
Numerical solution of Least Squares Problems
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Linear Least Squares Problems

Suppose that we have a matrix A of the size m × n and the vector b of
the size m × 1. The linear least square problem is to find a vector x of
the size n × 1 which will minimize ‖Ax − b‖2. In the case when m = n

and the matrix A is nonsingular we can get solution to this problem as
x = A−1b. However, when m > n (more equations than unknowns) the
problem is called overdetermined. Opposite, when m < n (more
unknowns than equations) the problem is called underdetermined.
In real-life applications more widely engineers deal with overdetermined
least squares problems, when number of equations are much larger than
number of unknowns. This occurs since engineers usually take much
more measurements than necessary to smooth out measurement error
and remove noise from data. We will restrict our considerations to the
linear least squares problems.
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Further we assume that we will deal with overdetermined problems when
we have more equations than unknowns. This means that we will be
interested in the solution of linear system of equations

Ax = b, (1)

where A is of the size m× n with m > n, b is vector of the size m, and x

is vector of the size n.
In a general case we are not able to get vector b of the size m as a linear
combination of the n columns of the matrix A and n components of the
vector x , or there is no solution to (1) in the usual case. In this chapter
we will consider methods which can minimize the residual r = b − Ax as
a function on x in principle in any norm, but we will use 2-norm because
of the convenience from theoretical (relationships of 2-norm with the
inner product and orthogonality, smoothness and strict convexity
properties) and computational points of view. Also, because of using
2-norm method is called least squares.
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We can write the least squares problem as problem of the minimizing of
the squared residuals

‖r‖22 =
m
∑

i=1

r2i =
m
∑

i=1

(Axi − b)2. (2)

In other words, our goal is to find minimum of this residual using least
squares:

min
x

‖r‖22 = min
x

m
∑

i=1

r2i = min
x

m
∑

i=1

(Axi − b)2. (3)
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Data fitting

In this example we present the typical application of least squares called
data or curve fitting problem. This problem appear in statistical
modelling and experimental engineering when data are generated by
laboratory or other measurements.
Suppose that we have data points (xi , yi ), i = 1, ...,m, and our goal is to
find the vector of parameters c of the size n which will fit best to the
data yi of the model function f (xi , c), where f : Rn+1 → R , in the least
squares sense:

min
c

m
∑

i=1

(yi − f (xi , c))
2. (4)

If the function f (x , c) is linear then we can solve the problem (4) using
least squares method.
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The function f (x , c) is linear if we can write it as a linear combination of
the functions φj(x), j = 1, ..., n as:

f (x , c) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x). (5)

Functions φj(x), j = 1, ..., n are called basis functions.
Let now the matrix A will have entries
aij = φj(xi ), i = 1, ...,m; j = 1, ..., n, and vector b will be such that
bi = yi , i = 1, ...,m. Then a linear data fitting problem takes the form of
(1) with x = c :

Ac ≈ b (6)

Elements of the matrix A are created by basis functions
φj(x), j = 1, ..., n. We will consider now different examples of choosing
basis functions φj(x), j = 1, ..., n.
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Problem of the fitting to a polynomial

In the problem of the fitting to a polynomial

f (x , c) =

d
∑

i=1

cix
i−1 (7)

of degree d − 1 to data points (xi , yi ), i = 1, ...,m, basis functions
φj(x), j = 1, ..., n can be chosen as φj(x) = x j−1, j = 1, ..., n. The matrix
A constructed by these basis functions in a polynomial fitting problem is
a Vandermonde matrix:

A =















1 x1 x21 . . . xd−1
1

1 x2 x22 . . . xd−1
2

1 x3 x23 . . . xd−1
3

...
...

. . .
. . .

...
1 xm x2m . . . xd−1

m















. (8)

Here, xi , i = 1, ....,m are discrete points on the interval for
x = [xleft , xright ].
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Suppose, that we choose d = 4 in (4). Then we can write the polynomial

as f (x , c) =
∑4

i=1 cix
i−1 = c1 + c2x + c3x

2 + c4x
3 and our data fitting

problem (6) for this polynomial takes the form















1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
...

...
. . .

