
Applied Numerical Linear Algebra

1 / 19

Round-off analysis in polynomial evaluation

In this section we will discuss stability of polynomial evaluation by
Horner’s rule. Let the polynomial is given by

p(x) =

d
∑

i=0

cix
i ,

where ci are coefficients of the polynomial, d is its degree.
To compute roots of this polynomial we can use Horner’s rule described
in Chapter 1. This rule can be programmed as the following iterative
algorithm for every mesh point xj ∈ [xleft , xright], j ∈ 1, 2, ...N, where N is
the total number of the discretization points:

Horner’s rule for polynomial evaluation

Step 0. Initialize pd = cd . Set counter i = d − 1.

Step 1. Compute pi = xj · pi+1 + ci

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

2 / 19

To compute bounds in the polynomial evaluation we insert term with
error 1 + (σ1,2)i for every floating point iteration in Algorithm 2 to obtain
following algorithm:

Error bound in polynomial evaluation

Step 0. Set counter i = d − 1 and initialize pd = cd .

Step 1. Compute
pi = (xj · pi+1(1 + (σ1)i) + ci)(1 + (σ2)i), |(σ1)i |, |(σ2)i | ≤ ε

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

In the algorithm 3 the number ε is the machine epsilon and we define it
as the maximum relative representation error 0.5 · β1−p which is
measured in a floating point arithmetic with the base β and with
precision p > 0. Now the following values of machine epsilon apply to
standard floating point formats:

3 / 19

Expanding expression for pi in the algorithm 3 we can get

p0 =

d−1
∑

i=0

(

(1 + (σ2)i)

i−1
∏

k=0

(1 + (σ1)k)(1 + (σ2)k)

)

cix
i (1)

+

(

d−1
∏

k=0

(1 + (σ1)k)(1 + (σ2)k)

)

cdx
d

Next, we will write upper and lower bounds for products of σ := σ1,2

provided that kε < 1:

(1 + σ1) · ... · (1 + σk) ≤ (1 + ε)k ≤ 1 + kε+ O(ε2),

1− kε ≤ (1− ε)k ≤(1 + σ1) · ... · (1 + σk)

(2)

Applying estimate above we can get the following inequality

1− kε ≤ (1 + σ1) · ... · (1 + σk) ≤ 1 + kε. (3)

Using the estimate (3) we can rewrite (1) as

p0 ≈

d
∑

i=0

(1 + σ̃i)cix
i =

d
∑

i=0

c̃ix
i (4)

with approximate coefficients c̃i = (1 + σ̃i)ci such that |σ̃i | ≤ 2kε ≤ 2dε.
4 / 19

Now we can write formula for the computing error in the polynomial:

|p0 − p(x)| =

∣

∣

∣

∣

∣

d
∑

i=0

(1 + σ̃i)cix
i −

d
∑

i=0

cix
i

∣

∣

∣

∣

∣

(5)

=

∣

∣

∣

∣

∣

d
∑

i=0

σ̃icix
i

∣

∣

∣

∣

∣

≤ 2

d
∑

i=0

dε|cix
i | ≤ 2dε

d
∑

i=0

|cix
i |.

If we will choose σ̃i = ε · sign(cix
i) then the error bound above can be

attained within the factor 2d . In this case we can take

bprel =

∑d
i=0 |cix

i |

|
∑d

i=0 cix
i |

(6)

as the relative condition number for the case of polynomial evaluation.
This condition number can be computed at every point xj for
[p − bprel , p + bprel]. In the following algorithm we use (5) to compute
lower bound in polynomial evaluation.

5 / 19

Computation of the error bp in the polynomial evaluation

Step 0. Set counter i = d − 1 and initialize pd = cd , bpd = |cd |.

Step 1. Compute pi = xj · pi+1 + ci , bpi = |xj | · bpi + |ci |.

Step 2. Set i := i − 1 and go to step 1. Stop if i = 0.

Step 3. Set bp = 2 · d · ε · bpi as error bound at the point |xj |.

6 / 19

Figures 1-a), 2-a) show behavior of the computed solution using Horner’s
rule (algorithm 2) for the evaluation of roots of polynomial
p(x) = (x − 9)9 = x9 − 81x8 + 2916x7 − 61236x6 + 826686x5 −
7440174x4 + 44641044x3 − 172186884x2 + 387420489x1 − 387420489.
Figures 1-b), 2-b) show computed upper and lower bounds for the
polynomial p(x) = (x − 9)9 using algorithm 6 on different input intervals
for x . We have performed all our computations taking in algorithm 6
ε = 0.5 · β1−p. Using these figures we observe that changing the input
interval for x slightly can change computed roots drastically.

