluent hypergeometric function

\[
1F_1(z, w) = \sum_m \frac{(\sigma)_m}{(\tau)_m} E^m(z, w)
\]

For \(\alpha = 1 \)

\[
F_\nu(t) = 1F_1(d_\ell/\ell)(\nu t)
\]

Theorem: \(\mathcal{H}_\nu = H^2(e^{-\nu \phi}|\omega^n|/n!) \) has kernel \(\mathcal{K}_\nu(\sqrt{t}, \sqrt{t}) = D_\ell F_\nu(t) \)

\[
F_\nu(t) = \text{const} \sum_{m \in \mathbb{N}_+} \frac{(d_\ell/\ell)_m}{\Gamma_D(c)(m + n/\ell)} \frac{\Gamma(n + |m|)}{\Gamma(n + \frac{|m|}{\alpha})} E^m(\nu^{1/\alpha} t, c)
\]
The invariant probability measure dg on G^+ satisfies

$$\int_{G^+} dg f(g(0)) = \frac{\Gamma_O(p)}{\Gamma_O(p - \frac{d}{r})} \int_Z \frac{d\overline{w}dw}{(2\pi i)^d} \Delta^{-p}_{w,-w} f(w)$$

for all $f \in L^\infty(Z)$. Here dw denotes the Lebesgue measure for the inner product $(.)$, and the normalization constant is computed in terms of the Gindikin Γ_O-function.
Spectral Analysis Since $Z^+ = G^+/K$ is a compact symmetric space, the space $L^2(Z^+)$, for the normalized Haar measure (1.), has a multiplicity-free “Peter-Weyl” decomposition into irreducible G^+-submodules. This “Peter-Weyl” decomposition can be described in a uniform manner:

$$L^2(Z^+) = \sum_m L^2_m(Z^+) \tag{0.1}$$

where m runs over all partitions of length r, and $L^2_m(Z^+)$ is the (finite-dimensional) G^+-submodule generated by the spherical function Φ^+_m.
example

In the rank 1 case $Z^+ = \mathbb{CP}^1 \approx S^2$, $L_m^2(Z^+)$ is spanned by the functions

$$z \mapsto \left[\frac{\alpha z + \beta \overline{z} + \gamma (z \overline{z} - 1)}{1 + |z|^2} \right]$$

where $\alpha, \beta, \gamma \in \mathbb{C}$ satisfy $\alpha, \beta + 4\gamma^2 = 0$. The corresponding spherical function is

$$\Phi_m^+(z) = C_m \left(\frac{1 - |z|^2}{1 + |z|^2} \right)^m,$$

where C_m is the m-th Gegenbauer polynomial.
Invariant volume forms and measures

\(\mathring{Z}_\ell \) is homogeneous under \(K^C \) or a suitable transitive subgroup. When does an invariant holomorphic volume form or invariant measure exist? Only for domains of tube type \(b = 0 \).

- **Theorem:** Let \(Z \) be of tube type and \(0 < \ell < r \). Then there exists an invariant holomorphic \(n \)-form \(\Omega \) on \(\mathring{Z}_\ell \) if and only if \(p - a\ell = 2 + a(r - \ell - 1) \) is even.

- Among all tube type domains, \(p - a\ell \) is odd only for the symmetric matrices \(Z = C^{r \times r}_{\text{sym}} \) with \(r - \ell \) even.

- **Theorem:** An invariant measure \(\mu \) on \(\mathring{Z}_\ell \) exists in all cases (for \(b = 0 \)), and has polar decomposition

\[
\int_{\mathring{Z}_\ell} d\mu(z) \ f(z) = \text{const} \int_{D_c} \frac{dt}{N_c(t)d_{\ell/\ell}} \ N_c(t)^{ar/2} \int_K dk \ f(k\sqrt{t}).
\]