...
1 xm x2m x3m















·









c1
c2
c3
c4









=













b0
b1
b2
...
bm













. (9)
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The right hand side of the above system represents measurements or
function which we want to fit. Our goal is to find such coefficients
c = {c1, c2, c3, c4} which will minimize the residual
ri = f (xi , c)− bi , i = 1...,m. Since we want minimize squared 2-norm of
the residual, or ‖r‖22 =

∑m
i=1 r

2
i , then we will solve the linear least

squares problem.
Let us consider an example when the right hand side bi , i = 1, ...m is
taken as a smooth function b = sin(πx/5) + x/5. Figure 10 shows
polynomial fitting to the function b = sin(πx/5) + x/5 for different d in
(7) on the interval x ∈ [−10, 10]. Using this figure we observe that with
increasing of the degree of the polynomial d − 1 we have better fit to the
exact function b = sin(πx/5) + x/5. However, for the degree of the
polynomial more than 18 we get erratic fit to the function. This happens
because matrix A becomes more and more ill-conditioned with increasing
of the degree of the polynomial d . And this is, in turn, because of the
linear dependence of the columns in the Vandermonde’s matrix A.
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Figure: Polynomial fitting for different d in (7) to the function b = sin(πx/5) + x/5 on the interval

x ∈ [−10, 10] using the method of normal equations. On the left figures: fit to the 100 points xi , i = 1, ..., 100;

on the right figures: fit to the 10 points xi , i = 1, ..., 10. Lines with blue stars represent computed function and

with red circles - exact one.
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Approximation using linear splines

When we want to solve the problem (4) of the approximation to the data
vector yi , i = 1, ...,m with linear splines we use following basis functions
φj(x), j = 1, ..., n, in (5) which are called also hat functions:

φj(x) =

{

x−Tj−1

Tj−Tj−1
, Tj−1 ≤ x ≤ Tj ,

Tj+1−x

Tj+1−Tj
, Tj ≤ x ≤ Tj+1.

(10)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at points Tj , j = 1, .., n, which are called conjunction points and
are chosen by the user. Using (10) we can conclude that the first basis

function is φ1(x) =
T2−x
T2−T1

and the last one is φn(x) =
x−Tn−1

Tn−Tn−1
.

Figure 16 shows approximation of a function b = sin(πx/5) + x/5 on the
interval x ∈ [−10, 10] using linear splines with different number n of
conjunction points Tj , j = 1, ..., n.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] using linear

splines with different number n of conjunction points Tj , j = 1, ..., n in (10). Blue stars represent computed

function and red circles - exact one.
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Approximation using bellsplines

In the case when we want to solve the problem (4) using bellsplines, the
number of bellsplines which can be constructed are n + 2, and the
function f (x , c) in (4) is written as

f (x , c) = c1φ1(x) + c2φ2(x) + ...+ cn+2φn+2(x). (11)
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We define

φ0
j (x) =

{

1, Tj ≤ x ≤ Tj+1,
0, otherwise.

(12)

Then all other basis functions, or bellsplines,
φk
j (x), j = 1, ..., n + 2; k = 1, 2, 3 are defined as follows:

φk
j (x) = (x − Tk)

φk−1
j (x)

Tj+k − Tj
+ (Tj+k+1 − x)

φk−1
j+1 (x)

Tj+k+1 − Tj+1
. (13)

Here, the column j in the matrix A is constructed by the given values of
φj(x) at conjunction points Tj , j = 1, .., n which are chosen by the user.
If in (13) we obtain ratio 0/0, then we assign φk

j (x) = 0. We define
additional three points T−2,T−1,T0 at the left side of the input interval
as T−2 = T−1 = T0 = T1, and correspondingly three points
Tn+1,Tn+2,Tn+3 on the right side of the interval as
Tn = Tn+1 = Tn+2 = Tn+3. All together we have n + 6 conjunction
points Tj , j = 1, ..., n + 6. Number of bellsplines which can be
constructed are n + 2.
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If conjunction points Tj are distributed uniformly, then we can introduce
the mesh size h = Tk+1 − Tk and bellsplines can be written explicitly as

φj(x) =















1
6 t

3 if Tj−2 ≤ x ≤ Tj−1, t = 1
h (x − Tj−2),

1
6 + 1

2 (t + t2 − t3) if Tj−1 ≤ x ≤ Tj , t = 1
h (x − Tj−1),

1
6 + 1

2 (t + t2 − t3) if Tj ≤ x ≤ Tj+1, t = 1
h (Tj+1 − x),

1
6 t

3 if Tj+1 ≤ x ≤ Tj+2, t =
1
h (Tj+2 − x).

