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Example of LU factorization

We factorize the following 2-by-2 matrix:
[

4 3
6 3

]

=

[

l11 0
l21 l22

] [

u11 u12
0 u22

]

. (1)

One way to find the LU decomposition of this simple matrix would be to
simply solve the linear equations by inspection. Expanding the matrix
multiplication gives

l11 · u11 + 0 · 0 = 4,

l11 · u12 + 0 · u22 = 3,

l21 · u11 + l22 · 0 = 6,

l21 · u12 + l22 · u22 = 3.

(2)

This system of equations is underdetermined. In this case any two
non-zero elements of L and U matrices are parameters of the solution
and can be set arbitrarily to any non-zero value. Therefore, to find the
unique LU decomposition, it is necessary to put some restriction on L
and U matrices. For example, we can conveniently require the lower
triangular matrix L to be a unit triangular matrix (i.e. set all the entries
of its main diagonal to ones).
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Then the system of equations has the following solution:

l21 = 1.5,

u11 = 4,

u12 = 3,

u22 = −1.5.

(3)

Substituting these values into the LU decomposition above yields

[

4 3
6 3

]

=

[

1 0
1.5 1

] [

4 3
0 −1.5

]

. (4)
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Gaussian Elimination
The Algorithm — uniqueness of factorization

Definition

The leading j-by-j principal submatrix of A is A(1 : j , 1 : j).

Theorem 2.4.

The following two statements are equivalent:
1. There exists a unique unit lower triangular L and non-singular
upper triangular U such that A = LU.
2. All leading principal submatrices of A are non-singular.
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Gaussian Elimination
The Algorithm

Algorithm 2.2

LU factorization with pivoting:
for i = 1 to n-1

apply permutations so aii 6= 0(permute L, U)
/* for example for GEPP, swap rows j and i of A and of L
where |aji | is the largest entry in |A(i : n, i |;
for GECP, swap rows j and i of A and of L, and columns k
and i of A and U, where |ajk | is the largest entry in
|A(i : n, i : n)|*/

/* compute column i of L */
for j=i+1 to n

lji =
aji
aii

end for
/* compute row j of U */
for j=i to n

uij = aij end for
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Gaussian Elimination
The Algorithm

Algorithm 2.2

/* update A22 */
for j=i+1 to n

for k=i+1 to n
ajk = ajk − lji ∗ uik

end for
end for

end for
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Gaussian Elimination
The Algorithm

Algorithm 2.3

LU factorization with pivoting, overwriting L and U on A:
for i=1 to n-1

apply permutations (see Algorithm 2.2.)
for j=i+1 to n

aji =
aji
aii

end for
for j=i+1 to n

for k=i+1 to n
ajk = ajk − aji ∗ aik

end for
end for

end for
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Gaussian Elimination
The Algorithm

Algorithm 2.4

LU factorization with pivoting, overwriting L and U on A, using
Matlab notations:
for i=1 to n-1

apply permutations(see algorithm 2.2. )
A(i+1:n,i)=A(i+i:n,i)/A(i,i)
A(i+1:n,i,i+1:n)=

A(i+1:n,i+1:n)-A(i+1:n,i)*A(i,i+1:n)
end for
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2.7.1. Real Symmetric Positive Definite Matrices

Recall that a real matrix A is s.p.d. if and only if A = AT and xTAx > 0
for all x 6= 0. In this section we will show how to solve Ax = b in half the
time and half the space of Gaussian elimination when A is s.p.d.
PROPOSITION 2.2.
1. If X is nonsingular, then A is s.p.d. if and only if XTAX is s.p.d.
2. If A is s.p.d. and H is any principal submatrix of A(H = A(j : k , j : k)
for some j ≤ k), then H is s.p.d.
3. A is s.p.d. if and only if A = AT and all its eigenvalues are positive.
4. If A is s.p.d., then all aii > 0, and maxij |aij | = maxi aii > 0.
5. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT is
called the Cholesky factorization of A, and L is called the Cholesky factor
of A.
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ALGORITHM 2.11. Cholesky algorithm:
for j = 1 to n
ljj = (ajj −

∑j−1
k=1 l

2
jk)

1/2

for i = j + 1 to n
lij = (aij −

∑j−1
k=1 lik ljk)/ljj

end for
end for

If A is not positive definite, then (in exact arithmetic) this
algorithm will fail by attempting to compute the square root of a
negative number or by dividing by zero; this is the cheapest way to
test if a symmetric matrix is positive definite.
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