close all; tolerance = 10e-15; fun = @(x) sqrt(x+2) % definition av intervalet [n,p] n= -1.0; p=3.0; it=0; y=0; iteration_fixpunkt = 0; func_fixpunkt = 0; error_fixpunkt = 0; %Initialiseringen: init guess y(1) = 1.5; k=2; iteration_fixpunkt(1) = 1; func_fixpunkt(1) =fun(y(1)); %error_fixpunkt(1) = abs(10.0 - func_fixpunkt(1)); y(2) = fun(y(1)); % Main fixpunkt's iterations while abs( y(k) - y(k-1) ) > tolerance y(k+1) = fun(y(k)); iteration_fixpunkt(k) = k; func_fixpunkt(k) =fun(y(k)); k = k+1; if k == 45 break end end figure % plot(iteration_fixpunkt,error_fixpunkt, 'o b-','LineWidth',2) plot(iteration_fixpunkt,func_fixpunkt, 'o b-','LineWidth',2) xlabel('iteration') ylabel(' konvergens') grid on legend(['solution:',num2str(y(k))]); title(['Fixpunktsmetod, konvergens (iterations):',num2str(k)]) n= -1.0; p=3.0; x_exact = linspace(n, p); fun = @(x) x^2 - x - 2; N = size(x_exact,2); for i = 1:N func_exact(i) =fun(x_exact(i)); end figure plot(x_exact,func_exact, ' b-','LineWidth',2) legend(' x^2 - x - 2= 0 '); xlabel(' x') ylabel('function x^2 - x- 2 = 0 ') grid on iteration iteration_fixpunkt