7 / 19

Number of the correct decimal digits computed by algorithm 6 is given by

the formula en = −ln
∣

∣

∣

bp
p

∣

∣

∣
. This number is plotted on Figures 1-d), 2-d)

in blue color for different input intervals for x . In red color we present the

computed relative error by the formula ecomp = −ln
∣

∣

∣

p−(x−9)9

p

∣

∣

∣
. We

observe that our estimated lower bound in blue color is quite good to the
computed relative error ecomp. Figures 1-c), 2-c) show computed

estimated relative errors e =
∣

∣

∣

bp
p

∣

∣

∣
on different input intervals for x which

correspond to Figures 1-d), 2-d). Analyzing Figures 1-c),d), 2-c), d) we
can conclude that we get difficulties when we want to compute p(x) with
a high relative accuracy when p(x) is close to zero. This is because any
small changes in ε gives infinite relative error given by ε

p(x) =
ε

0 what

means that our relative condition number 2d · ε · bp is infinite. Thus, the
problem of finding of relative condition number of the polynomial is
ill-posed.

8 / 19

Definition

Let p(x) =
d
∑

i=0

aix
i and q(x) =

d
∑

i=0

bix
i are two polynomials. Then the

relative distance dist(p, q) from p(x) to q(x) is defined as the smallest
value of dist(p, q) such that

|ai − bi | ≤ dist(p, q) · |ai |, i ≤ 1 ≤ d .

If ai 6= 0, i ≤ 1 ≤ d the equation above can be rewritten as

max
0≤i≤d

|ai − bi |

|ai |
= dist(p, q), i ≤ 1 ≤ d .

The next theorem says that the distance from p to q (the distance to the
nearest ill-posed problem) is the reciprocal of the condition number of
p(x).

9 / 19

Theorem

Let polynomial p(x) =
d
∑

i=0

cix
i is not identically zero and q(x) = 0 is

another polynomial whose condition number at x is infinite. Then

min {dist(p, q) : q(x) = 0} =
|
∑d

i=0 cix
i |

∑d
i=0 |cix

i |
. (7)

10 / 19

Proof.

To prove this theorem let us write q(x) =
d
∑

i=0

bix
i =

d
∑

i=0

(1 + εi)cix
i such

that dist(p, q) = maxi |εi |. Then q(x) = 0 implies that

p(x) = |q(x)− p(x)| = |

d
∑

i=0

εicix
i | ≤

d
∑

i=0

|εicix
i | ≤ max

i
|εi |

d
∑

i=0

|cix
i |.

Thus,

dist(p, q) = max
i

|εi | ≥
|p(x)|
d
∑

i=0

|cix i |

.

For example, we can choose εi =
−p(x)
d
∑

i=0

|cix i |

· sign(cix
i).

11 / 19

At the end of this subsection we will present the bisection algorithm to
find roots of the polynomial p(x) = 0. Suppose that the input interval for
x where we want to find roots of p(x) = 0 is x ∈ [xleft , xright]. At every
iteration this algorithm divides the input interval in two by computing the
midpoint xmiddle = (xleft + xright)/2 of the input interval as well as the
value of the polynomial p(xmiddle) at that point. Value of the polynomial
p(xmiddle) we will compute using Horner’s rule (algorithm 2). Then if pleft
and pmid have opposite signs, then the bisection algorithm sets xmiddle as
the new value for xright , and if pright and pmid have opposite signs then
the method sets xmiddle as the new xleft . If p(xmiddle) = 0 then xmiddle

may be taken as the root of polynomial and algorithm stops.

12 / 19

Bisection algorithm to find zeros of polynomial p(x)

Step 0. Initialization: set left xleft and right xright bounds for input
interval for x ∈ [xleft , xright] where we will seek roots of polynomial.
Set computational tolerance tol .

Step 1. Evaluate polynomial p(x) at xleft and xright to get
pleft = p(xleft) and pright = p(xright) using algorithm 2.

Perform steps 2-3 while xright − xleft > 2 · tol

Step 2. Compute point xmid =
(xleft+xright)

2 and then pmid = p(xmid)
using algorithm 2.

Step 3. Check:

If pleft · pmid < 0 then we have a root at the interval [xleft , xmid].
Assign xright = xmid and pright = pmid .

Else if pright · pmid < 0 then we have a root at the interval
[xmid , xright]. Assign xleft = xmid and pleft = pmid .

Else we have found a root at xmid and assign
xleft = xmid , xright = xmid .

Step 4. Compute root as
(xleft+xright)

2 .