(14)
In the case of uniformly distributed bellsplines we place additional points
at the left side of the input interval as
T0 = T1 − h,T−1 = T1 − 2h,T−2T1 − 3h, and correspondingly on the
right side of the interval as
Tn+1 = Tn + h,Tn+2 = Tn + 2h,Tn+3 = Tn + 3h. Then the function
f (x , c) in (4) will be the following linear combination of n + 2 functions
φj(x) for indices j = 0, 1, ..., n + 1:

f (x , c) = c1φ0(x) + c2φ1(x) + ...+ cn+2φn+1(x). (15)

Figure 3 shows approximation of a function b = sin(πx/5) + x/5 on the
interval x ∈ [−10, 10] using bellsplines.
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Figure: Polynomial fitting to the function b = sin(πx/5) + x/5 on the interval x ∈ [−10, 10] with different

number of bellsplines. Blue stars represent computed function and red circles - exact one.
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Nonlinear least squares problems

Suppose that for our data points (xi , yi ), i = 1, ...,m we want to
find the vector of parameters c = (c1, ..., cn) which will fit best to
the data yi , i = 1, ...,m of the model function f (xi , c), i = 1, ...,m.
We consider the case when the model function f : Rn+1 → R is
nonlinear now. Our goal is to find minimum of the residual
r = y − f (x , c) in the least squares sense:

min
c

m
∑

i=1

(yi − f (xi , c))
2. (16)
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To solve problem (16) we can still use the linear least squares method if
we can transform the nonlinear function f (x , c) to the linear one. This
can be done if the function f (x , c) can be represented in the form
f (x , c) = A expcx ,A = const. Then taking logarithm of f (x , c) we get:
log f = logA+ cx , which is already linear function. Then linear least
squares problem after this transformation can be written as

min
c

m
∑

i=1

(log yi − log f (xi , c))
2. (17)
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Another possibility how to deal with nonlinearity is consider the least
squares problem as an optimization problem. Let us define the residual
r : Rn → Rm as

ri (c) = yi − f (xi , c), i = 1, ...,m. (18)

Our goal is now minimize the function

F (c) =
1

2
r(c)T r(c) =

1

2
‖r(c)‖22. (19)

To find minimum of (19) we should have

∇F (c) =
∂F (c)

∂ci
= 0, i = 1, ...,m. (20)

Direct computations show that the gradient vector ∇F (c) is

∇F (c) =
dF

dc
= JT (c)r(c), (21)

where JT is the transposed Jacobian matrix of the residual r(c).
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For a sufficiently smooth function F (c) we can write its Taylor expansion
as

F (c) = F (c0) +∇F (c0)(c − c0) + O(h2), (22)

with |h| = ‖c − c0‖. Since our goal is to find minimum of F (c), then at
a minimum point c∗ we should have ∇F (c∗) = 0. Taking derivative with
respect to c from (22) we obtain

H(F (c0))(c − c0) +∇F (c0) = 0, (23)

where H denotes the Hessian matrix of the function F (c0).
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Using (21) in (23) we obtain

H(F (c0))(c − c0) + JT (c0)r(c0) = 0, (24)

and from this expression we observe that we have obtained a system of
linear equations

H(F (c0))(c − c0) = −JT (c0)r(c0) (25)

which can be solved again using linear least squares method. The
Hessian matrix H(F (c0)) can be obtained from (21) as

H(F (c0)) = JT (c0)J(c0) +

m
∑

i=1

ri (c0)H(ri ), (26)

where H(ri ) denotes the Hessian matrix of the residual function ri (c).
These m matrices H(ri ) are inconvenient to compute, but since they are
multiplied to the small residuals ri (c0), the second term in (26) is often
very small at the solution c0 and this term can be dropped out.
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Then the system is transformed to the following linear system

JT (c0)J(c0)(c − c0) = −JT (c0)r(c0), (27)

which actually is a system of normal equations for the m × n linear least
squares problem

J(c0)(c − c0) = −r(c0). (28)

The system (27) determines the Gauss-Newton method for the solution
of the least squares problem as an iterative process

ck+1 = ck − [JT (ck)J(ck)]
−1JT (ck)r(ck), (29)

where k is the number of iteration.
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An alternative to the Gauss-Newton method is Levenberg-Marquardt
method. This method is based on the finding of minimum of the
regularized function

F (c) =
1

2
r(c)T r(c) +

1

2
γ(c − c0)