13 / 19

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

×10 -5

-3

-2

-1

0

1

2

3

Horners rule (8000 points)
exact p(x)=(x - 9) 9

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

×10 -4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact p(x)=(x - 9) 9

upper bound
lower bound

a) b)

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4
0

500

1000

1500

2000

2500

3000

3500

error = abs(bp/P)

input interval for x
8.7 8.8 8.9 9 9.1 9.2 9.3 9.4

-10

-8

-6

-4

-2

0

2

4

6

8

10

log error = -log(abs(bp/P))
 -log(abs((P -(x-9). 9)/P))

c) d)

Figure: a) Evaluation of the polynomial p(x) = (x − 9)9 by Horner’s rule (algorithm 2) compared with the

exact one polynomial. b) Computed upper and lower bounds for the polynomial p(x) = (x − 9)9 using algorithm

6. c) Plot of the graph of the estimated relative error e =
∣

∣

∣

bp
p

∣

∣

∣
. d) Plot of the graph of the estimated relative

error eln = −ln
∣

∣

∣

bp
p

∣

∣

∣
(presented in blue color) compared with the computed relative error

ecomp = −ln

∣

∣

∣

∣

p−(x−9)9

p

∣

∣

∣

∣

(presented in red color). Input interval for x in this example is x ∈ [8.7, 9.3]. 14 / 19

input interval for x
8.5 9 9.5

×10 -3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Horners rule (8000 points)
exact p(x)=(x - 9) 9

input interval for x
8.5 9 9.5

×10 -3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

exact p(x)=(x - 9) 9

upper bound
lower bound

a) b)

input interval for x
8.5 9 9.5
0

500

1000

1500

2000

2500

3000

3500

error = abs(bp/P)

input interval for x
8.5 9 9.5

-10

-5

0

5

10

15

log error = -log(abs(bp/P))
 -log(abs((P -(x-9). 9)/P))

c) d)

Figure: a) Evaluation of the polynomial p(x) = (x − 9)9 by Horner’s rule (algorithm 2) compared with the

exact one polynomial. b) Computed upper and lower bounds for the polynomial p(x) = (x − 9)9 using algorithm

6. c) Plot of the graph of the estimated relative error e =
∣

∣

∣

bp
p

∣

∣

∣
. d) Plot of the graph of the estimated relative

error eln = −ln
∣

∣

∣

bp
p

∣

∣

∣
(presented in blue color) compared with the computed relative error

ecomp = −ln

∣

∣

∣

∣

p−(x−9)9

p

∣

∣

∣

∣

(presented in red color). Input interval for x in this example is x ∈ [8.5, 9.5]. 15 / 19

input interval for x
-1 0 1 2 3 4 5 6 7

10

15

20

25

30

35

40

 estimated bound
 computed bound

input interval for x
-5 0 5 10 15 20

10

15

20

25

30

35

40

 estimated bound
 computed bound

a) b)

Figure: Plot of the graph of the estimated relative error eln = −ln
∣

∣

∣

bp
p

∣

∣

∣
(presented in blue color) compared

with the computed relative error ecomp : a) for the polynomial p(x) = (x − 1)2(x − 2)(x − 3)(x − 4)(x − 5) and

b) for the polynomial p(x) = (x − 1)2(x − 2)(x − 3)(x − 4)(x − 5)(x − 7)(x − 9)(x − 11)(x − 15)(x − 17).

16 / 19

Perturbation theory in the solution of linear equations

Let us consider numerical solution of linear system Ax = b. Here, A, x , b
are exact matrix, vector of solution and the right hand side of the
equation, correspondingly. We are interested to find bound δx for the
error in the computed solution x̃ which can be computed as δx = x̃ − x .
We assume that matrix A have a small error δA and the right hand side b

is given with an error δb. More precisely, we have

(A+ δA)x̃ = b + δb. (8)

Subtracting Ax = b from (8) we get

(A+ δA)x̃ − Ax = b + δb − b.

17 / 19

Rearranging terms in the above equation and noting that δx = x̃ − x and
thus x = x̃ − δx we have

(A+ δA)x̃ − Ax − δb = (A+ δA)(x + δx)− Ax − δb = 0,

Ax + Aδx + δAx + δAδx − Ax − δb = (A+ δA)δx + δAx − δb = 0,

(A+ δA)δx + δA(x̃ − δx)− δb = 0,

Aδx + δAx̃ − δb = 0,

(9)

resulting in the equation

δx = A−1(−δA · x̃ + δb). (10)

18 / 19

Taking norms in the equation above and using triangle inequality leads us
to

‖δx‖ ≤ ‖A−1‖(‖δA‖ · ‖x̃‖+ ‖δb‖).

Dividing this inequality to ‖x̃‖ and compensating by ‖A‖/‖A‖ gives us

‖δx‖

‖x̃‖
≤ ‖A−1‖ · ‖A‖ ·

(

‖δA‖

‖A‖
+

‖δb‖

‖A‖ · ‖x̃‖

)

, (11)

where k(A) = ‖A−1‖ · ‖A‖ is called the condition number of the matrix A.

19 / 19