T (c − c0) =
1

2
‖r(c)‖22 +

1

2
γ‖c − c0‖22,

(30)
where c0 is a good initial guess for c and γ is a small regularization
parameter. Then we repeat all steps which we have performed for the
obtaining the Gauss-Newton method, see (21)-(26).
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Finally, In the Levenberg-Marquardt method the linear system which
should be solved at every iteration k is

(JT (ck)J(ck) + γk I )(c
k+1 − ck) = −JT (ck)r(ck), (31)

and the corresponding linear least squares problem is

[

J(ck)√
γk I

]

· (ck+1 − ck) ≈
[

−r(ck)
0

]

. (32)
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Let us consider the nonlinear model equation

AeE/T−T0 = y. (33)

Our goal is to determine parameters A,E and T0 in this equation by
knowing y and T . We rewrite (33) as a nonlinear least squares problem
in the form

min
A,E ,T0

m
∑

i=1

(yi − AeE/Ti−T0)2. (34)

We will show how to obtain from the nonlinear problem (34) the linear
one. We take logarithm of (33) to get

logA+
E

T − T0
= log y . (35)
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Now multiply both sides of (35) by T − T0 to obtain:

logA(T − T0) + E = log y(T − T0). (36)

and rewrite the above equation as

T logA− T0 logA+ E + T0 log y = T log y . (37)

Let now define the vector of parameters c = (c1, c2, c3) with
c1 = T0, c2 = logA, c3 = E − T0 logA. Now the problem (37) can be
written as

c1 log y + c2T + c3 = T log y , (38)

which is already a linear problem. Now we can rewrite (38) denoting by
f (c , y ,T ) = c1 log y + c2T + c3 as a linear least squares problem in the
form

min
c

m
∑

i=1

(Ti log yi − f (c , yi ,Ti ))
2. (39)
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The system of linear equations which is needed to be solved is











log y1 T1 1
log y2 T2 1

...
...

...
log ym Tm 1











·





c1
c2
c3



 =











T1 log y1
T2 log y2

...
Tm log ym











(40)
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Suppose that the nonlinear model function is given as

f (x , c) = Aec1x + Bec2x, A,B = const. > 0, (41)

and our goal is to fit this function using Gauss-Newton method. In other
words, we will use iterative formula (28) for iterative update of
c = (c1, c2). The residual function will be

r(c) = y − f (x , c), (42)

where y = yi , i = 1, ...,m are data points.
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First, we compute Jacobian matrix J(c), where two columns in this
matrix will be given by

J(c)i,1 =
∂ri
∂c1

= −xiAe
c1xi , i = 1, ...,m,

J(c)i,2 =
∂ri
∂c2

= −xiBe
c2xi , i = 1, ...,m.

(43)

If we will take initial guess for the parameters c0 = (c01 , c
0
2 ) = (1, 0), then

we have to solve the following problem at iteration k = 1:

J(c0)(c1 − c0) = −r(c0), (44)

and the next update for parameters c1 = (c11 , c
1
2 ) in the Gauss-Newton

method can be computed as

c1 = c0 − [JT (c0)J(c0)]
−1JT (c0)r(c0). (45)
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Here, r(c0) and J(c0) can be computed explicitly as follows:

r(c0) = yi − f (xi , c
0) = yi −(Ae1·xi +Be0·xi) = yi−Aexi −B, i = 1, ...,m,

(46)
and noting that c0 = (c01 , c

0
2 ) = (1, 0) two columns in the Jacobian

matrix J(c0) will be

J(c0)i,1 = −xiAe
1·xi = −xiAe

xi , i = 1, ...,m,

J(c0)i,2 = −xiBe
0·xi = −xiB, i = 1, ...,m.

(47)
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Substituting (46), (47) into (44) yields following linear system of
equations











−x1Ae
x1 −x1B

−x1Ae
x1 −x2B

...
...

−xmAe
xm −xmB











·
[

c11 − c01
c12 − c02

]

= −











y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B











(48)
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which is solved for c1 − c0 using method of normal equations as











−x1Ae
x1 −x1B

−x1Ae
x1 −x2B

...
...

−xmAe
xm −xmB











T ·











−x1Ae
x1 −x1B

−x1Ae
x1 −x2B

...
...

−xmAe
xm −xmB











·
[

c11 − c01
c12 − c02

]

= -











−x1Ae
x1 −x1B

−x1Ae
x1 −x2B

...
...

−xmAe
xm −xmB











T ·











y1 − Aex1 − B

y2 − Aex2 − B
...

ym − Aexm − B











(49)

This system can be solved for c1 − c0, and next values c1 are
obtained by using (45).
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